
Package ‘dosearch’
July 9, 2024

Type Package

Title Causal Effect Identification from Multiple Incomplete Data
Sources

Version 1.0.10

Description Identification of causal effects from arbitrary observational and
experimental probability distributions via do-calculus and standard
probability manipulations using a search-based algorithm by
Tikka, Hyttinen and Karvanen (2021) <doi:10.18637/jss.v099.i05>.
Allows for the presence of mechanisms related to selection bias
(Bareinboim and Tian, 2015) <doi:10.1609/aaai.v29i1.9679>,
transportability (Bareinboim and Pearl, 2014)
<http://ftp.cs.ucla.edu/pub/stat_ser/r443.pdf>,
missing data (Mohan, Pearl, and Tian, 2013)
<http://ftp.cs.ucla.edu/pub/stat_ser/r410.pdf>) and arbitrary combinations
of these. Also supports identification in the presence of context-specific
independence (CSI) relations through labeled directed acyclic graphs
(LDAG). For details on CSIs see (Corander et al., 2019)
<doi:10.1016/j.apal.2019.04.004>.

License GPL (>= 3)

Depends R (>= 4.0)

Suggests covr, dagitty, DiagrammeR, DOT, igraph, knitr, mockr,
rmarkdown, testthat (>= 3.0.0)

Imports Rcpp

LinkingTo Rcpp

VignetteBuilder knitr

BugReports https://github.com/santikka/dosearch/issues

URL https://github.com/santikka/dosearch

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.3.2

Config/testthat/edition 3

1

https://doi.org/10.18637/jss.v099.i05
https://doi.org/10.1609/aaai.v29i1.9679
http://ftp.cs.ucla.edu/pub/stat_ser/r443.pdf
http://ftp.cs.ucla.edu/pub/stat_ser/r410.pdf
https://doi.org/10.1016/j.apal.2019.04.004
https://github.com/santikka/dosearch/issues
https://github.com/santikka/dosearch

2 dosearch-package

LazyData true

Maintainer Santtu Tikka <santtuth@gmail.com>

Author Santtu Tikka [aut, cre] (<https://orcid.org/0000-0003-4039-4342>),
Antti Hyttinen [ctb] (<https://orcid.org/0000-0002-6649-3229>),
Juha Karvanen [ctb] (<https://orcid.org/0000-0001-5530-769X>)

Repository CRAN

Date/Publication 2024-07-09 21:40:07 UTC

Contents
dosearch-package . 2
bivariate_missingness . 3
dosearch . 3
print.summary.dosearch . 14

Index 15

dosearch-package Causal Effect Identification from Multiple Incomplete Data Sources

Description

Solves causal effect identifiability problems from arbitrary observational and experimental distri-
butions using a heuristic search. Allows for the presence of advanced data-generating mechanisms.
See Tikka et al. (2021) doi:10.18637/jss.v099.i05 for further details.

See also

• The package vignette.
• dosearch() for instructions and various examples.
• https://github.com/santikka/dosearch/issues/ to submit a bug report.

Author(s)

Santtu Tikka, Antti Hyttinen, Juha Karvanen

References

S. Tikka, A. Hyttinen and J. Karvanen. "Causal effect identification from multiple incomplete data
sources: a general search-based approach." Journal of Statistical Software, 99(5):1–40, 2021.

See Also

Useful links:

• https://github.com/santikka/dosearch

• Report bugs at https://github.com/santikka/dosearch/issues

https://orcid.org/0000-0003-4039-4342
https://orcid.org/0000-0002-6649-3229
https://orcid.org/0000-0001-5530-769X
doi:10.18637/jss.v099.i05
https://github.com/santikka/dosearch/issues/
https://github.com/santikka/dosearch
https://github.com/santikka/dosearch/issues

bivariate_missingness 3

bivariate_missingness Systematic Analysis of Bivariate Missing Data Problems

Description

This data set contains the results of a systematic analysis of all missing data problems of two vari-
ables. Each problem is associated with a graph containing two vertices, X and Y , and their response
indicators, RX and RY .

Usage

data(bivariate_missingness)

Format

A data frame with 6144 rows and 8 variables:

graph the graph of the instance.

nedges number of edges in the graph (directed and bidirected).

arrowXtoY whether the graph contains an arrow from X to Y or not.

jointXY identifiability of the joint distribution of X and Y

marginX identifiability of the marginal distribution of X .

marginY identifiability of the marginal distribution of Y .

YcondX identifiability of the conditional distribution of Y given X .

YdoX identifiability of the causal effect of X on Y .

Source

Tikka et al. https://arxiv.org/abs/1902.01073

dosearch Identify a Causal Effect from Arbitrary Experiments And Observations

Description

Identify a causal query from available data in a semi-Markovian causal model described by a
graph that is a directed acyclic graph (DAG) or a labeled directed acyclic graph (LDAG). In a
semi-Markovian causal model, each unobserved variable has exactly two children and they are
denoted by bidirected edges. For DAGs, special mechanisms related to transportability of causal
effects, recoverability from selection bias and identifiability under missing data can also be in-
cluded. See ’Details’ for the syntax of each argument. Note that all character type arguments are
case-sensitive.

https://arxiv.org/abs/1902.01073

4 dosearch

is_identifiable returns the a logical value describing the identifiability of a causal query of an
object of class dosearch.

get_formula returns the identifying formula describing a causal query of an object of class dosearch.
If no formula is available, returns NULL.

get_derivation returns the derivation of a causal query of an object of class dosearch. If no
derivation is available, returns NULL.

get_benchmark returns the benchmarking information of an object of class dosearch. If no bench-
mark is available, returns NULL.

Usage

dosearch(
data,
query,
graph,
transportability = NULL,
selection_bias = NULL,
missing_data = NULL,
control = list()

)

S3 method for class 'dosearch'
summary(object, ...)

S3 method for class 'dosearch'
plot(x, ...)

S3 method for class 'dosearch'
print(x, max_chars = 300L, ...)

is_identifiable(x)

get_formula(x, run_again = FALSE)

get_derivation(x, run_again = FALSE, draw_all = FALSE)

get_benchmark(x, run_again = FALSE, include_rules = FALSE)

Arguments

data A character string describing the available distributions in the package syntax.
Alternatively, a list of character vectors.

query A character string describing the target distribution in the package syntax.
Alternatively, a character vector.

graph A character string describing either a DAG or an LDAG in the package syntax.
Alternatively, an igraph graph as used in the causaleffect package or a DAG
constructed using the dagitty package.

dosearch 5

transportability

A character string describing the transportability nodes of the model in the
package syntax (for DAGs only).

selection_bias A character string describing the selection bias nodes of the model in the pack-
age syntax (for DAGs only).

missing_data A character string describing the missing data mechanisms of the model in the
package syntax (for DAGs only).

control A list of control parameters.

object An object of class dosearch.

... Additional arguments passed to base::format().

x An object of class dosearch.

max_chars Maximum number of characters of the formula to display. The default is 300.

run_again If TRUE, runs the search again in an attempt to obtain the formula, for example
if control$formula was FALSE in the call to dosearch(), but the query itself
is identifiable.

draw_all A logical value. If TRUE, the derivation will contain every step taken by the
search. If FALSE, only steps that resulted in identification are returned.

include_rules A logical value. If TRUE, also benchmarks the time taken by each inference
rule separately.

Details

Argument data is used to list the available input distributions. When graph is a DAG the distribu-
tions should be of the form

P (Ai|do(Bi), Ci)

Individual variables within sets should be separated by a comma. For example, three input distribu-
tions:

P (Z|do(X)), P (W,Y |do(Z,X)), P (W,Y,X|Z)

should be given as follows:

> data <- "
+ P(Z|do(X))
+ P(W,Y|do(Z,X))
+ P(W,Y,X|Z)
+"

The use of multiple do-operators is not permitted. Furthermore, when both conditioning variables
and a do-operator are present, every conditioning variable must either precede the do-operator or
follow it. When graph is an LDAG, the do-operation is represented by an intervention node, i.e.,

P (Y |do(X), Z) = P (Y |X,Z, IX = 1)

For example, in the case of the previous example in an LDAG, the three input distributions become:

6 dosearch

> data <- "
+ P(Z|X,I_X = 1)
+ P(W,Y|Z,X,I_X=1,I_Z=1)
+ P(W,Y,X|Z)
+"

The intervention nodes IX and IZ must be explicitly defined in the graph along with the relevant
labels for the edges.

Argument query is the target distribution of the search. It has the same syntax as data, but only a
single distribution should be given. Multiple simultaneous target distributions are not supported.

Argument graph is a description of a directed acyclic graph where directed edges are denoted by
-> and bidirected arcs corresponding to unobserved confounders are denoted by <-> (or by --). As
an example, a DAG with two directed edges and one bidirected edge is constructed as follows:

> graph <- "
+ X -> Z
+ Z -> Y
+ X <-> Y
+"

Some alternative formats for DAGs are supported as well. Graphs created using the igraph package
in the causal.effect package syntax can be used for dosearch as well. DAGs created using the
dagitty package are also supported. Note that both time and space complexity of the underlying
search algorithm are exponential in the number of vertices, but instances with up to ten nodes are
routinely solved in under a second.

LDAGs are constructed similarly with the addition of labels and with the omission bidirected edges
(latent variables must be explicitly defined). As an example, an LDAG with two labeled edges can
be constructed as follows:

> graph <- "
+ X -> Z : A = 0
+ Z -> Y : A = 1
+ A -> Z
+ A -> Y
+"

Here the labels indicate that the edge from X to Z vanishes when A has the value 0 and the edge
from Z to Y vanishes when A has the value 1. Multiple labels on the same edge should be separated
by a semi-colon, and individual assignments within each label should be separated by a comma.

Argument transportability enumerates the nodes that should be understood as transportability
nodes responsible for discrepancies between domains. Individual variables should be separated by
a comma. See e.g., (Bareinboim and Pearl, 2014) for details on transportability.

Argument selection_bias enumerates the nodes that should be understood as selection bias nodes
responsible for bias in the input data sets. Individual variables should be separated by a comma.
See e.g., (Bareinboim and Tian, 2015) for details on selection bias recoverability.

Argument missing_data enumerates the missingness mechanisms of the model. The syntax for a
single mechanism is M_X : X where MX is the mechanism for X . Individual mechanisms should be

dosearch 7

separated by a comma. Note that both MX and X must be present in the graph if the corresponding
mechanism is given as input. Proxy variables should not be included in the graph, since they are
automatically generated based on missing_data. By default, a warning is issued if a proxy variable
is present in an input distribution but its corresponding mechanism is not present in any input. See
e.g., (Mohan, Pearl and Tian, 2013) for details on missing data as a causal inference problem. Note
that dosearch is not complete for missing data problems, meaning that if dosearch is not able to
identify the query, it might still be identifiable via some other means.

The control argument is a list that can supply any of the following components:

• benchmark: a logical value. If TRUE, the search time is recorded and returned (in millisec-
onds). Defaults to FALSE.

• benchmark_rules: a logical value. If TRUE, the time taken by each individual inference rule
is also recorded in the benchmark (in milliseconds). Defaults to FALSE.

• draw_derivation: a logical value. If TRUE, a string representing the derivation steps as a
DOT graph is returned. If the DiagrammeR package is installed, the DOT graph can be plotted
by calling plot on the return object. The DOT graph can also be exported as an .svg file by
using the DOT package. Defaults to FALSE.

• draw_all: a logical value. If TRUE and if draw_derivation = TRUE, the derivation will
contain every step taken by the search. If FALSE, only the steps that resulted in an identifiable
target are returned. Defaults to FALSE. empty: a logical value. If TRUE, an empty dosearch
object is returned without running the search.

• formula: a logical value. If TRUE, a string representing the identifiable query is returned
when the target query is identifiable. If FALSE, only a logical value is returned that takes the
value TRUE for an identifiable target and FALSE otherwise. Defaults to TRUE.

• heuristic: a logical value. If TRUE, new distributions are expanded during the search
according to a search heuristic (see Tikka et al., 2021, for details). Otherwise, distributions
are expanded in the order in which they were identified. Defaults to FALSE.

• md_sym: a single character describing the symbol to use for active missing data mechanisms.
Defaults to "1".

• time_limit: a numeric value giving a time limit for the search (in hours). Defaults to a
negative value that disables the time limit.

• verbose: a logical value. If TRUE, diagnostic information is printed to the console during
the search. Defaults to FALSE.

• warn: a logical value. If TRUE, a warning is issued for possibly unintentionally misspecified
but syntactically correct input distributions. A warning is also raised if both lower-case and
upper-case node or variable names are used simultaneously in the inputs

Value

dosearch returns an object of class dosearch which is a list with the following components by
default. See the control options on how to obtain a graphical representation of the derivation or
how to benchmark the search.

• identifiable: a logical value that is TRUE if the target quantity is identifiable and FALSE
otherwise.

• formula: a character string describing the formula for an identifiable query or an empty
character vector for a non-identifiable effect.

8 dosearch

summary returns a summary.dosearch object.

plot returns a htmlwidget object or NULL (invisibly)

print returns x invisibly.

is_identifiable returns a logical value. If TRUE, the target distribution was identifiable from the
available inputs.

get_formula returns a character string representing the query in terms of the input data or NULL
if the query is not identifiable.

get_derivation returns a graphical representation of the derivation steps that resulted in identifi-
cation. The return object is a character string in DOT syntax.

get_benchmark returns a list with one or two elements or NULL. The first element of the list
is always a numeric value of the total time taken by the search in milliseconds. The second is a
numeric vector of the time taken by each inference rule (in the internal C++ implementation) of the
search in milliseconds if include_rules is TRUE.

References

S. Tikka, A. Hyttinen, J. Karvanen. "Causal Effect Identification from Multiple Incomplete Data
Sources: A General Search-based Approach." Journal of Statistical Software, 99(5):1–40, 2021.

E. Bareinboim, J. Pearl. "Transportability from Multiple Environments with Limited Experiments:
Completeness Results." In Proceedings of the 27th Annual Conference on Neural Information Pro-
cessing Systems, 280–288, 2014.

E. Bareinboim, J. Tian. "Recovering Causal Effects from Selection Bias " In Proceedings of the
29th AAAI Conference on Artificial Intelligence, 3475–3481, 2015.

K. Mohan, J. Pearl, J. Tian. "Graphical Models for Inference with Missing Data." In Proceedings
of the 26th International Conference on Neural Information Processing Systems, 1277–1285, 2013.

Examples

A simple back-door formula
data1 <- "P(x,y,z)"
query1 <- "P(y|do(x))"
graph1 <- "

x -> y
z -> x
z -> y

"
dosearch(data1, query1, graph1)

A simple front-door formula
data2 <- "P(x,y,z)"
query2 <- "P(y|do(x))"
graph2 <- "

x -> z
z -> y
x <-> y

"
dosearch(data2, query2, graph2)

dosearch 9

A scenario with combined transportability and selection bias
in this case using the search heuristic provides a simpler formula
data <- "

p(x,z,y|s)
p(y,z|t,do(x))

"
query <- "p(y|do(x))"
graph <- "

x -> z
z -> y
x -> s
t -> z
x <-> y

"
dosearch(

data,
query,
graph,
transportability = "t",
selection_bias = "s",
control = list(heuristic = TRUE, improve = FALSE)

)

A simple case-control design
data <- "

p(x*,y*,r_x,r_y)
p(y)

"
graph <- "

x -> y
y -> r_y
r_y -> r_x

"
md <- "r_x : x, r_y : y"
dosearch(data, query, graph, missing_data = md)

Graph input using 'igraph' in the 'causaleffect' syntax
if (requireNamespace("igraph", quietly = TRUE)) {

g_igraph <- igraph::graph.formula(
x -+ z, z -+ y, x -+ y, y -+ x,
simplify = FALSE

)
g_igraph <- igraph::set.edge.attribute(g_igraph, "description", 3:4, "U")
dosearch(data2, query2, g_igraph)

}

Graph input with 'dagitty'
if (requireNamespace("dagitty", quietly = TRUE)) {

g_dagitty <- dagitty::dagitty("dag{x -> z -> y; x <-> y}")
dosearch(data2, query2, g_dagitty)

}

Alternative distribution input style using lists and vectors:

10 dosearch

Each element of the list describes a single distribution
Each element is a character vector that describes the role
of each variable in the distribution as follows:
For a variable V and a distribution P(A|do(B),C) we have
V = 0, if V is in A
V = 1, if V is in B
V = 2, if V is in C
data_alt <- list(

c(x = 0, y = 0, z = 0) # = P(x,y,z)
)
query_alt <- c(x = 1, y = 0) # = P(y|do(x))
dosearch(data_alt, query_alt, graph2)

Not run:
Additional examples
Multiple input distributions (both observational and interventional)
data3 <- "

p(z_2,x_2|do(x_1))
p(z_1|x_2,do(x_1,y))
p(x_1|w_1,do(x_2))
p(y|z_1,z_2,x_1,do(x_2))
p(w|y,x_1,do(x_2))

"
query3 <- "p(y,x_1|w,do(x_2))"
graph3 <- "

x_1 -> z_2
x_1 -> z_1
x_2 -> z_1
x_2 -> z_2
z_1 -> y
z_2 -> y
x_1 -> w
x_2 -> w
z_1 -> w
z_2 -> w

"
dosearch(data3, query3, graph3)

Selection bias
data4 <- "

p(x,y,z_1,z_2|s)
p(z_1,z_2)

"
query4 <- "p(y|do(x))"
graph4 <- "

x -> z_1
z_1 -> z_2
x -> y
y -- z_2
z_2 -> s

"
dosearch(data4, query4, graph4, selection_bias = "s")

dosearch 11

Transportability
data5 <- "

p(x,y,z_1,z_2)
p(x,y,z_1|t_1,t_2,do(z_2))
p(x,y,z_2|t_3,do(z_1))

"
query5 <- "p(y|do(x))"
graph5 <- "

z_1 -> x
x -> z_2
z_2 -> y
z_1 <-> x
z_1 <-> z_2
z_1 <-> y
t_1 -> z_1
t_2 -> z_2
t_3 -> y

"
dosearch(data5, query5, graph5, transportability = "t_1, t_2, t_3")

Missing data
Proxy variables are denoted by an asterisk (*)
data6 <- "

p(x*,y*,z*,m_x,m_y,m_z)
"
query6 <- "p(x,y,z)"
graph6 <- "

z -> x
x -> y
x -> m_z
y -> m_z
y -> m_x
z <-> y

"
dosearch(data6, query6, graph6, missing_data = "m_x : x, m_y : y, m_z : z")

An LDAG
data7 <- "P(X,Y,Z)"
query7 <- "P(Y|X,I_X=1)"
graph7 <- "

X -> Y : Z = 1
Z -> Y
Z -> X : I_X = 1
I_X -> X
H -> X : I_X = 1
H -> Z
Q -> Z
Q -> Y : Z = 0

"
dosearch(data7, query7, graph7)

A more complicated LDAG
with multiple assignments for the edge X -> Z

12 dosearch

data8 <- "P(X,Y,Z,A,W)"
query8 <- "P(Y|X,I_X=1)"
graph8 <- "

I_X -> X
I_Z -> Z
A -> W
Z -> Y
A -> Z
X -> Z : I_Z = 1; A = 1
X -> Y : A = 0
W -> X : I_X = 1
W -> Y : A = 0
A -> Y
U -> X : I_X = 1
U -> Y : A = 1

"
dosearch(data8, query8, graph8)

Export the DOT diagram of the derivation as an SVG file
to the working directory via the DOT package.
By default, only the identifying part is plotted.
PostScript format is also supported.
if (requireNamespace("DOT", quietly = TRUE)) {

d <- get_derivation(
data1,
query1,
graph1,
control = list(draw_derivation = TRUE)

)
DOT::dot(d$derivation, "derivation.svg")

}

End(Not run)

data <- "p(x,y,z)"
query <- "p(y|do(x))"
graph <- "

x -> y
Z -> x
z -> y

"
x <- dosearch(data, query, graph)
y <- summary(x)

Not run:
out <- dosearch(

"p(x,y,z, w)",
"p(y|do(x))",
"x -> y \n z -> x \n w -> z \n x <-> w \n w <-> y",
control = list(draw_derivation = TRUE)

)
if (requireNamespace("DiagrammeR", quietly = TRUE)) {

dosearch 13

plot(out)
}

End(Not run)

data <- "p(x,y,z)"
query <- "p(y|do(x))"
graph <- "

x -> z
Z -> y
x <-> y

"
x <- dosearch(data, query, graph)
print(x)

data <- "P(x,y,z)"
query <- "P(y|do(x))"
graph <- "

x -> y
z -> x
z -> y

"
x <- dosearch(data, query, graph)
is_identifiable(x)
TRUE

data <- "P(x,y,z)"
query <- "P(y|do(x))"
graph <- "

x -> y
z -> x
z -> y

"
x <- dosearch(data, query, graph, control = list(formula = FALSE))
get_formula(x, run_again = TRUE)

data <- "P(x,y,z)"
query <- "P(y|do(x))"
graph <- "

x -> y
z -> x
z -> y

"
x <- dosearch(data, query, graph, control = list(draw_derivation = FALSE))
get_derivation(x, run_again = TRUE)
data <- "P(x,y,z)"
query <- "P(y|do(x))"
graph <- "

x -> y
z -> x
z -> y

"
x <- dosearch(data, query, graph, control = list(benchmark = FALSE))

14 print.summary.dosearch

get_benchmark(x, run_again = TRUE)

print.summary.dosearch

Print the Summary of a dosearch Object

Description

Print the Summary of a dosearch Object

Usage

S3 method for class 'summary.dosearch'
print(x, max_chars = 300L, ...)

Arguments

x An object of class summary.dosearch.

max_chars Maximum number of characters of the formula to display. The default is 300.

... Not used.

Value

x (invisibly)

Examples

data <- "p(x,y,z)"
query <- "p(y|do(x))"
graph <- "

x -> y
Z -> x
z -> y

"
x <- dosearch(data, query, graph)
y <- summary(x)
print(y)

Index

∗ datasets
bivariate_missingness, 3

base::format(), 5
bivariate_missingness, 3

dosearch, 3
dosearch(), 2, 5
dosearch-package, 2

get_benchmark (dosearch), 3
get_derivation (dosearch), 3
get_formula (dosearch), 3

is_identifiable (dosearch), 3

plot.dosearch (dosearch), 3
print.dosearch (dosearch), 3
print.summary.dosearch, 14

summary.dosearch (dosearch), 3

15

	dosearch-package
	bivariate_missingness
	dosearch
	print.summary.dosearch
	Index

