
R PACKAGE BHSBVAR

Paul Richardson
p.richardson.54391@gmail.com

November, 2018

ACKNOWLEDGEMENTS

The BHSBVAR package is based on theMatlab programs created by Baumeister and Hamilton (2015,
2017, 2018). I thank them for sharing their Matlab programs online.

INTRODUCTION

Identifying structural innovations fromVectorAutoregression (VAR)models requires the researcher
to make assumptions about the structural parameters in the model. Recursively identifying struc-
tural innovations with the Cholesky decomposition of the residual covariance matrix requires the
researcher to assume exclusion or information lag restrictions for structural parameters. Identifying
structural innovations with sign restrictions prevents the researcher from having to make zero re-
strictions but this method implicitly requires the researcher to assume a particular prior distribution
they may not agree with. The method developed by Baumeister and Hamilton (2015, 2017, 2018)
for estimating the parameters of a Structural Bayesian Vector Autoregression (SBVAR) model al-
lows the researcher to explicitly include prior information about those parameters. Their method
does not require the researcher to make extreme zero restrictions or force the researcher to assume
a prior distribution about structural parameters the researcher does not agree with. For detailed
information about this method see Baumeister and Hamilton (2015, 2017, 2018).

MODEL

LetY be an (n×T)matrix of endogenous variables. X is an (k×T)matrix containing L lags ofY and
a constant. A is an (n× n)matrix containing the short-run elasticities or the structural relationships
between the endogenous variables in Y from a Structural Vector Autoregression (SVAR) model. B
is an (n × k) matrix containing lagged structural coefficients. U is an (n × T) vector of structural
innovations. D is an (n × n) diagonal covariance matrix of the innovations from the structural
model. n is the number of endogenous variables or equations. T is the number of observations and
k = nL + 1.

Structural Vector Autoregression Model:

AY = BX +U U ∼ N (0, D) (1)

B = AΦ (2)

1

U = Aε (3)

D = UU>

T = AΩA> (4)

Φ is an (n × k) matrix containing the lagged coefficients from the reduced form VAR model. ε is
an (n × T) matrix of the VAR model residuals. Ω is an (n × n) symmetric covariance matrix of the
residuals from the VAR model.

Reduced Form Vector Autoregression Model:

Y = ΦX + ε ε ∼ N (0, Ω) (5)

Φ = (YX>)(XX>)−1 (6)

ε = Y − ΦX (7)

Ω = ε ε>

T (8)

Let yi be an (1 × T) matrix containing a single endogenous variable (i) from Y . Let xi be an
((L + 1) × T) matrix of L lags of yi and a constant. φi is an (1 × (L + 1)) matrix containing the
lagged coefficients from the reduced form univariate Autogregression (AR) model i. ei is an (1×T)
matrix of the residuals from the univariate AR model i. e is an (n × T) matrix of residuals from
the univariate AR models. Σ is an (n × n) symmetric covariance matrix of the residuals from the
univariate AR models. Σi is the (i,i) element of Σ.

Reduced Form Univariate Autoregression Model:

yi = φi xi + ei ei ∼ N (0, Σi) (9)

φi = (yi x
>
i)(xi x

>
i)
−1 (10)

ei = yi − φi xi (11)

Σ = ee>

T (12)

Let P be an (n×k)matrix containing the prior position values for the reduced form lagged coefficient
matrix, Φ. M−1 is an (k × k) symmetric matrix indicating confidence in P. R is an (n × k) matrix
containing the prior position values for the reduced form lagged coefficient matrix (Φ) representing
a belief that specific shocks have no long-run affect. V−1

i is an (k × k) symmetric matrix indicating

2

confidence in R for equation i. βi is an (n × k) lagged structural coefficient matrix. βi(i,) is an
(1 × k) matrix of lagged structural coefficients for equation i from βi. B(i,) is an (1 × k) matrix of
the lagged structural coefficients for equation i from B. ζi is an (n × n) matrix for equation i. Z is
an (n × n) diagonal matrix. ζi(i, i) is the (i,i) element of the symmetric matrix ζi. Z(i, i) is the (i,i)
element of the the diagonal matrix Z . κ is an (n × n) diagonal matrix whose elements along the
main diagonal represent confidence in the priors for the structural variances. κi refers to element
(i,i) of κ. diag(AΣA>) is an (n × n) diagonal matrix whose main diagonal elements are the main
diagonal elements from the matrix AΣA>. τi refers to element (i,i) of τ. D(i, i) refers to element
(i,i) of D,

Structural Bayesian Vector Autoregression Model:

AY = BX +U U ∼ N (0, D) (13)

βi = A(YX> + PM−1 + RV−1
i)(XX> +M−1 +V−1

i)
−1 (14)

B(i,) = βi (i,) (15)

ζi = A[(YY> + PM−1P> + RV−1
i R>) − (YX> + PM−1 + RV−1

i)(XX> +M−1 +V−1
i)
−1(YX> + PM−1 + RV−1

i)
>]A> (16)

Z(i, i) = ζi (i, i) (17)

τ = κdiag(AΣA>) (18)

τ∗ = τ + 1
2 Z (19)

D(i, i) = (κi +
T
2)
−1τ∗i (20)

Baumeister and Hamilton (2015, 2017, 2018) developed an algorithm that estimates the parameters
of an SVAR model using Bayesian methods (SBVAR). Their algorithm applies a random-walk
Metropolis-Hastings algorithm to seek elasticity values for A, considering prior information, that
diagonalizes the covariance matrix of the reduced form errors. Their algorithm provides more
flexibility to the researcher in restricting the model parameters. The researcher is not required to
assume information time lags as in recursively identified VAR models nor a prior distribution they
have no control over as in sign restricted VAR models. For information about their algorithm see
Baumeister and Hamilton (2015, 2017, 2018).

3

Posterior Distribution:

p(A |Y) ∝ p(A)[det(AΩA>)]
T
2

n∏
i=1

τ
κi
i (

2
T τ
∗
i)
−(κi+

T
2) (21)

Where p(A) is the product of prior densities. det(AΩA>) is the determinant of the matrix AΩA>.

Algorithm:

Step 1)
Generate proposals for the elements in A, Ã(c+1). Ã(c) are the starting values for A when c = 1.
Compute p(Ã(c) |Y) and p(Ã(c+1) |Y). If p(Ã(c+1) |Y) < p(Ã(c) |Y) set p(Ã(c+1) |Y) = p(Ã(c) |Y) with
probability 1 − p(Ã(c+1) |Y)

p(Ã(c) |Y)
.

Step 2)
Generate draws for D, D̃(c+1). D̃i

(c+1)
∼ Γ(κi +

T
2 , τ̃i

∗(c+1)
). D̃i

(c+1), κi, and τ̃i
∗(c+1) refers to element

(i,i) of D̃(c+1), κ, and τ̃∗(c+1) , respectively. τ̃∗(c+1) are estimates of τ, replacing A with Ã(c+1).

Step 3)
Generate draws for B, B̃(c+1). B̃(c+1)(i,) = ˆ̃β(c+1)

i (i,). ˆ̃β(c+1)
i ∼ N(β̃(c+1)

i , Ψ̃
(c+1)
i). β̃(c+1)

i are estimates
of βi, replacing A with Ã(c+1). Ψ̃(c+1)

i = D̃(c+1)−1
(X X> + M−1 + V−1

i)
−1.

Step 4)
Increase c by 1 and repeat Steps 1-4 for c = 2, 3, ...,C.

EXAMPLE

The BHSBVAR package provides a function for running Structural Bayesian Vector Autoregression
(SBVAR) models and several functions for plotting results. The BH_SBVAR() function runs a
SBVAR model with the methods developed by Baumeister and Hamilton (2015, 2017, 2018). The
IRF_Plots() function creates plots of impulse responses. The HD_Plots() function creates plots
of historical decompositions. The Dist_Plots() function creates posterior density plots of the
model parameters in A, H, and det(A) overlaid with prior densities to illustrate the difference
between posterior and prior distributions. The following example illustrates how these functions
can be applied to reproduce the results from Baumeister and Hamilton (2015)

> rm(list = ls())

> library(BHSBVAR)

> set.seed(123)

> data(USLMData)

> y <- matrix(data = c(USLMData$Wage, USLMData$Employment), ncol = 2)

> colnames(y) <- c("Wage", "Employment")

The first line clears memory. The second line loads the BHSBVAR package library. The third line
sets the seed for random number generation. The fourth line imports the data used in this example.

4

The fifth line creates a matrix (y) containing quarter over quarter percent change of U.S. real wage
and employment data use by Baumeister and Hamilton (2015).

> nlags <- 8

> itr <- 200000

> burn <- 0

> thin <- 20

> acc_irf <- TRUE

> h1_irf <- 20

> ci <- 0.975

nlags sets the lag length used in the SBVAR model. itr sets the number of iterations for the
algorithm. burn is the number of draws to throw out at the beginning of the algorithm. thin sets the
thinning parameter which will thin the Markov-Chains. acc_irf indicates whether accumulated
impulse responses are to be computed and returned. h1_irf indicates the time horizon for
computing impulse responses. ci indicates the credibility intervals to be returned.

> pA <- array(data = NA, dim = c(2, 2, 8))

> pA[, , 1] <- c(0, NA, 0, NA)

> pA[, , 2] <- c(1, NA, -1, NA)

> pA[, , 3] <- c(0.6, 1, -0.6, 1)

> pA[, , 4] <- c(0.6, NA, 0.6, NA)

> pA[, , 5] <- c(3, NA, 3, NA)

> pA[, , 6] <- c(NA, NA, NA, NA)

> pA[, , 7] <- c(NA, NA, 1, NA)

> pA[, , 8] <- c(2.4, NA, 2.4, NA)

These lines create an array containing all the information needed to set priors for each element
in A. Each column contains the prior information for the parameters in each equation. The
third dimension of pA should always have a length of 8. The first slice of the third dimension
of pA indicates the prior distribution (NA - no prior, 0 - symmetric t-distribution, 1 - non-central
t-distribution). The second slice indicates sign restrictions for symmetric t-distributions (NA - no
restriction, 1 - positive restriction, -1 - negative restriction). The third slice indicates the position
of the prior. The fourth slice indicates the scale or confidence in the prior. The fifth slice indicates
the degrees of freedom for the t-distribution prior. The sixth slice indicates skew for non-central
t-distribution prior. The seventh slice indicates long-run restriction scale or confidence in the
long-run restriction. The eighth slice indicates the random-walk proposal scale parameters which
adjust the algorithm’s acceptance rate and the ability of the algorithm to adequately cover the
model’s parameter space. For information about priors for A see Baumeister and Hamilton (2015,
2017, 2018). The formulas used to compute the density of the prior distributions are listed in the
Appendix.

> pP <- matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA))

> pP[1:nrow(pA), 1:ncol(pA)] <-

+ diag(x = 1, nrow = nrow(pA), ncol = ncol(pA))

> x1 <-

5

+ matrix(data = NA, nrow = (nrow(y) - nlags),

+ ncol = (ncol(y) * nlags))

> for (k in 1:nlags) {

+ x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <-

+ y[(nlags - k + 1):(nrow(y) - k),]

+ }

> x1 <- cbind(x1, 1)

> colnames(x1) <-

+ c(

+ paste(

+ rep(colnames(y), nlags), ".L",

+ sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)),

+ decreasing = FALSE),

+ sep = ""

+),

+ "cons"

+)

> y1 <- y[(nlags + 1):nrow(y),]

> ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1))

> for (i in 1:ncol(y1)) {

+ xx <- cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1)

+ yy <- matrix(data = y1[, i], ncol = 1)

+ phi <- solve(t(xx) %*% xx, t(xx) %*% yy)

+ ee[, i] <- yy - (xx %*% phi)

+ }

> somega <- (t(ee) %*% ee) / nrow(ee)

> lambda0 <- 0.2

> lambda1 <- 1

> lambda3 <- 100

> v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1)

> v1 <- v1^((-2) * lambda1)

> v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1)

> v3 <- kronecker(v1, v2)

> v3 <- (lambda0^2) * rbind(v3, (lambda3^2))

> v3 <- 1 / v3

> pP_sig <- diag(x = 1, nrow = nrow(v3), ncol = nrow(v3))

> diag(pP_sig) <- v3

These lines create matrices containing prior position (pP) and scale or confidence (pP_sig) in-
formation for the reduced form lagged coefficient matrix Φ. pP and pP_sig correspond to the P
and M−1 matrices from Equation 14, respectively. Variance estimates from univariate Autoregres-
sion models, lambda0, lambda1, and lambda3 are used to construct pP_sig. lambda0 controls
the overall confidence in the priors, lambda1 controls the confidence in higher order lags, and
lambda3 controls the confidence in the constant term. For information about priors for Φ and B
see Baumeister and Hamilton (2015, 2017, 2018), Doan, Sims, and Zha (1984), and Sims and Zha

6

(1984).

> pR_sig <-

+ array(data = 0,

+ dim = c(((nlags * ncol(y)) + 1),

+ ((nlags * ncol(y)) + 1),

+ ncol(y)))

> Ri <-

+ cbind(

+ kronecker(matrix(data = 1, nrow = 1, ncol = nlags),

+ matrix(data = c(1, 0), nrow = 1)),

+ 0)

> pR_sig[,,2] <- (t(Ri) %*% Ri) / 0.1

> kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y))

These lines create an array (pR_sig) containing values indicating confidence in long-run restric-
tions. pR_sig corresponds to the V−1

i matrix from Equation 14. The matrix R from Equation 14
will be created automatically by the BH_SBVAR() function. The length of the third dimension of
pR_sig is equal to the number of endogenous variables or the number of equations in the model.
The first slice of the third dimension contains all zeros since there are no long-run restrictions for
the first equation in the model. The second slice contains values indicating the confidence in the
long-run restriction assigned to the lagged parameters of the second equation. For information
about long-run restrictions see Baumeister and Hamilton (2015, 2018) and Blanchard and Quah
(1989). kappa1 is an (1×n)matrix whose values correspond to the elements of themain diagonal of
κ from Equation 18 and indicates the confidence in prior information about the structural variances.

> par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",

+ mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)

> results1 <-

+ BH_SBVAR(y = y, nlags = nlags, pA = pA, pP = pP, pP_sig = pP_sig,

+ pR_sig = pR_sig, kappa1 = kappa1, itr = itr, burn = burn,

+ thin = thin, acc_irf = acc_irf,

+ h1_irf = h1_irf, ci = ci)

The BH_SBVAR() function allows the user to include prior information for A, det(A), H, P, R, and
κ directly when running a SBVARmodel. The pdetA and pH arguments are arrays containing prior
information for det(A) and the elements of H and are not included in this example. The BH_SBVAR()
function returns a list that includes the acceptance rate (accept_rate) of the algorithm, a matrix
containing the endogenous variables (y), a matrix containing the lags of the endogenous variables
(x), and the prior information provided to the function (pA, pdetA, pH, pP, pP_sig, pR, pR_sig).
Arrays containing estimates of the model parameters are returned (A, detA, H, B, Phi, HD, IRF). The
first, second, and third slices of the third dimension of these arrays are lower, median, and upper
bounds of the estimates, respectively. Lists containing the horizontal and vertical axis coordinates
of posterior densities for the estimates of A, det(A), and H are returned (A_den, detA_den, and
H_den). In addition, line and autocorrelation plots of the Markov-Chains of A, det(A), and H

7

are returned for diagnostic purposes. The line and autocorrelation plots provide an indication of
how well the algorithm covers the model’s parameter space. The line plots in Figure 1 display the
Markov-chains of the estimates from the algorithm with the estimate values shown on the vertical
axis and the iteration number shown on the horizontal axis. The ACF plots in Figure 1 displays
the autocorrelation of the Markov-chains of the estimates from the algorithm with the correlation
estimates on the vertical axis and the lag length shown on the horizontal axis.

FIGURE 1
Posterior Line and ACF Diagnostic Plots

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Lag Length

−A(1,1)

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Lag Length

C
or

re
la

tio
n

−A(1,2)

2000 4000 6000 8000 10000

−12

−10

−8

−6

−4

−2

0

−A(1,1)

2000 4000 6000 8000 10000

0.0

0.5

1.0

1.5

2.0

2.5

E
st

im
at

e

−A(1,2)

The titles of the plots in Figure 1 indicate the element of the coefficient matrix that is plotted.
The plots for the elements of A are multiplied by -1 to illustrate elasticity values and/or isolate the
dependent variable for each equation. These elements correspond to those found in the results from
running the BH_SBVAR() function and correspond to the transpose of those from the mathematical
representation from Equation 13. In other words, each column of the coefficient matrix arrays in
the resulting list object from running the BH_SBVAR() function are coefficient estimates for each
equation. However, each row of the coefficient matrices from the mathematical representation
described in Equation 13 represent the parameters of each equation.

> VarNames <- colnames(USLMData)[2:3]

> ShockNames <- c("Labor Demand","Labor Supply")

> par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",

+ mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)

> irf_results <-

+ IRF_Plots(results = results1, varnames = VarNames,

+ shocknames = ShockNames)

The first two lines store the names of endogenous variables and structural shocks. The third line
sets the parameters used to display the plots. The IRF_Plots() function creates plots of impulse

8

responses. This function can be used to display the response of the endogenous variables following
a particular structural shock. The results argument is a list object containing the unaltered results
from the BH_SBVAR() function. The varnames and shocknames argument are character vectors
containing the variable names and shock names, respectively. The xlab and ylab arguments are
not included in this example but they allow the user to include labels for the horizontal and vertical
axes, respectively. The units along the horizontal axis in the plots from Figure 2 represent time
periods following an initial shock. The units along the vertical axis in the plots from Figure 2
represent percent change following an initial shock since the endogenous variables included in the
model are quarter over quarter percent change of U.S. real wage and employment. Figure 2 displays
the cumulative response of U.S. real wage growth and employment growth to U.S. labor demand
and supply shocks. In addition, this function returns a list containing the data used to produce the
plots in Figure 2.

FIGURE 2
Impulse Responses

0.0

0.5

1.0

1.5

2.0

Response of Wage to Labor Demand

0 5 10 15 20

0

1

2

3

Response of Employment to Labor Demand

0 5 10 15 20

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Response of Wage to Labor Supply

0 5 10 15 20

0

1

2

3

4

5

6

Response of Employment to Labor Supply

0 5 10 15 20

> par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",

+ mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)

> hd_results <-

+ HD_Plots(results = results1, varnames = VarNames,

+ shocknames = ShockNames,

+ freq = 4, start_date = c(1971, 2))

The first line sets the parameters used to display the plots. The HD_Plots() function creates plots
of historical decompositions. This function can be used to display the cumulative effect of specific
shocks on a particular endogenous variable at any given time period. The results, varnames,
shocknames, xlab, ylab arguments for the HD_Plots() function are the same as those from the

9

IRF_Plots() function. However, the units along the horizontal axis in the plots from Figure 3
represent actual time periods. The units along the horizontal axis of each plot are created with the
freq and start_date arguments. The freq argument is set to 4 since the endogenous variables
are measured at a quarterly frequency in this example. The start_date argument represents the
date of the first observation which is the second quarter of 1971 in this example. Figure 3 displays
the historical decompositions. This function also returns a list of the data used to produce the plots
in Figure 3.

FIGURE 3
Historical Decompositions

1980 1990 2000 2010

−3

−2

−1

0

1

2

3

Contribution of Labor Demand Shocks on Wage

1980 1990 2000 2010

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0

Contribution of Labor Demand Shocks on Employment

1980 1990 2000 2010

−2

−1

0

1

2

3

Contribution of Labor Supply Shocks on Wage

1980 1990 2000 2010

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

Contribution of Labor Supply Shocks on Employment

> A_titles <-

+ matrix(data = NA_character_, nrow = dim(pA)[1], ncol = dim(pA)[2])

> A_titles[1, 1] <- "Wage Elasticity of Labor Demand"

> A_titles[1, 2] <- "Wage Elasticity of Labor Supply"

> par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",

+ mfcol = c(1, 2), mar = c(2, 2.2, 2, 1), las = 1)

> Dist_Plots(results = results1, A_titles = A_titles)

The first line sets the parameters used to display the plots. The Dist_Plots() function creates
posterior density plots of the estimates for the elements in A, H, and det(A). Prior densities are also
plotted to illustrate the differences between posterior and prior distributions. The results, xlab,
and ylab arguments for the Dist_Plots() function are the same as those from the IRF_Plots()
and HD_Plots() functions. A_titles and H_titles arguments are matrices that contain the titles
of the plots. The elements of the A_titles and H_titles matrices correspond to the elements
of A and H arrays from the results of the BH_SBVAR() function. The posterior and prior density

10

plots for the elements of A are multiplied by -1 to illustrate elasticity values and/or the value of the
coefficient if the dependent variable for each equation were isolated.

FIGURE 4
Posterior and Prior Distributions

−12 −10 −8 −6 −4 −2 0

Wage Elasticity of Labor Demand

0

0.24

0.48

0.72

0 2 4 6 8 10 12

Wage Elasticity of Labor Supply

0

2

4

6

11

APPENDIX

List of formulas used to compute the density of the prior distributions at some proposal value:
x1: is the proposal value.
c1: is the prior position parameter.
sigma: is the prior confidence in the position parameter, c1.
nu: is the degrees of freedom.
lam: is the non-centrality or skew parameter.
t-distribution:

> density <-

+ dt(x = ((x1 - c1) / sigma), df = nu, ncp = 0, log = FALSE) / sigma

Non-central t-distribution:

> density <-

+ dt(x = ((x1 - c1) / sigma), df = nu, ncp = lam, log = FALSE) / sigma

t-distribution truncated to be positive:

> density <-

+ dt(x = ((x1 - c1) / sigma), df = nu, ncp = 0, log = FALSE) /

+ (sigma *

+ (1 - pt(q = ((-c1) / sigma), df = nu, ncp = 0,

+ lower.tail = TRUE, log.p = FALSE)

+)

+)

t-distribution truncated to be negative:

> density <-

+ dt(x = ((x1 - c1) / sigma), df = nu, ncp = 0, log = FALSE) /

+ (sigma *

+ (pt(q = ((-c1) / sigma), df = nu, ncp = 0,

+ lower.tail = TRUE, log.p = FALSE)

+)

+)

12

REFERENCES

Baumeister, C., and Hamilton, J. D. (2015). Sign restrictions, structural vector autoregressions,
and useful prior information. Econometrica, 83(5), 1963-1999.

Baumeister, C., and Hamilton, J. D. (2017). Structural interpretation of vector autoregressions with
incomplete identification: Revisiting the role of oil supply and demand shocks (No.
w24167). National Bureau of Economic Research.

Baumeister, C., and Hamilton, J. D. (2018). Inference in structural vector autoregressions when the
identifying assumptions are not fully believed: Re-evaluating the role of monetary
policy in economic fluctuations. Journal of Monetary Economics

Blanchard, O. J., and Quah, D. (1989). The Dynamic effects of aggregate demand and supply
disturbances. The American Economic Review, 79(4), 655-673.

Sims, C. A., and Zha, T. (1998). Bayesian methods for dynamic multivariate models. International
Economic Review, 39(4), 949-968.

Doan, T., Litterman, R. B., and Sims, C. (1984). Forecasting and conditional projection using
realistic prior distributions. Econometric Reviews, 3(1), 1-100.

13

