
Package ‘clustMixType’
July 1, 2024

Version 0.4-2

Date 2024-06-27

Title k-Prototypes Clustering for Mixed Variable-Type Data

Author Gero Szepannek [aut, cre], Rabea Aschenbruck [aut]

Maintainer Gero Szepannek <gero.szepannek@web.de>

Imports RColorBrewer, tibble, combinat, dplyr, rlang

Suggests testthat

Description Functions to perform k-prototypes partitioning clustering for
mixed variable-type data according to Z.Huang (1998): Extensions to the k-Means
Algorithm for Clustering Large Data Sets with Categorical Variables, Data Mining
and Knowledge Discovery 2, 283-304.

License GPL (>= 2)

RoxygenNote 7.2.3

NeedsCompilation no

Encoding UTF-8

Repository CRAN

Date/Publication 2024-07-01 13:40:02 UTC

Contents
clprofiles . 2
kproto . 3
lambdaest . 6
plot.kproto . 8
predict.kproto . 9
stability_kproto . 10
summary.kproto . 12
validation_kproto . 13

Index 18

1

2 clprofiles

clprofiles Profiling k-Prototypes Clustering

Description

Visualization of a k-prototypes clustering result for cluster interpretation.

Usage

clprofiles(object, x, vars = NULL, col = NULL)

Arguments

object Object resulting from a call of resulting kproto. Also other kmeans like objects
with object$cluster and object$size are possible.

x Original data.

vars Optional vector of either column indices or variable names.

col Palette of cluster colours to be used for the plots. As a default RColorBrewer’s
brewer.pal(max(unique(object$cluster)), "Set3") is used for k > 2 clus-
ters and lightblue and orange else.

Details

For numerical variables boxplots and for factor variables barplots of each cluster are generated.

Author(s)

<gero.szepannek@web.de>

Examples

generate toy data with factors and numerics

n <- 100
prb <- 0.9
muk <- 1.5
clusid <- rep(1:4, each = n)

x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)

x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)

x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))

kproto 3

x <- data.frame(x1,x2,x3,x4)

apply k-prototyps
kpres <- kproto(x, 4)
clprofiles(kpres, x)

in real world clusters are often not as clear cut
by variation of lambda the emphasize is shifted towards factor / numeric variables
kpres <- kproto(x, 2)
clprofiles(kpres, x)

kpres <- kproto(x, 2, lambda = 0.1)
clprofiles(kpres, x)

kpres <- kproto(x, 2, lambda = 25)
clprofiles(kpres, x)

kproto k-Prototypes Clustering

Description

Computes k-prototypes clustering for mixed-type data.

Usage

kproto(x, ...)

Default S3 method:
kproto(

x,
k,
lambda = NULL,
type = "huang",
iter.max = 100,
nstart = 1,
na.rm = "yes",
keep.data = TRUE,
verbose = TRUE,
init = NULL,
p_nstart.m = 0.9,
...

)

4 kproto

Arguments

x Data frame with both numerics and factors (also ordered factors are possible).

... Currently not used.

k Either the number of clusters, a vector specifying indices of initial prototypes,
or a data frame of prototypes of the same columns as x.

lambda Parameter > 0 to trade off between Euclidean distance of numeric variables and
simple matching coefficient between categorical variables (if type = "huang").
Also a vector of variable specific factors is possible where the order must corre-
spond to the order of the variables in the data. In this case all variables’ distances
will be multiplied by their corresponding lambda value.

type Character, to specify the distance for clustering. Either "huang" or "gower" (cf.
details below).

iter.max Numeric; maximum number of iterations if no convergence before.

nstart Numeric; If > 1 repetitive computations with random initializations are com-
puted and the result with minimum tot.dist is returned.

na.rm Character, either "yes" to strip NA values for complete case analysis, "no" to
keep and ignore NA values, "imp.internal" to impute the NAs within the al-
gorithm or "imp.onestep" to apply the algorithm ignoring the NAs and impute
them after the partition is determined.

keep.data Logical, whether original should be included in the returned object.

verbose Logical, whether additional information about process should be printed. Cau-
tion: For verbose=FALSE, if the number of clusters is reduced during the itera-
tions it will not mentioned.

init Character, to specify the initialization strategy. Either "nbh.dens", "sel.cen"
or "nstart.m". Default is "NULL", which results in nstart repetitive algorithm
computations with random starting prototypes. Otherwise, nstart is not used.
Argument k must be a number if a specific initialization strategy is choosen!

p_nstart.m Numeric, probability(=0.9 is default) for init="nstart.m", where the strategy
assures that with a probability of p_nstart.m at least one of the m sets of ini-
tial prototypes contains objects of every cluster group (cf. Aschenbruck et al.
(2023): Random-based Initialization for clustering mixed-type data with the k-
Prototypes algorithm. In: Cladag 2023 Book of abstracts and short spapers,
isbn: 9788891935632.).

Details

Like k-means, the k-prototypes algorithm iteratively recomputes cluster prototypes and reassigns
clusters, whereby with type = "huang" clusters are assigned using the distance d(x, y) = deuclid(x, y)+
λdsimplematching(x, y). Cluster prototypes are computed as cluster means for numeric variables
and modes for factors (cf. Huang, 1998). Ordered factors variables are treated as categorical vari-
ables.
For type = "gower" range-normalized absolute distances from the cluster median are computed for
the numeric variables (and for the ranks of the ordered factors respectively). For factors simple
matching distance is used as in the original k prototypes algorithm. The prototypes are given by the
median for numeric variables, the mode for factors and the level with the closest rank to the median

kproto 5

rank of the corresponding cluster (cf. Szepannek et al., 2024).
In case of na.rm = FALSE: for each observation variables with missings are ignored (i.e. only the re-
maining variables are considered for distance computation). In consequence for observations with
missings this might result in a change of variable’s weighting compared to the one specified by
lambda. For these observations distances to the prototypes will typically be smaller as they are
based on fewer variables.
The type argument also accepts input "standard", but this naming convention is deprecated and
has been renamed to "huang". Please use "huang" instead.

Value

kmeans like object of class kproto:

cluster Vector of cluster memberships.

centers Data frame of cluster prototypes.

lambda Distance parameter lambda.

size Vector of cluster sizes.

withinss Vector of within cluster distances for each cluster, i.e. summed distances of all
observations belonging to a cluster to their respective prototype.

tot.withinss Target function: sum of all observations’ distances to their corresponding cluster
prototype.

dists Matrix with distances of observations to all cluster prototypes.

iter Prespecified maximum number of iterations.

trace List with two elements (vectors) tracing the iteration process: tot.dists and
moved number of observations over all iterations.

inits Initial prototypes determined by specified initialization strategy, if init is either
’nbh.dens’ or ’sel.cen’.

nstart.m only for ’init = nstart_m’: determined number of randomly choosen sets.

data if ’keep.data = TRUE’ than the original data will be added to the output list.

type Type argument of the function call.

stdization Only returned for type = "gower": List of standardized ranks for ordinal vari-
ables and an additional element num_ranges with ranges of all numeric vari-
ables. Used by predict.kproto.

Author(s)

<gero.szepannek@web.de>

References

• Szepannek, G. (2018): clustMixType: User-Friendly Clustering of Mixed-Type Data in R,
The R Journal 10/2, 200-208, doi:10.32614/RJ2018048.

• Aschenbruck, R., Szepannek, G., Wilhelm, A. (2022): Imputation Strategies for Clustering
Mixed-Type Data with Missing Values, Journal of Classification, doi:10.1007/s00357022-
09422y.

https://doi.org/10.32614/RJ-2018-048
https://doi.org/10.1007/s00357-022-09422-y
https://doi.org/10.1007/s00357-022-09422-y

6 lambdaest

• Szepannek, G., Aschenbruck, R., Wilhelm, A. (2024): Clustering Large Mixed-Type Data
with Ordinal Variables, Advances in Data Analysis and Classification, doi:10.1007/s11634-
024005955.

• Z.Huang (1998): Extensions to the k-Means Algorithm for Clustering Large Data Sets with
Categorical Variables, Data Mining and Knowledge Discovery 2, 283-304.

Examples

generate toy data with factors and numerics

n <- 100
prb <- 0.9
muk <- 1.5
clusid <- rep(1:4, each = n)

x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)

x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)

x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))

x <- data.frame(x1,x2,x3,x4)

apply k-prototypes
kpres <- kproto(x, 4)
clprofiles(kpres, x)

in real world clusters are often not as clear cut
by variation of lambda the emphasize is shifted towards factor / numeric variables
kpres <- kproto(x, 2)
clprofiles(kpres, x)

kpres <- kproto(x, 2, lambda = 0.1)
clprofiles(kpres, x)

kpres <- kproto(x, 2, lambda = 25)
clprofiles(kpres, x)

lambdaest Compares Variability of Variables

Description

Investigation of the variables’ variances/concentrations to support specification of lambda for k-
prototypes clustering.

https://doi.org/10.1007/s11634-024-00595-5
https://doi.org/10.1007/s11634-024-00595-5

lambdaest 7

Usage

lambdaest(
x,
num.method = 1,
fac.method = 1,
outtype = "numeric",
verbose = TRUE

)

Arguments

x Data.frame with both numerics and factors.

num.method Integer 1 or 2. Specifies the heuristic used for numeric variables.

fac.method Integer 1 or 2. Specifies the heuristic used for factor variables.

outtype Specifies the desired output: either ’numeric’, ’vector’ or ’variation’.

verbose Logical whether additional information about process should be printed.

Details

Variance (num.method = 1) or standard deviation (num.method = 2) of numeric variables and 1 −∑
i p

2
i (fac.method = 1) or 1−maxi pi (fac.method = 2) for factors is computed.

Value

lambda Ratio of averages over all numeric/factor variables is returned. In case of outtype
= "vector" the separate lambda for all variables is returned as the inverse of the
single variables’ variation as specified by the num.method and fac.method ar-
gument. outtype = "variation" directly returns these quantities and is not
meant to be passed directly to kproto().

Author(s)

<gero.szepannek@web.de>

Examples

generate toy data with factors and numerics

n <- 100
prb <- 0.9
muk <- 1.5
clusid <- rep(1:4, each = n)

x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)

x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))

8 plot.kproto

x2 <- as.factor(x2)

x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))

x <- data.frame(x1,x2,x3,x4)

lambdaest(x)
res <- kproto(x, 4, lambda = lambdaest(x))

plot.kproto Assign k-Prototypes Clusters

Description

Plot distributions of the clusters across the variables.

Usage

S3 method for class 'kproto'
plot(x, ...)

Arguments

x Object resulting from a call of kproto.

... Additional arguments to be passet to clprofiles such as e.g. vars.

Details

Wrapper around clprofiles. Only works for kproto object created with keep.data = TRUE.

Author(s)

<gero.szepannek@web.de>

Examples

generate toy data with factors and numerics

n <- 100
prb <- 0.9
muk <- 1.5
clusid <- rep(1:4, each = n)

x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)

predict.kproto 9

x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)

x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))

x <- data.frame(x1,x2,x3,x4)

apply k-prototyps
kpres <- kproto(x, 4)
plot(kpres, vars = c("x1","x3"))

predict.kproto Assign k-Prototypes Clusters

Description

Predicts k-prototypes cluster memberships and distances for new data.

Usage

S3 method for class 'kproto'
predict(object, newdata, ...)

Arguments

object Object resulting from a call of kproto.

newdata New data frame (of same structure) where cluster memberships are to be pre-
dicted.

... Currently not used.

Value

kmeans like object of class kproto:

cluster Vector of cluster memberships.

dists Matrix with distances of observations to all cluster prototypes.

Author(s)

<gero.szepannek@web.de>

10 stability_kproto

Examples

generate toy data with factors and numerics

n <- 100
prb <- 0.9
muk <- 1.5
clusid <- rep(1:4, each = n)

x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)

x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)

x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))

x <- data.frame(x1,x2,x3,x4)

apply k-prototyps
kpres <- kproto(x, 4)
predicted.clusters <- predict(kpres, x)

stability_kproto Determination the stability of k Prototypes Clustering

Description

Calculating the stability for a k-Prototypes clustering with k clusters or computing the stability-
based optimal number of clusters for k-Prototype clustering. Possible stability indices are: Jaccard,
Rand, Fowlkes \& Mallows and Luxburg.

Usage

stability_kproto(
object,
method = c("rand", "jaccard", "luxburg", "fowlkesmallows"),
B = 100,
verbose = FALSE,
...

)

stability_kproto 11

Arguments

object Object of class kproto resulting from a call with kproto(..., keep.data=TRUE)

method character specifying the stability, either one or more of luxburg, fowlkesmallows,
rand or/and jaccard.

B numeric, number of bootstrap samples

verbose Logical whether information about the bootstrap procedure should be given.

... Further arguments passed to kproto, like:

• nstart: If > 1 repetitive computations of kproto with random initial pro-
totypes are computed.

• lambda: Factor to trade off between Euclidean distance of numeric vari-
ables and simple matching coefficient between categorical variables.

Value

The output contains the stability for a given k-Prototype clustering in a list with two elements:

kp_stab stability values for the given clustering

kp_bts_stab stability values for each bootstrap samples

Author(s)

Rabea Aschenbruck

References

• Aschenbruck, R., Szepannek, G., Wilhelm, A.F.X (2023): Stability of mixed-type cluster
partitions for determination of the number of clusters. Submitted.

• von Luxburg, U. (2010): Clustering stability: an overview. Foundations and Trends in Ma-
chine Learning, Vol 2, Issue 3. doi:10.1561/2200000008.

• Ben-Hur, A., Elisseeff, A., Guyon, I. (2002): A stability based method for discovering struc-
ture in clustered data. Pacific Symposium on Biocomputing. doi:10/bhfxmf.

Examples

Not run:
generate toy data with factors and numerics
n <- 10
prb <- 0.99
muk <- 2.5

x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)
x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)
x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))

https://doi.org/10.1561/2200000008
https://doi.org/10/bhfxmf

12 summary.kproto

x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x <- data.frame(x1,x2,x3,x4)

#' # apply k-prototypes
kpres <- kproto(x, 4, keep.data = TRUE)

calculate cluster stability
stab <- stability_kproto(method = c("luxburg","fowlkesmallows"), object = kpres)

End(Not run)

summary.kproto Summary Method for kproto Cluster Result

Description

Investigation of variances to specify lambda for k-prototypes clustering.

Usage

S3 method for class 'kproto'
summary(object, data = NULL, pct.dig = 3, ...)

Arguments

object Object of class kproto.
data Optional data set to be analyzed. If !(is.null(data)) clusters for data are

assigned by predict(object, data). If not specified the clusters of the orig-
inal data ara analyzed which is only possible if kproto has been called using
keep.data = TRUE.

pct.dig Number of digits for rounding percentages of factor variables.
... Further arguments to be passed to internal call of summary() for numeric vari-

ables.

Details

For numeric variables statistics are computed for each clusters using summary(). For categorical
variables distribution percentages are computed.

Value

List where each element corresponds to one variable. Each row of any element corresponds to one
cluster.

Author(s)

<gero.szepannek@web.de>

validation_kproto 13

Examples

generate toy data with factors and numerics

n <- 100
prb <- 0.9
muk <- 1.5
clusid <- rep(1:4, each = n)

x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)

x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)

x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))

x <- data.frame(x1,x2,x3,x4)

res <- kproto(x, 4)
summary(res)

validation_kproto Validating k Prototypes Clustering

Description

Calculating the preferred validation index for a k-Prototypes clustering with k clusters or computing
the optimal number of clusters based on the choosen index for k-Prototype clustering. Possible
validation indices are: cindex, dunn, gamma, gplus, mcclain, ptbiserial, silhouette and tau.

Usage

validation_kproto(
method = "silhouette",
object = NULL,
data = NULL,
type = "huang",
k = NULL,
lambda = NULL,
kp_obj = "optimal",
verbose = FALSE,
...

)

14 validation_kproto

Arguments

method Character specifying the validation index: cindex, dunn, gamma, gplus, mcclain,
ptbiserial, silhouette (default) or tau.

object Object of class kproto resulting from a call with kproto(..., keep.data=TRUE).

data Original data; only required if object == NULL and neglected if object != NULL.

type Character, to specify the distance for clustering; either "huang" or "gower".

k Vector specifying the search range for optimum number of clusters; if NULL the
range will set as 2:sqrt(n). Only required if object == NULL and neglected if
object != NULL.

lambda Factor to trade off between Euclidean distance of numeric variables and simple
matching coefficient between categorical variables.

kp_obj character either "optimal" or "all": Output of the index-optimal clustering (kp_obj
== "optimal") or all computed cluster partitions (kp_obj == "all"); only required
if object != NULL.

verbose Logical, whether additional information about process should be printed.

... Further arguments passed to kproto, like:

• nstart: If > 1 repetitive computations of kproto with random initializa-
tions are computed.

• na.rm: Character, either "yes" to strip NA values for complete case analy-
sis, "no" to keep and ignore NA values, "imp.internal" to impute the NAs
within the algorithm or "imp.onestep" to apply the algorithm ignoring the
NAs and impute them after the partition is determined.

Details

More information about the implemented validation indices:

• cindex

Cindex =
Sw − Smin

Smax − Smin

For Smin and Smax it is necessary to calculate the distances between all pairs of points in the
entire data set (n(n−1)

2). Smin is the sum of the "total number of pairs of objects belonging
to the same cluster" smallest distances and Smax is the sum of the "total number of pairs of
objects belonging to the same cluster" largest distances. Sw is the sum of the within-cluster
distances.
The minimum value of the index is used to indicate the optimal number of clusters.

• dunn

Dunn =
min1≤i<j≤q d(Ci, Cj)

max1≤k≤q diam(Ck)

The following applies: The dissimilarity between the two clusters Ci and Cj is defined as
d(Ci, Cj) = minx∈Ci,y∈Cj d(x, y) and the diameter of a cluster is defined as diam(Ck) =
maxx,y∈C d(x, y).
The maximum value of the index is used to indicate the optimal number of clusters.

validation_kproto 15

• gamma

Gamma =
s(+)− s(−)

s(+) + s(−)

Comparisons are made between all within-cluster dissimilarities and all between-cluster dis-
similarities. s(+) is the number of concordant comparisons and s(−) is the number of discor-
dant comparisons. A comparison is named concordant (resp. discordant) if a within-cluster
dissimilarity is strictly less (resp. strictly greater) than a between-cluster dissimilarity.
The maximum value of the index is used to indicate the optimal number of clusters.

• gplus

Gplus =
2 · s(−)

n(n−1)
2 · (n(n−1)

2 − 1)

Comparisons are made between all within-cluster dissimilarities and all between-cluster dis-
similarities. s(−) is the number of discordant comparisons and a comparison is named dis-
cordant if a within-cluster dissimilarity is strictly greater than a between-cluster dissimilarity.
The minimum value of the index is used to indicate the optimal number of clusters.

• mcclain

McClain =
S̄w

S̄b

S̄w is the sum of within-cluster distances divided by the number of within-cluster distances
and S̄b is the sum of between-cluster distances divided by the number of between-cluster
distances.
The minimum value of the index is used to indicate the optimal number of clusters.

• ptbiserial

Ptbiserial =
(S̄b − S̄w) · (Nw·Nb

N2
t

)0.5

sd

S̄w is the sum of within-cluster distances divided by the number of within-cluster distances
and S̄b is the sum of between-cluster distances divided by the number of between-cluster
distances.
Nt is the total number of pairs of objects in the data, Nw is the total number of pairs of objects
belonging to the same cluster and Nb is the total number of pairs of objects belonging to
different clusters. sd is the standard deviation of all distances.
The maximum value of the index is used to indicate the optimal number of clusters.

• silhouette

Silhouette =
1

n

n∑
i=1

b(i)− a(i)

max(a(i), b(i))

a(i) is the average dissimilarity of the ith object to all other objects of the same/own cluster.
b(i) = min(d(i, C)), where d(i, C) is the average dissimilarity of the ith object to all the
other clusters except the own/same cluster.
The maximum value of the index is used to indicate the optimal number of clusters.

• tau

Tau =
s(+)− s(−)

((Nt(Nt−1)
2 − t)Nt(Nt−1)

2)0.5

16 validation_kproto

Comparisons are made between all within-cluster dissimilarities and all between-cluster dis-
similarities. s(+) is the number of concordant comparisons and s(−) is the number of discor-
dant comparisons. A comparison is named concordant (resp. discordant) if a within-cluster
dissimilarity is strictly less (resp. strictly greater) than a between-cluster dissimilarity.
Nt is the total number of distances n(n−1)

2 and t is the number of comparisons of two pairs
of objects where both pairs represent within-cluster comparisons or both pairs are between-
cluster comparisons.
The maximum value of the index is used to indicate the optimal number of clusters.

Value

For computing the optimal number of clusters based on the choosen validation index for k-Prototype
clustering the output contains:

k_opt optimal number of clusters (sampled in case of ambiguity)

index_opt index value of the index optimal clustering

indices calculated indices for k = 2, ..., kmax

kp_obj if(kp_obj == "optimal") the kproto object of the index optimal clustering and
if(kp_obj == "all") all kproto which were calculated

For computing the index-value for a given k-Prototype clustering the output contains:

index calculated index-value

Author(s)

Rabea Aschenbruck

References

• Aschenbruck, R., Szepannek, G. (2020): Cluster Validation for Mixed-Type Data. Archives of
Data Science, Series A, Vol 6, Issue 1. doi:10.5445/KSP/1000098011/02.

• Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A. (2014): NbClust: An R Package for
Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software,
Vol 61, Issue 6. doi:10.18637/jss.v061.i06.

Examples

Not run:
generate toy data with factors and numerics
n <- 10
prb <- 0.99
muk <- 2.5

x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)
x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))

https://doi.org/10.5445/KSP/1000098011/02
https://doi.org/10.18637/jss.v061.i06

validation_kproto 17

x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)
x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x <- data.frame(x1,x2,x3,x4)

calculate optimal number of cluster, index values and clusterpartition with Silhouette-index
val <- validation_kproto(method = "silhouette", data = x, k = 3:5, nstart = 5)

apply k-prototypes
kpres <- kproto(x, 4, keep.data = TRUE)

calculate cindex-value for the given clusterpartition
cindex_value <- validation_kproto(method = "cindex", object = kpres)

End(Not run)

Index

∗ classif
kproto, 3

∗ cluster
kproto, 3

∗ multivariate
kproto, 3

clprofiles, 2, 8

kmeans, 5, 9
kproto, 3, 11, 14

lambdaest, 6

plot.kproto, 8
predict.kproto, 5, 9

stability_kproto, 10
summary.kproto, 12

validation_kproto, 13

18

	clprofiles
	kproto
	lambdaest
	plot.kproto
	predict.kproto
	stability_kproto
	summary.kproto
	validation_kproto
	Index

