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This document describes Marginal Maximum Likelihood (MML) estimation for student test data in the Dire

package. In these models, failing to account for the measurement variance can bias the regression or variance
estimates.

The student test data are assumed to have been generated by an Item Response Theory (IRT) model, where
students’ responses are correct or incorrect (have an increasing score) when student i has higher ability (θi)
and decreasing when the item is more difficult (dj), so the probability of a correct response increases as the
quantity θi − dj increases. See the appendix for the likelihood functions for various response models.

This package considers a regression model of the following form (one case in Cohen & Jiang 1999):

θ = Xβ + ǫ (1)

where θ is a vector of student abilities, X is a matrix of covariates with unknown parameters β and residual
variance ǫ. For estimation, we assume that the residual variance is normally distributed without covariance
across observations (students) sharing variance of unknown level σ2 so that

ǫ ∼ N(0, σ2I) (2)

where N(0, σ2I) is the normal distribution with mean zero, and covariance σ2I, and I is the identity matrix.
The variance estimation then allows for covariances between students (e.g., in a two-stage sample or clustered
within schools).

The next section describes the estimation of β and σ2. The final section describes five methods for
variance estimation available in MML estimation, including the traditional (consistent) method, two
heteroskedasticity robust methods, and two methods appropriate to a two-stage survey sample, such as the
National Assessment of Educational Progress (NAEP).

Parameter Estimation

Student test data1 consist of a series of items on which a student receives a score. The matrix R has row i

regarding a student and column j regarding an item so that Rij is student i’s score on item j and takes on
integer values from 0 to the maximum score on the item. Many possible models exist for the R matrix data,
which are covered, briefly, in the appendix to this document. The rest of this document simply assumes
that item parameters have been estimated with a consistent estimator and are treated as being estimated
without error.

In an MML model for test data for N individuals, conditional on a set of parameters for a set of K test
items, the likelihood of a regression equation is

L(β, σ|w, R, X, P ) =

N
∏

i=1





∫

∞

−∞

1

σ
√

2π
exp

−(θi − Xiβ)2

2σ2

K
∏

j=1

Pr(Rij |θi, Pj)dθi





wi

(3)

∗This publication was prepared for NCES under Contract No. ED-IES-12-D-0002 with the American Institutes for Research.
Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

1Note that these methods equivalently apply to survey construct data that are scored in the same way.
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where L is the likelihood2 of the regression parameters β with full sample weights wi conditional on item score
matrix R, student covariate matrix X, and item parameter data P ; σ2 is the variance of the regression
residual; θi is the ith student’s latent ability measure that is being integrated out; Pr(Rij |θi, Pj) is the
probability of individual i’s score on test item j, conditional on the student’s ability and item parameters
Pj—see the appendix for example forms of Pr(Rij |θi, Pj). Note that if the user is only interested in the
population mean, it can be regarded as a special case; X is a vector of all ones, and the value of β has only
one element that is the mean estimate.

The integral is evaluated using the trapezoid rule3 at quadrature points tq and quadrature weights δ so that

L(β, σ|w, R, X, P ) =
N

∏

i=1





Q
∑

q=1

δ
1

σ
√

2π
exp

−(tq − Xiβ)2

2σ2

K
∏

j=1

Pr(Rij |tq, Pj)





wi

(4)

where δ is the distance between any two uniformly spaced quadrature points so that δ = tq+1 − tq for any
q that is at least one and less than Q. The range and value of Q parameterize the quadrature, and its
accuracy and should be varied to ensure convergence. The advantage of the trapezoidal rule is that the fixed
quadrature points allow the values of the probability to be calculated once per student.

The variance formulas use the log-likelihood, which is given by

ℓ(β, σ|w, R, X, P ) =
N

∑

i=1

wi log



δ

Q
∑

q=1

1

σ
√

2π
exp

−(tq − Xiβ)2

2σ2

K
∏

j=1

Pr(Rij |tq, Pj)



 (5)

Note that δ can be removed for optimization, and its presence adds log(δ)
∑

wi to the log-likelihood.

Composite Scores

When the outcome of interest is composite scores, the parameters are estimated by separately estimating
the coefficients for each subscale (βs for subscale s) and then calculating the composite scores (βc) using
subscale weights (ωs).4

βc =

S
∑

s=1

ωsβs (6)

where there are S subscales.

For variance estimation, the covariance matrix (Σ) between subscales is of interest. The covariance terms
are estimated one at a time using the submatrix

Σij =

[

si sij

sij sj

]

(7)

so that the two are jointly bivariate normally distributed
(

βi

βj

)

|Σij , w, R, X, P ∼ MVN

((

βi

βj

)

, Σij

∣

∣

∣

∣

w, R, X, P

)

(8)

where MVN(u, S|·) is the multivariate normal density function with mean u and covariance S, conditional
on ·, which are additional parameters.

2When survey weights are applied, the likelihoods in this document are all pseudo-likelihoods.
3Using Big-O notation (Black, 2019), the trapezoid rule’s convergence is in O(δ2), meaning that the convergence is

proportional to δ2. If the bounds are set wide enough such that every student’s likelihood is essentially zero at the edges,
the convergence rate is faster than polynomial because the function is periodic and analytic (Johnson, 2010).

4We use the term composite score to mean those scores that are weighted sums of subscale scores, as in Eq. 6. Overall
scores that use a unidimensional model are calculated according to the methods already described by simply pooling items into
a single construct.
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The likelihood is then

ℓ (sij |βi, βj , si, sj ; w, R, X, P ) =
N

∑

n=1

wn log







δ2

Q
∑

qi=1

Q
∑

qj=1

1√
2π

1
√

|Σ|
exp

(

rT
q1q2

Σ
−1rq1q2

)

(9)

×
[

K
∏

k=1

Pr(Rnk|tq1
, Pk)

] [

K
∏

k=1

Pr(Rnk|tq2
, Pk)

]}

(10)

where |Σ| is the determinant of Σ, and the residual term is defined as

rq1q2
=

(

tq1
− Xnβi

tq2
− Xnβj

)

(11)

Notice that the parameters βi, βj , si, and sj are used from the by-subscale estimation and optimization of
the density function is exclusively over the covariance term sij .

The joint distribution of the vector

β· =







β1

...
βS






(12)

is then

β·, Σ|w, R, X, P = MVN(β·, Σ| w, R, X, P ) (13)

which has an intractably high dimensional log-likelihood because it involves S sums inside the log-likelihood.

Variance Estimation

Estimating variance of the parameters β can be done in one of several ways.5

The inverse Hessian matrix is a consistent estimator when the estimator of β is consistent (Green, 2003,
p. 520):

Var(β) = −H(β)−1 = −
[

∂2ℓ(β, σ|w, R, X)

∂β2

]−1

(14)

This variance is returned when the variance method is set to consistent or left as the default.

A class of variance estimators typically called “sandwich” or “robust” variance estimators allow for variation
in the residual and are of the form

Var(β) = H(β)−1V H(β)−1 (15)

where V is an estimate of the variance of the summed score function (Binder, 1983).

For a convenience sample, we provide two robust estimators. First, the so-called robust (Huber or
Huber-White) variance estimator uses

V =

N
∑

i=1

[

∂ℓ(β, σ|wi, Ri, Xi)

∂β

] [

∂ℓ(β, σ|wi, Ri, Xi)

∂β

]
′

(16)

5Strictly speaking, σ2 also is a parameter, but we are rarely interested in the variance of the variance. Nevertheless, the
package generates an estimate of σ2 along with the coefficients themselves. For notational simplicity, all formulas ignore this.
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Second, for the cluster robust case, the partial derivatives are summed within the cluster so that

V =
n′

∑

c=1

[

∂ℓ(β, σ|wc, Rc, Xc)

∂β

] [

∂ℓ(β, σ|wc, Rc, Xc)

∂β

]
′

(17)

where there are n′ clusters, indexed by c, and the partial derivatives are summed within the group of which
there are nc members:

∂ℓ(β, σ|wc, Rc, Xc)

∂β
=

nc
∑

i=1

∂ℓ(β, σ|wi, Ri, Xi)

∂β
(18)

We also provide two survey sampling variance estimation techniques. The first one uses replicate weights,
either from the jackknife, including Fay’s method for the jackknife, or from balanced repeated replication. In
this approach, the typical method of estimating sampling variance still works, and the sampling covariance
matrix can be calculated as

Var(β) =

J
∑

j=1

(βj − β0) (βj − β0)
′

(19)

where there are J replicate weights and the result of applying direct estimation under the set of weights j

is βj , whereas β0 is the estimate of β under the full sample weights. We recomend using this method when
replicate variance estimation is requested.

The second survey sampling method is called the Taylor series method and uses the same formula as
Eq. 15, but V is the estimate of the variance of the score vector (Binder, 1983). Our implementation
assumes a two-stage design with na primary sampling units (PSUs) in stratum a and summed across the A

strata according to

V =

A
∑

a=1

Va (20)

where Va is a variance estimate for stratum a and is defined by

Va =
na

na − 1

na
∑

p=1

(sp − s̄a) (sp − s̄a)
′

(21)

where sp is the sum of the weighted (or pseudo-) score vector that includes all units in PSU p in stratum a

and s̄a is the (unweighted) mean of the sp terms in stratum a so that

sp =
∑

i∈PSU p

∂ℓ(β, σ|wi, Ri, Xi)

∂β
s̄a =

1

na

∑

p∈stratum a

sp (22)

When a stratum has only one PSU, Va is undefined. The best approach is for the analyst to adjust the
strata and PSU identifiers, in a manner consistent with the sampling approach, to avoid singleton strata.
Two simpler but less defensible options are available. First, the strata with single PSUs can be dropped
from the variance estimation, yielding an underestimate of the variance.

The second option is for the singleton stratum to use the overall mean of sp in place of s̄a. So,

s̄ =
1

n′

∑

sp (23)

where the sum is across all PSUs, and n′ is the number of PSUs across all strata. Then, for each singleton
stratum, Eq. 21 becomes

Va = 2 (sp − s̄) (sp − s̄)
′

(24)

where the value 2 is used in place of na

na−1
, which is undefined when na = 1. This option can underestimate

the variance but is thought to more likely overestimate it.
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Composite Scores

The likelihood of composite scores (Eq. 13) is additively separable, the covariances (including the variances)
can be calculated in two steps using Eq. 13. First, the covariance matrix of ξ is formed, and then the
composite covariance terms are estimated as the variance of a linear combination of the elements of ξ.

In the first step, any of the methods in the section “Variance Estimation” are applied to Eq. 13, treating ξ

in the same fashion Eq. 13 treats β. This step results in a block diagonal inverse Hessian matrix, with a
block for each subscale, and a potentially dense matrix for V . Each matrix is square and has S · (ζ + 1) rows
and columns, where ζ is the number of elements in the regression formula (each subscale), to which one is
added for the σ terms.

This step results in the following matrix:

Var(ξ) = H(ξ)−1V H(ξ)−1 (25)

For the second step, the composite coefficient then has an ith variance term of

Var(ξci) = eiH(ξ)−1V H(ξ)−1ei (26)

where ξci is the composite coefficient for the ith coefficient, and ei is the vector of weights arranged such
that

ξci = eT
i ξ (27)

The covariance between two terms, i and j, is a simple extension

Cov(βci, βcj) = eiH(β)−1V H(β)−1ej (28)

which uses the definition,

ξcj = eT
j ξ (29)

A simple example may help clarify. Imagine a composite score composed of two subscales, 1 and 2, with
weights ω1 = 0.4 and ω2 = 0.6. Supposed a user is interested in a regression of the form

θ = a + x1 · b + ǫ (30)

ǫ ∼ N(0, σ) (31)

Then the regression in Eq. 30 would be fit once for subscale 1 and once for subscale 2; the first fit would yield
estimated values {a1, b1, σ1}, and the second fit would yield {a2, b2, σ2}. The estimated value, for example,
ac, would be ac = 0.4 · α1 + 0.6 · α2. By stacking the estimates together,

θ =

















a1

b1

σ1

a2

b2

σ2

















(32)

the covariance matrix can then be estimated and will result in a matrix Ω ≡ Var(β) from Eq. 14 that has
six rows and six columns. Using the vector

e1 =

















0.4
0
0

0.6
0
0

















(33)

it can easily be confirmed that ac = eT
1 ξ, so Var(ac) = eT

1 Ωe1.
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Appendix. Test Probability Density Functions

For all cases scored as either correct or incorrect, we use the three parameter logit (3PL) model:

Pr(Rij |θi, Pj) = gj +
1 − gj

1 + exp [−D aj (θi − dj)]
(34)

where gj is the guessing parameter, aj is the discrimination factor, dj is the item difficulty, and D is a
constant, usually set to 1.7, to map the θi and dj terms to a probit-like space; this term is applied by
tradition.

When a two parameter logit (2PL) is used, Eq. 34 is modified to omit gj (effectively setting it to zero):

Pr(Rij |θi, Pj) =
1

1 + exp [−D aj (θi − dj)]
(35)

When a Rasch model is used, Eq. 35 is further modified to set all aj to a single a, and D is set to one.

Pr(Rij |θi, Pj) =
1

1 + exp [−a (θi − dj)]
(36)

The Graded Response Model (GRM) has a probability density that generalizes an ordered logit (McCullagh
& Nelder, 1989):

Pr(Rij |θi, Pj) =
1

1 + exp
[

−D aj (θi − dRij ,j)
] − 1

1 + exp
[

−D aj (θi − d1+Rij ,j)
] (37)

Here the parameters Pj are the cut points dcj , where d0j = −∞ and dC+1,j = ∞. In the first term on the
right side of Eq. 37, the subscript Rij on dRij ,j indicates it is the cut point associated with the response
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level to item j for person i, whereas the last subscript (j) indicates that it is the d term for item j. In the
second term, the cut point above that cut point is used.

The Generalized Partial Credit Model (GPCM) has a probability density that generalizes a multinomial logit
(McCullagh & Nelder, 1989)

Pr(Rij |θi, Pj) =
exp

[

∑Rij

c=0 Daj(θi − dcj)
]

∑C

r=0
exp [

∑r

c=0
Daj(θi − dcj)]

(38)

where c indexes cut points, of which there are C, and j indexes the item.

The GPCM equation has an indeterminancy because all dj terms could increase and make the values of the
probability the same. We can solve the indeterminacy in several ways.

NAEP (2008) uses a mean difficulty (bj), and the dj values are then given by

d0j = 0 dcj = bj − δjc ; 1 ≤ c ≤ C (39)

where the δjc values are estimated so that 0 =
∑C

c=1
δjc. In this package, when the polyParamTab has an

itemLocation, it serves as b. When there is no itemLocation, the package uses the δ values directly

d0j = 0 dcj = δjc ; 1 ≤ c ≤ C (40)

When a Partial Credit Model (PCM) is used, and the value of D is set to one, whereas aj is again shared
across all items. So

Pr(Rij |θi, Pj) =
exp

[

∑Rij

c=0 a(θi − dcj)
]

∑C

r=0
exp [

∑r

c=0
a(θi − dcj)]

(41)
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