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About this user guide: this is version 1.1.0 of the MIGCLIM R user guide.

The MIGCLIM R package and this user guide are distributed in the hope that they will be useful, but come  
without any warranty, expressed or implied. MIGCLIM, this user guide as well as the accompanying test  
data all come “as is” and without any warranty of support from its authors. This being said, I'm happy to 
hear about your experience, bug reports, suggestions, etc... and will try to help you within the limits of  
my spare time. You can contact me by e-mail at: Robin.Engler [-at-] gmail.com.
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Part 1: Introduction and model overview.
Why use   MIGCLIM ?  
When using species distribution models (also known as habitat suitability models or resource selection 
functions) to identify changes in a species' potential distribution, one recurrent problem is to account for 
species dispersal limitations. Here are two typical examples illustrating this issue.

The first example deals with projecting the potential distribution of a species into the future under a 
climate change scenario. When simply using the projections obtained from habitat suitability models to 
predict changes in distribution, we implicitly assume unlimited dispersal (i.e. the species can occupy any 
habitat that is suitable, regardless of its location). There are however many elements that can challenge 
this assumption, and impede a species to reach all of its potential habitat. For instance, the increasing 
fragmentation of the landscape could be a barrier to species dispersal, or at least slow down its dispersal  
rate. Maybe some of the suitable habitats are located too far away from the current populations of the 
species, and are thus out of reach. Maybe dispersing to some of the suitable habitat is hindered by the 
presence of a physical barrier (e.g. a river or a highway might impede the dispersal of some animal 
species across it).

Similarly if we attempt to model the potential distribution of an invasive species, dispersal limitations 
could also be an important parameter to take into account. In the case of an invasive species, the most  
important  question  is  maybe  not  whether  all  potentially  suitable  locations  will  eventually  become 
colonized or not (generally invasive species are rather good at dispersing), but when they might become 
colonized and which is the most likely route that the species will take to spread through the landscape. 
Again, accounting for dispersal appears as an important issue in this context.

Both of these examples illustrate the need to account for dispersal limitation when projecting changes in 
species distribution. The  MIGCLIM model has been developed to address this kind of issues. It can be 
thought  off  as a  supplementary component  of  a  species  distribution model,  that  acts between the 
habitat suitability predictions and the final potential distribution of a species, by restricting this potential 
distribution through dispersal limitations (Fig. 1).

The  MIGCLIM R package is a function library for the open source R software  (www.r-project.org) that 
enables  the  implementation  of  species-specific  dispersal  constraints  into  projections  of  species 
distribution models under environmental change and/or landscape fragmentation scenarios. The model is 
based on a cellular  automaton and the basic modeling unit  is a cell  that  is inhabited or not.  Model  
parameters include dispersal distance and kernel, long distance dispersal, barriers to dispersal, propagule 
production potential  and habitat  invasibility.  The  MIGCLIM R package has  been designed to be highly 
flexible in the parameter values that it accepts, and to offer good compatibility with existing species 
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Figure 1.  MigClim allows restricting changes in a species' potential distribution 
through dispersal limitations.
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distribution modeling software (e.g.  BIOMOD or  MAXENT).  Possible applications include the projection of 
species distribution under environmental change conditions or modeling the spread of invasive species.

Note that, since the idea behind MIGCLIM is to provide users with a relatively easy to calibrate and flexible 
model that can adapt to many species, MIGCLIM does currently not implement any advanced population 
dynamics parameters such as number of individuals per cell or number of seeds produced per individual.

To get a better idea of why the MIGCLIM model was developed, how it works and how it can be applied to 
a  large  number  of  species,  I  recommend  reading  the  following  (highly  entertaining  ;-)  scientific 
publications:

 Engler R., → Hordijk W. and Guisan A. The MIGCLIM R package – seamless integration of dispersal 
constraints into projections of species distribution models. Ecography, in review.

 Engler R. and Guisan A., 2009. → MIGCLIM: Predicting plant distribution and dispersal in a changing 
climate. Diversity and Distributions, 15 (4), 590-601.

 Engler R., Randin C.F., Vittoz P., Czáka T., Beniston M., Zimmermann N.E. and Guisan A, 2009.→  
Predicting future distributions of mountain plants under climate change: does dispersal capacity 
matter? Ecography, 32 (1), 34-45.

Engler et al. (in review) explains the purpose of the MIGCLIM R package and how to use it (although not in 
as much details as the present user guide). Engler and Guisan (2009) explains how the MIGCLIM model 
works and gives an example of application for two semi-virtual species. Engler et al. (2009) provides an 
example of  the application of  MIGCLIM to  a large number of  species and could thus give you some 
indications on how to calibrate the model for a large number of species with limited available data.

Note: Engler and Guisan (2009) actually presents the old version of MIGCLIM that was implemented  
within the ArcGIS software rather  than the R software.  While the core of  the model  has not  
changed much, there has been a few changes in options and input formats.
Although I'm no longer maintaining the ArcGIS version of MIGCLIM, it is still available on request (e-
mail me – see my address on the title page of this document) and should work well with versions  
9.1, 9.2 and 9.3 of ArcGIS.

If you use MIGCLIM, please cite it as follows:

 Engler R., → Hordijk W. and Guisan A. The MIGCLIM R package – seamless integration of dispersal 
constraints into projections of species distribution models. Ecography, in review.
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Frequently asked (and important) questions

Does MIGCLIM generate its own habitat suitability data? If not where can I get it from?
No, MIGCLIM does not generate habitat suitability maps itself, and you have thus to  generate your habitat 
suitability data using another software before being able to use MIGCLIM.
The good news though is that there are already very efficient tools out there to generate such habitat 
suitability data,  for instance the  BIOMOD package that also runs in R (see Thuiller,  W., Lafourcade, B., 
Engler,  R.  and Araújo,  M.B.  Biomod -  A platform for  ensemble  forecasting of  species  distributions. 
Ecography, 32, 369-373, http://r-forge.r-project.org/projects/biomod).
The even better news is that MIGCLIM was designed to integrate seamlessly with these existing modeling 
tools (in particular BIOMOD), so that you can use their outputs as MIGCLIM inputs with minimal (or no) effort.

Important: MIGCLIM habitat suitability data must be given in the range [0:1000] and must be integer  
numbers (floating point numbers are not accepted).

I'm a BIOMOD addict, can I use BIOMOD outputs with MIGCLIM?
Yes, you certainly can. In fact the MIGCLIM inputs have been designed to have the same scale of habitat 
suitability values as BIOMOD (integer numbers from 0 to 1000), so you can use your BIOMOD outputs right 
away. If you wish to work with binary values (habitat is suitable or not), you don't have to worry about 
reclassifying your data: simply indicate your reclassification threshold and  MIGCLIM will  reclassify your 
continuous projections.
If you wish to work without the thresholding option,  then the values of habitat suitability (in the range 
0:1000) are used as a cell “invasibility index” and are interpreted as an absolute probability of presence 
conditional on the species dispersing to the cell (see also equation 1 in this document). In other words, 
all other things being equal, a cell with habitat suitability of 600 is twice as likely to be colonized than a 
cell  with  habitat  suitability  of  300.  Note  that  depending  on  how  you  calibrated  your  model,  the 
predictions are not necessarily absolute probabilities. If they are not, then they you will have either to 
rescale them, or to use the thresholding option.
In terms of habitat suitability values input format, MIGCLIM accepts both data frame and raster formats, so 
whatever format you chose to carry-out your projections in BIOMOD, your output will be compatible with 
MIGCLIM.

I'm MAXENT-dependent, is that compatible with MIGCLIM?
Yes it is, although it will require a few extra steps. In its 'logistic' format, MAXENT outputs its results in a 
scale form [0:1], rather than [0:1000]. So you should multiply the MAXENT's 'logistic' output values by 1000 
and convert them to integer numbers.
If you are using the thresholding option of MIGCLIM (i.e. asking it to reclassify continuous projections into 
binary values: the habitat is suitable or not), then you should simply also multiply the threshold value that 
you obtained for the [0:1] range by 1000. E.g. if your MAXENT threshold was of 0.5, then you would set 
rcThreshold=500.
If you wish to work without the thresholding option,  then the values of habitat suitability (in the range 
0:1000) are used as a cell “invasibility” index and are interpreted as an absolute probability of presence 
conditional on the species dispersing to the cell (see also equation 1 in this document). In other words, 
all other things being equal, a cell with habitat suitability of 600 is twice as likely to be colonized than a 
cell with habitat suitability of 300. Note that depending on how you calibrated your Maxent model, the 
predictions are not necessarily absolute probabilities. If they are not, then they you will have either to 
rescale them, or to use the thresholding option.

What is the modeling unit of MIGCLIM?
The basic  modeling  unit  of  MIGCLIM is  a  cell  (or  pixel)  that  is  occupied (inhabited)  or  not.  While  an 
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occupied cell can, to some extent, be thought of as a population, MIGCLIM does not model the number of 
individuals within a cell,  nor each individual independently.  Therefore, parameter values in the model 
should reflect values for an entire cell (population), which has both advantages and limitations (discussed 
in Engler and Guisan 2009).
The colonization of a new cell therefore means that the cell becomes occupied by a new population, 
though initially this “population” could be seen as composed of only 1 individual. Obviously the potential 
of an occupied cell to colonize other cells depends on the size of its population (a large population will 
likely  produce more propagules),  which is  likely to be a function of the time since the cell  became 
colonized (this is naturally a simplification as there are more parameters that affect population size than 
just time since a cell became colonized). To allow accounting for these issues, a “propagule production 
potential” parameter [propaguleProd] that affects the probability with which a given cell can produce 
propagules is available. 

Can MIGCLIM run simulations without environmental change?
Yes, it  can. Implementing environmental change is not a requirement in  MIGCLIM.  In fact, simulations 
without environmental change are even easier to implement because you don't need to have different 
habitat suitability maps but just one. An example of simulations without environmental change could be 
if you want to model the spread of an invasive species trough the landscape. The initial distribution map 
could be the point of introduction of the invasive species, and the habitat suitability map the potential 
suitable  habitat  for  the  species.  To  run  a  simulation  without  environmental  change,  simply  set 
[envChgSteps=1].
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Part 2: The   MIGCLIM   model explained

Basic principle of the   MIGCLIM   model
The basic principle of the MIGCLIM model is the following: The user gives an initial species distribution (the 
starting point of the simulation) and one or more habitat suitability maps (maps indicating which cells are 
suitable for the species and which are not, at one or several points in time). Using this data and the 
information about the dispersal ability of the species, MIGCLIM will simulate the dispersal of the species 
and produce a potential distribution map that accounts for dispersal limitation.

The basic time unit in  MIGCLIM is a “dispersal step” ([dispSteps] parameter), and corresponds to one 
dispersal event (one loop in the flow chart shown in Fig. 2).  During a dispersal step, each cell that is 
occupied and able to reproduce is given the opportunity to colonize new, empty and suitable, cells. Each 
occupied cell will also increase its “age” by 1 time unit. For instance, if a cell has been colonized since 4 
dispersal steps, it will have an age of 4. In practice, a dispersal step will often be equal to one year, as  
most organisms disperse once a year or can be modeled as such.

Another concept that is important in  MIGCLIM is  that of “environmental change step” ([envChgSteps] 
parameter). To understand it, one should know that MIGCLIM was initially developed to refine projections 
of species distributions under climate change scenarios. An environmental change step corresponds to a 
change/update in the habitat suitability map that is used in MIGCLIM to define which cells can be colonized 
and which cannot (or the probability with which they can get colonized).

The way that dispersal step [dispSteps] and environmental change step [envChgSteps] relate is that the 
dispersal step loop is nested within the environmental change step loop (see the model's flow-chart in 
Fig. 2). The total number of dispersal events that will be performed within a simulation is thus equal to 
[envChgSteps] × [dispSteps].

In practice, it is generally convenient to set the number of environmental change steps and the number 
of  dispersal  steps  so  that  each  dispersal  step  corresponds  to  one  year  (because  most  organisms 
populations can be modeled as dispersing once a year). Here is an example to illustrate what is meant: 
Let's  assume that  we want  to model  the potential  distribution of  a  specie under  a  climate change 
scenario  for  the  year  2100  and  that  we know its  initial  distribution  at  the  year  2000.  How do  we 
proceed ?

A first option could be to simply model its potential distribution by 2100 and then simulate 100 dispersal 
steps, one for each year from 2001 to 2100. In this case, we would set [envChgSteps=1] because we 
have only one habitat suitability map (i.e. the one giving the habitat suitability by the year 2100), and 
[dispSteps=100],  because  we  want  to  run  the  simulation  for  100  years.  So,  if  we  multiply: 
[envChgSteps] × [dispSteps] = 1 × 100 = 100 years, which is precisely what we wanted to do. Nice.

While this option seems easy to implement, it is by no means an ideal one. The problem here is that we  
modeled the habitat suitability only for the year 2100, with no intermediate step. Thus, it is very possible 
that,  by  doing  so,  we create  important  gaps  between the initial  distribution  of  the species  and its 
potential distribution by 2100. In fact, the gaps that we would create might well be beyond the species'  
dispersal abilities and the model will thus tell us that the species will go extinct because it is unable to 
colonize any of the newly suitable habitat.

A better way to proceed is therefore to model the change in habitat suitability for smaller time intervals. 
For instance, we could decide to model the change in habitat suitability every 5 years. This means that,  
from  2001-2100,  we  have  to  update  the  habitat  suitability  20  times  (100/5  =  20).  The  number  of 
environmental change steps must thus be set to [envChgSteps=20].  Since we choose to update the 
habitat suitability every 5 years, this means that we must set [dispSteps=5], so that each dispersal step 
corresponds to one year. If we multiply: [envChgSteps]  × [dispSteps] = 20  × 5 = 100 years, which, 
again, is what we wanted to achieve. This time however, our simulation will likely be more correct since 
we implemented climate change as a series of 20 steps of small magnitude each, rather than just one 
step of big magnitude as in the first method discussed above.
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As an extreme case, we could also choose to set [envChgSteps=100] and [dispSteps=1]. This means 
that we would update habitat suitability every year, and thus run only one dispersal event per habitat 
suitability map update. This would require to produce 100 habitat suitability maps and might not be ideal 
if there is an important variability from one year to the other (i.e. climate change projections contain 
uncertainty, and it might thus be better to compute average values over a few years).

Dispersal simulation flow in   MIGCLIM  

Dispersal is simulated through a number of decisions that are taken, for each cell (target cell), during 
each dispersal step (see also flowchart in Fig. 2):

1. Does the target cell represent a suitable habitat? Is it unoccupied?

2. If  point  1 is  answered positively,  the number  n of  source cells  within the dispersal  Kernel's 
[dispKernel] maximum dispersal distance is computed. Source cells are occupied cells that can 
act as propagule sources to colonise a target cell.  Optionally,  a barrier  layer can be given to 
prevent dispersal through those cells being part of the barrier. If a barrier cell is found between 
the target and a source cell, the source cell is ignored.

3. If n > 0, the target cell becomes colonised with the combined probability PCol :

PCol=(1−∏
i=1

n

(1−PDispi×PPropi))×P Inv         (eq.1)

Where  PDisp i is a probability function of the distance between the target cell and source cell  i  
(values  of  PDisp are  entered  through  the  [dispKernel]  parameter)  and  reflects  the  fact  that 
colonisation probability decreases over distance. PProp i is a probability that is function of the time 
since the source cell  i became occupied and represents the propagule production potential of 
source cell i over time (values of PProp are entered via the [propaguleProd] parameter).
PProp can be used to represent  time for  individuals  to reach reproductive  maturity  and,  more 
globally, the increase of a population’s reproductive potential due to an increase in the number of 
individual plants within a cell over time. PDisp and PProp are implemented as discrete functions and 
can easily be modified to fit  any shape of seed dispersal  curve and increase of reproductive 
potential over time. Finally, PInv represents the habitat invasibility of the target cell and generally 
depends on its suitability for the species. Note that this value can simply be set to 1 if no data is 
available to calibrate this parameter.

4. Optionally, long distance dispersal (LDD) events can be added to the simulation. LDD events are 
generated from source cells with a probability  [lddFreq] ×  PProp in a random direction and at a 
random distance within a user-defined range. If the cell reached by the long distance dispersing 
propagule is potentially suitable (satisfying point 1), it becomes colonised. LDD events are not 
affected by barriers.

5. Steps 1 to 4 are repeated a number of times equal to the number of dispersal steps [dispSteps], 
which is typically set so that each dispersal step corresponds to one year.

6. Cells that are no longer suitable due to changes in environmental conditions have their values 
reset to zero. Cells that become unsuitable are reset only after the dispersion stage occurred 
(steps 1 to 5), because it is assumed that the change of a habitat from suitable to unsuitable is  
not a discrete but a continuous process. Thus, organisms inhabiting a cell still have the potential 
to disperse during the environmental change step when the cell turns unsuitable.

7. Steps 1 to 6 are repeated a number of times equal to the number of environmental change steps 
[envChgSteps].  In  each  repetition,  the  habitat  suitability  is  updated  to  reflect  environmental 
change (e.g. climate change). Simulations without environmental change can be performed by 
setting envChgSteps=1.
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Important: since the modelling unit in MIGCLIM is a cell that is occupied or not, parameter values 

must represent values for a cell (which can be thought off as a population), not for a single 

individual. 

 
 
 
 
 
 

Figure 2. Flow-chart of a dispersal simulation using MIGCLIM R package. [Parameter names] refer to 

the parameters in the MigClim.migrate() function. 
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MIGCLIM   parameters detailed description

In order to simulate the dispersal of a species, the  MIGCLIM model has a number of compulsory and 
optional parameters. All of these parameters can be modified so that their value best suits the species 
one wishes to model. Here is a list of the different MIGCLIM parameters and their description (the order in 
which the parameters are listed corresponds to their order in the  MigClim.migrate() function). Note 
that when in R you can always obtain help for a function by typing “?” followed by the name of the 
function, e.g. “?MigClim.migrate” (the explanations in this user guide are however more in-depth than 
what is found in the R help files).

Here are the default values of the MigClim.migrate() function:

MigClim.migrate(iniDist="InitialDist", hsMap="HSmap", rcThreshold=0, envChgSteps=1, 
dispSteps=1, dispKernel=c(1.0,1.0), barrier="", barrierType="strong", iniMatAge=1, 
propaguleProd=c(1.0), lddFreq=0.0, lddMinDist=NULL, lddMaxDist=NULL, 
simulName="MigClimTest", replicateNb=1, overWrite=FALSE, testMode=FALSE, 
fullOutput=FALSE, keepTempFiles=FALSE)

[iniDist]

This first parameter's name stands for “initial distribution”, and, unsurprisingly, is the one to which you 
need to pass the initial distribution of your species. The species' initial distribution is a spatial parameter: 
it's a map that indicates for each cell of the study area whether it contains the species or not at the 
beginning of the simulation. This layer should contain only two types of values: 0 (species is absence) or 
1 (species is present). These values  must be entered as integer values, floating point values are not 
accepted.

The value of [iniDist] can be entered either as a data frame, or as a raster:

Data frame format: 
When entered as a data frame, then [iniDist] must be a data frame (or a matrix) with exactly 3 
columns (in this order): X coordinate, Y coordinate and value of the initial distribution (either 0 or 
1). Here is an example of how this input looks like: iniDist=MigClim.testData[,1:3]  (a data 
frame with 3 columns).

Raster format:
To enter the species' initial distribution in a raster format, the value of [iniDist] must be set to 
the name of the raster file (which must be saved somewhere on disk). In other words, the value 
of [iniDist] is a string – the name of a raster file – and not a raster object itself. The following 
four raster formats are supported: ascii grid (.asc), GeoTIFF (.tif), R raster (no file extension) and 
ESRI  grid  (no  file  extension).  These  formats  offer  good  compatibility  with  existing  species 
distribution modeling packages and GIS software.
The  name of  the  file  must  be  given  relative  to  the  current  R  workspace.  Here  are  some 
examples:  Let's  assume  that  we  have  an  ascii  grid  file  called  “InitialDistribution.asc”  that 
contains our initial distribution. If this file is located in the current R working directory, then we 
would set the value of iniDist=”InitialDistribution” (notice that the value of iniDist is a 
string). If this file is located in a sub-directory called “Species1” of my workspace, then we 
would set  the value of  iniDist=”Species1/InitialDistribution” (again,  notice that  the 
value is a string, not a raster).

Note: If you give your input in raster format, then your layer can also contain “NoData” values for  
locations that are outside of your study area. NoData generally have a value of -9999.
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Important: While you can chose to enter your data in either data frame or raster format, you must 
use the same method for  all  spatial  parameters inputs  (there are 3  spatial  parameters  in  the 
MigClim.migrate function: [iniDist], [hsMap], [barrier]).

[hsMap]

In order to simulate the dispersal of a species through the landscape, MIGCLIM needs to know which cells 
are favorable for the species to establish and which are not. The way that MIGCLIM get this information 
from you is through “habitat suitability maps”, which are entered through the [hsMap] parameter of the 
MigClim.migrate() function.

Depending  on  whether  you  want  to  implement  change  in  environmental  conditions  during  your 
simulation, this input will consist in one or several spatial layers (maps). Each habitat suitability map must 
contain integer values in the range [0:1000], where 0 is the lowest value and 1000 the highest value of 
habitat suitability. This range of values was chosen because it offers direct compatibility with the outputs 
of the BIOMOD software which are also in the range [0:1000].

Important: the habitat suitability values must be integer numbers in the range 0 to 1000. Floating 
point numbers are not accepted. This done to save memory space (i.e. storing integer number eats  
less space).

As with the [iniDist] parameter, and as with all spatial parameters in MIGCLIM, the value of [hsMap] can 
be given either as a data frame, or as a name of a raster file.

Data frame format: 
When entered as a data frame, [hsMap] must be a data frame (or a matrix) with a number of 
columns equal to the number of habitat suitability maps that you wish to enter (so at least 1 
column).  Unlike the [iniDist]  data frame,  this  data frame should  not  contain  any X and Y 
coordinates, because MIGCLIM assumes that the order of the rows in the [iniDist] and [hsMap] 
data frames are the same (so make sure that they are in the same order).
In our test simulation, we have 5 different habitat suitability maps, and hence our input will look 
like  this:  hsMap=MigClim.testData[,4:8]  (a  data  frame  with  5  columns  –  each  column 
representing a habitat suitability map. Note that there are no X and Y coordinates in this data 
frame).

Raster format:
To enter the habitat suitability maps in raster format, the value of [hsMap] must be set to the 
base name of the raster file. What is meant by “base name”, is that all of the habitat suitability 
raster files should have the same “base name” followed by a number that indicates the order in 
which they should be used (the numbering must start with 1). For instance, assuming that we 
have  5  habitat  suitability  maps,  and  that  the  base  name of  our  habitat  suitability  maps  is 
“SuitabilityMap”, then the five files must be named “SuitabilityMap1.asc”, “SuitabilityMap2.asc”, 
“SuitabilityMap3.asc”, “SuitabilityMap4.asc” and “SuitabilityMap5.asc” (note that I have used 
the “.asc” extension here, but this would change if you use a raster format different from ascii 
grid).
The value passed to the [hsMap] parameter is then the base name of the habitat suitability files, 
e.g.  hsMap=”SuitabilityMap”. If the files are not located in the current R working directory, 
then  you  have  to  indicate  the  relative  path  to  this  directory  in  the  input,  for  instance 
hsMap=”Species1/SuitabilityMap”.
One question that you should have at this stage is “since I only indicate the base name of the 
habitat suitability maps, how does the damn thing know how many habitat suitability maps I 
have?”.  Well,  that  is  what  the [envChgSteps]  parameter  is  there  for  (explained later  in  this 
tutorial, stay tuned).
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The following four raster formats are supported: ascii grid (.asc), GeoTIFF (.tif), R raster (no file  
extension) and ESRI grid (no file extension). These formats offer good compatibility with existing 
species distribution modeling packages and GIS software.

Important: All of the raster files have to be located in the same directory.
Important: All of the raster files must have the exact same base name and be followed by a 
number – starting with 1 – indicating the order in which they should be used. The first file must 
thus always end in “1”. The numbers of the habitat suitability files must be consecutive (no gaps 
in the numbering – thank you very much).

Important: All spatial inputs ([iniDist], [hsMap], [barrier]) must have exactly the same extent,  
cell  size and extent (number of cells per row and column). Should any of your spatial data not  
satisfy this criteria, your results will be wrong.

[rcThreshold]

MIGCLIM offers two options to handle the habitat suitability data entered via the [hsMap] parameter: binary 
mode and continuous mode. [rcThreshold] is the parameter that allows switching to either of these 
modes.

Important: the values of [rcThreshold] must be an integer number between 0 and 1000. Floating 
point numbers are not accepted.

In “binary” mode, the input habitat suitability data (which as you may remember must be given in the 
range [0:1000]) are converted into binary data: the habitat is either fully suitable (1000) or not (0). The 
reclassification is done via the [rcThreshold] parameter. Values of habitat suitability >=  rcThreshold 
are reclassified as suitable habitat (1000),  while values <  rcThreshold are reclassified as unsuitable 
habitat (0). Thus, to use the “binary” mode, the value of [rcThreshold] must be in the range 1 to 1000.

“continuous” mode is entered when setting the value of [rcThreshold=0].  In that case, the habitat 
suitability data that is entered via the [hsMap] paramter will not be converted into binary values. Instead, 
the values of habitat suitability will be used as a conditional probability that a cell becomes colonized (the 
value  of  PInv that  you  can see in  equation  1 of  this  document).  In  “continuous” mode,  the habitat 
suitability value is thus interpreted as a value of “habitat invasibility”. The actual value of invasibility (PInv) is 
computed simply by dividing the habitat suitability value of a given cell by 1000. So, for instance, a value 
of 1000 corresponds to a probability of 1, and a value of 395 to a probability of 0.395. It is important to 
understand that in “continuous” mode, the values of habitat suitability are interpreted as an absolute 
probability  of  presence  conditional  on  the  species  dispersing  to  the  cell  (see  equation  1 in  this 
document). In other words, all other things being equal, a cell with habitat suitability of 600 is twice as 
likely  to  be  colonized  than  a  cell  with  habitat  suitability  of  300.  Note  that  depending  on  how you 
calibrated your model, the predictions are not necessarily absolute probabilities. If they are not, then they 
you will have either to rescale them, or to use the thresholding option (i.e. “binary” mode).

Note: when using “binary” mode, MIGCLIM will simply reclassify you habitat suitability values into  
either 0 or 1000. Thus, if you already have binary data as input, you can simply reclassify these data  
into either 0 or 1000 by yourself and then use this as  MIGCLIM input (in this case you can set  
[rcThreshold] to either 0 or any value between 1-1000 the result will be the same).
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[envChgSteps]

The [envChgSteps] parameter is where you indicate the number of “environmental change steps” that 
should be performed during your simulation. The number of environmental change steps corresponds to 
the number of times the habitat suitability data should be updated during the simulation (and must thus 
correspond to the number of habitat suitability maps that you have). If you wish to run a simulation 
without any modification in the habitat suitability map (e.g. if you're modeling the spread of an invasive 
species), then simply set [envChgSteps=1]. If you wish to update your habitat suitability map 5 times, as 
in our example, then set [envChgSteps=5].

Important: for each environmental change step, [dispSteps] dispersal steps are run.

Note: The minimum value for [envChgSteps] is 1, the maximum value is 295.

Note:  If  you have entered  your [hsMap]  data  in  a  data  frame format,  then the  [envChgSteps] 
parameter may seem a bit redundant since the number of columns of your data frame already  
defines the number of environmental change steps (but you still have to enter it!). However, if you  
enter your [hsMap] data in raster format (indicating the “base name” of your habitat suitability files),  
then you can see why the [envChgSteps] parameter is important: without it there is no way for the  
function to know how many times you want to update your habitat  suitability map during the  
simulation.

[dispSteps]

The [dispSteps] parameter is where you indicate how many dispersal steps you want to perform.

Important: remember that the dispersal step loop is nested within the environmental change loop  
(see the figure of the MIGCLIM simulation flow earlier in this document). Thus, [dispSteps] dispersal  
steps are run for each environmental change step.

In our tutorial example, the interval between two successive habitat suitability maps is of 5 years. Since 
we assume that our species disperses once a year (hence 1 dispersal step = 1 year), we have to set 
[dispSteps=5].  The total  number  of  dispersal  steps that  will  occur  during our  simulation is  thus of 
[envChgSteps=5] x [dispSteps=5] = 25.

Note: The minimum value for [dispSteps] is 1, the maximum value is 99.
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[dispKernel]

What is important to understand at this stage is that MIGCLIM considers two kind of dispersal processes: 
“short distance dispersal”, which is the normal dispersal mode and “long distance dispersal” (abbreviated 
LDD), which represents rare events where seeds are dispersed by non-usual means and travel longer 
distances than usual. To illustrate this with a real-world example, think about an anemochorous species, 
i.e. a species dispersing its seeds by wind. The short dispersal distance for this species represents the 
usual distance that seeds are dispersed under normal wind conditions, say for instance 50 meters. Long 
distance dispersal on the other hand corresponds to rare events where a seed will be dispersed over a 
much longer distance,  say up to 1000 meters or  10 kilometers for  instance,  through an exceptional 
strong wind or if it gets attached to an animal that will transport it.

For  computing  efficiency  reasons,  the  approach  taken  in  MIGCLIM is  to  simulate  these  two kind  of 
dispersal  as  separate  processes.  Short  distance  dispersal  is  entered  via  the  dispersal  kernel 
[dispKernel] parameter, which is the focus of the present section. Long distance dispersal distance and 
frequency is set via three parameters: [lddFreq], [lddMinDist]  and [lddMaxDist], that are discussed 
later in this document. 

A dispersal  kernel  is  a  function that  indicates  the probability  of  a  propagule  to  disperse at  a  given 
distance from its source. Because the MIGCLIM model is a cellular automaton (i.e. a model based on a grid 
of cells – the pixels of your input rasters), the values for the dispersal kernel parameter [dispKernel] 
should also be expressed in cell units. In other words, the [dispKernel] parameter is a vector that gives 
the probability of a cell to disperse propagules (PDisp) to a distance of 1 cell, 2 cells, 3 cells, etc... until the 
maximum dispersal distance of your species is reached.

Figure 3 below illustrates a 5 cell dispersal kernel. If the cell size is of 20 meters, then this corresponds  
to a maximum dispersal distance of 5 x 20 = 100 meters. Fig. 3a shows the spatial distribution of the  
dispersal kernel: the central cell represents the propagule source, and the different grey patterns indicate 
the respective distance classes to which each cell belongs. The colors of the cells match with the colors 
of the bar plot values shown to the right (Fig. 3b and 3c). Distance values that are non-integer numbers 
(e.g. diagonals) are rounded to their closest integer number and attributed to that distance class. E.g. the 
d1 and d2 arrows indicate cells that belong to distance class 2 and 3 respectively. Fig. 3b gives an 
example of a negative exponential kernel (this kernel is used in the tutorial section presented further 
down in this user guide).  PDisp represents the probability for a source cell to disperse a propagule at a 
certain distance (see also equation 1 of this document). Each distance class is represented by a different 
pattern of grey that matches with those found in Fig. 3a. Fig. 3c shows an example of a kernel where all  
distance classes have an equal value of PDisp = 1. Using this dispersal kernel, any cell within a distance ≤ 
5 cells is colonized with certainty (provided other conditions are fulfilled).

The dispersal kernel of Fig. 3b would be entered as:  dispKernel=c(1.0,0.4,0.16,0.06,0.03)
The dispersal kernel of Fig. 3c would be entered as:  dispKernel=c(1,1,1,1,1)
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Important: dispersal kernel values must be entered as a vector of probabilities. Each probability  
corresponds to a distance class measured in cell units. The probability values must be in the range  
[0:1] (where 0 means PDisp = 0% and 1 means PDisp = 100%).

Note: in its simplest form, a dispersal kernel can be given as having a constant value of 1 over the  
entire dispersal distance (as shown in Fig. 3c). This might not be fully realistic as we know that the  
value of PDisp generally decreases with distance from the source cell, but if you have no data to  
calibrate the dispersal kernel of a species this might be an option.

[barrier] and [barrierType]

In  MIGCLIM, the optional [barrier] and [barrierType] parameters can be used to indicate cells across 
which dispersal cannot occur. Barrier cells are considered as permanently unsuitable (i.e. they cannot 
become colonized), but unlike regular unsuitable cells, the also impede dispersal across them (see figure 
below).  In  example,  for  a  deer  species,  both  a  parking  lot  and  a  highway  are  unsuitable  habitats, 
however, while the deer can disperse through a parking lot, it might not be able to cross a highway.
If you do not wish to implement barriers to dispersal into your simulation, simply set [barrier=””].

The [barrier] parameter must be given as a layer of binary and integer values: 1 (cell is a barrier) and 0 
(cell is not a barrier). Like all spatial parameters (i.e., [iniDist], [hsMap] and [barrier]), it can be entered 
either in a data frame/matrix/vector format (in this case a data frame with a single column), or as a raster  
file in one of the following formats: ascii grid (.asc), R raster (no extension), geoTIFF (.tif) or ESRI grid (no 
extension). Note that if you want to enter the value of the [barrier] parameter as a raster file, you 
should  indicate  the  name  of  the  file  relatively  to  the  current  R  working  directory,  e.g., 
barrier=”Speices1/Barrier”. In other words, the input value of the parameter is a string, not a raster 
object (this is the same as for the [iniDist] and [hsMap] parameters).

Figure 4 illustrates the difference between barriers cells and unsuitable cell. The example assume that 
the only cell occupied by our species is the central cell (in black) and that it can disperse propagules to a 
distance up to 10 cells (which means that all cells of our small landscape are within reach and thus that  
dispersal  distance is  not  a  limiting  factor  here).  Our  landscape also contains unsuitable  cells  (white 
colored) and barrier cells (striped).

The cells indicated as “c1” and “c2” are examples of cells that cannot be colonized due to the presence 
of barrier cells (a straight line between the black source cell and these cells crosses a barrier cell, as 
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illustrated by the red arrows). To the contrary, the “c3” cell can be colonized, because the unsuitable cells 
(in white) that are located between “c3” and the source cell (in black) do not impede dispersal across 
them (illustrated by the green arrow). 

To summarize, unsuitable cells cannot host the species (and therefore cannot be colonized), but dispersal 
across them is possible. Barrier cells too are unsuitable for the species (and thus cannot be colonized), 
but on top of that they also impede dispersal across them.

Note  that  propagule  dispersal  can  only  occur  in  a  straight  line,  and  that  barrier  cells  cannot  be 
circumvented in a single dispersal step. For instance, the “c2” cell  in Fig. 4  will  eventually become 
colonized (orange dashed arrow), but this will involve several dispersal steps. In other words, the source 
cell cannot disperse directly to “c2” by circumventing a barrier cell, even if the actual distance (including 
the detour involved in the circumvention) is smaller than the dispersal distance.

Two kinds of barriers can be implemented in  MIGCLIM: “strong” barriers and “weak” barriers. This is 
entered in the MigClim.migrate() function via the [barrierType”] parameter (barrierType=”strong” 
or  barrierType=”weak”).  Essentially,  the difference is that strong barriers  are more restrictive than 
weak barriers. Note that a barrier layer is entirely “strong” or entirely “weak” (you cannot have a mix of 
strong and weak barriers).

To determine whether there is a barrier between a source cell (black cell in Fig. 5) and a sink cell (orange 
cell in Fig. 5), the algorithm looks whether 5 different straight line paths (represented by arrows in Fig. 5)  
intersect a barrier cell or not. As illustrated in the figure, the 5 paths connect each corner as well as the  
center of the source and sink cells.

 When setting  → barrierType=”strong”, dispersal is impeded between the two cells when more 
than 1 of these paths intersects with a barrier cell.

 When setting  → barrierType=”weak”,  then dispersal  is  only  impeded when all  of  the 5  paths 
intersect with a barrier cell.

Fig. 5 shows two examples where using the “strong” barrier setting would impede dispersal between 
the two cells, while using the “weak” setting would not.

Important: Long distance dispersal events are not affected by barrier features. Barriers only affect  
regular (non-LDD) dispersal.

Note: barrier cells remain barriers during the entire simulation and cannot be updated during the  
simulation.
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[lddFreq], [lddMinDist] and [lddMaxDist]

Long distance dispersal (LDD) events are randomly generated with a user-defined frequency [lddFreq] 
within a used-defined distance range [lddMinDist;  lddMaxDist]. The frequency of LDD events is also 
modulated through the propagule production potential of the considered cell: during each dispersal step, 
the probability for an occupied cell to produce a long distance dispersal event is of [lddFreq] x PProp. 

LDD  events  aim  at  representing  non-standard  ways  of  propagule  dispersal.  E.g.,  a  seed  from  a 
myrmecochorus species can occasionally be dispersed by another animal over much larger distances. 
Note that LDD events are not affect by barriers to dispersal.

If  you  do  not  wish  to  implement  LDD into  you  simulation,  simply  set  [lddFreq=0]  (in  which  case 
[lddMinDist] and  [lddMaxDist] can be set to anything – in fact you don't even need to add them to the 
function call).

If  you choose to implement  LDD,  then [lddFreq]  must  be a value in  the range ]0:1]  indicating the 
probability with which an occupied cell that has reach its full propagule production potential (PProp = 1) will 
produce a LDD event at each dispersal step. For instance, if you set [lddFreq=0.01], then, on average, 1 
occupied cell (with full propagule production potential) in 100 will generate a LDD event. If a given cell 
has not reached its full propagule production potential, then the probability with which it will generate a 
LDD event at each dispersal step is equal to [lddFreq] x Pprop (see equation 1).

The distance at which LDD events should be generated must be indicated through the LDD minimum 
distance [lddMinDist] and the LDD maximum distance [lddMaxDist] parameters. The distance unit of 
these parameters is a “cell”, so you have to set these values depending on the spatial resolution at which 
you work (the cell size of your raster data). For instance, if you set [lddMinDist=6], [lddMaxDist=50] and 
your cell size is of 20 meters, then LDD events will be randomly generated within a distance range of  
120 to 1000 meters. Note that the value of [lddMinDist] must be larger than the largest distance of the 
dispersal  kernel  [dispKernel].  For  instance  it  the  dispersal  kernel  is  a  vector  of  length  5,  then 
[lddMinDist]  must  be  >=  6.  The  value  of  [lddMaxDist]  must  also  be  larger  than  the  value  of 
[lddMinDist]. Also, both [lddMinDist] and [lddMaxDist] must be integer numbers.

Note:  the  probability  of  an  LDD  event  to  reach  any  cell  within  the  defined  distance  range  
[lddMinDist - lddMaxDist]  is  independent  of  that distance.  The probability  remains constant  
across the entire distance range.

Important: Long distance dispersal events are not affected by barrier features. Barriers only affect  
regular (non-LDD) dispersal.

[propaguleProd] and [iniMatAge]

The probability of a source cell to produce propagules (PProp) as a function of time since the cell became 
colonized is specified via 2 parameters: initial maturity age [iniMatAge] and a vector [propaguleProd] 
indicating the probability of propagule production (PProp) for each age between the initial maturity age and 
full maturity. This parameter can be used as a proxy for population growth in the cell, or for instance to  
reflect that a species might need several years before starting to produce propagules, and even more 
time to reach its full reproductive potential. The time unit is a dispersal step, which will usually, but not  
necessarily, represent one year.

The value of [iniMatAge] must be set to the cell “age” at which a cell will start to produce propagules 
(i.e. the age when PProp becomes larger than 0). Remember that in MIGCLIM the time unit is a dispersal 
step, and hence, cell “age” is measured in dispersal steps.

The value of [propaguleProd] must be a vector indicating the probability  PProp associated to each cell 
age, from its initial maturity age [iniMatAge] to one year before full maturity. When a cell has reached its 
full maturity age (PProp=1), it is assumed that its value of PProp will remain equal to 1 indefinitely, and this is 
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why you don't need to specify it anymore. Note that values of [propaguleProd] should be given in the 
range [0:1], where 0 means PProp = 0% and 1 means PProp = 100%.

To give you an idea, here are two examples of how the increase in propagule production potential over 
time might look:

As can be seen from the examples above, the length of the [propaguleProd] vector is always equal to 
the full maturity age - initial maturity age: For instance, in example 1, the length of the [propaguleProd] 
vector is of 4 (5 – 1 = 4), and the same for example 2 (10 – 6 = 4).

The only exception to this is when the initial maturity age and the full maturity age are the same (i.e. the 
propagule production potential increases from 0 to 1 within one dispersal step). In this case the value of 
[propaguleProd]  must  be  set  to  propaguleProd=c(1.0).  E.g.  if  you  want  your  cells  to  reach  full 
propagule potential  in the first dispersal  step after  they became colonized, you would enter this as: 
iniMatAge=1, propaguleProd=c(1.0).

Important: Once cells have reached their full maturity, their value of PProp remains always equal to 1  
(unless they become decolonized, obviously) and has thus no longer to be specified.

Important: In MIGCLIM, time is measured in dispersal steps units. Usually one dispersal step should  
be set so that it equals one year (this assumes that the species will disperse once a year).

Note:  The  cells  that  are  occupied  at  the  beginning  of  a  simulation  (i.e.  the  species  initial  
distribution) are set to have full propagule production potential (PProp = 1).
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Example 1.  Here the species starts to have 
some propagule production potential since the 
first dispersal step after the pixel became 
colonized (i.e. pixel age = 1). The value of PProp 
then increases in a sigmoid fashion to reach its 
maximum at the age of 5. From the age of 5 
on, the value of PProp  will always remain at its 
maximum of 1.

These values would be entered as follows:
iniMatAge=1
propaguleProdProb=c(0.02, 0.1,0.5,0.9)

Note that we do not need to indicate the value 
of pixel age 5 because this value is 1.

Example 2. In this case, the species will not be able to 
reproduce before it has reached an age of 6 dispersal 
steps (in general 1 dispersal step = 1 year). 
From the age of 6, the value of PProp then increases in a 
sigmoid fashion to reach its maximum at the age of 10. 
From the age of 10 on, the value of PProp  will always 
remain at its maximum of 1.

These values would be entered as follows:
iniMatAge=6
propaguleProdProb=c(0.02, 0.1,0.5,0.9)

Note that we do not need to indicate the value of PProp 
for pixel age 10 because this value is 1.



[simulName]

The  [simulName]  parameter  is  where  you  can  indicate  the  “base  name” to  be  used  for  all  of  the 
simulation's outputs. The value of this parameter must thus be a text string. For instance, in the tutorial  
example presented later  in this document, we want to use “MigClimTest” as our based name, and 
hence  we  set  simulName=”MigClimTest”.  As  a  result,  all  of  our  outputs  will  be  named  as 
“MigClimTest” + something.
The value of [simulName] is also used to name the directory in which the all outputs from the simulation 
will be saved. In the case of our tutorial simulation, the outputs will thus be saved in a folder named 
“MigClimTest”. This folder will be created in the current R workspace, so make sure to correctly set the R 
workspace before starting your simulation.

[replicateNb]

The idea behind this parameter is simple: since MIGCLIM simulations generally involve some randomness 
(this actually depends on the parameter values that you have entered), it can be interesting to repeat 
several times a same simulation and look at the variability due to random processes. The number of 
times a simulation  should be replicated is  entered via  the [replicateNb]  parameter.  It  must  be an 
integer number >= 1. For instance, in the tutorial example we wish to replicate our simulation 3 times, 
hence we set [replicateNb=3]. If you wish to run your simulation only once (i.e., no replication), set 
[replicateNb=1].

Note that when the value of [replicateNb] is > 1, the “base name” of the outputs of each replicate 
becomes [simulName] + number of the replicate. For instance, in the tutorial example presented later in 
this  document,  we set  simulName=”MigClimTest” and  replicateNb=3,  hence  the outputs  will  be 
named “MigClimTest1”, “MigClimTest2” and “MigClimTest3”. When replicates are completed,  MIGCLIM 
will also compute an average value of all replicates and save it into the output folder. The average outputs 
are also named after the [simulName] but do not have any replicate number in their name.

[overWrite]

If [overWrite=TRUE] then any existing file with the same name as an output of the MigClim.migrate() 
function will be mercilessly overwritten. If [overWrite=FALSE] then the function will stop if any output 
file does already exist (this is verified before the simulation starts). 

[testMode]

The [testMode] parameter allows you to check your input data without running the actual simulation. If 
[testMode=TRUE] then the MigClim.migrate() function will check all the provided input data but will not 
run the actual simulation. If [testMode=FALSE] then the simulation is run. 

This can be useful to check your data before running a batch of several simulations, since it will allow to 
quickly see if any of the planned simulation will crash due to user-input errors.

[fullOutput]

If  [fullOutput=TRUE],  the  current  state of  the simulation  is  written to an ASCII  grid  file  after  each 
dispersal  step  (allowing  to  spatially  reconstruct  the  dispersal  process  at  each  step  if  needed).  If 
[fullOutput=FALSE] (the default value), only the final state of the simulation is written to an ASCII grid 
file. Note that in all cases, the numerical values of how many cells are colonized, lost, etc..., are available 
for each dispersal step in form of a text file. Hence the [fullOutput] parameter only affects the ASCII 
files (the spatially explicit output of MIGCLIM).

Note: be aware that setting [fullOutput=TRUE] can produce a large number of ASCII grid files and  
that these can be fairly large in terms of disk space (it depends of course on how many cells you  
have in your study area).
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[keepTempFiles] *

When entering spatial parameters [iniDist], [hsMap], [barrier] in data frame format, what happens is 
that MIGCLIM does internally convert them to ASCII grid files. When setting keepTempFiles=FALSE (the 
default value), then these ASCII grid files (.asc) created from a conversion process in the function will be 
deleted when the simulation is completed. If you wish to keep the created ASCII grid files then set 
keepTempFiles=TRUE.

While keeping the ASCII grid files is somewhat redundant (since you already have the same information 
in data frame format), it can sometimes be helpful to track bugs (you can check if the conversion from 
data frame to ASCII grid was done properly).
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Part 3: Hands-on example with a   MIGCLIM   test simulation
The aim of this section is to illustrate the use of 
MIGCLIM by going through a step-by-step example 
that will  show how to run a simulation with the 
test data that comes with the MIGCLIM R package. 
Note that this is essentially the same example as 
the  one  described  in  [Engler  R.,  Hordijk  W.  and 
Guisan  A.  The  MIGCLIM R  package  –  seamless 
integration of dispersal  constraints into projections of 
species distribution models. Ecography, in review.], but 
with some more details.

Since MIGCLIM was originally designed to simulate 
dispersal  of  plant  species  under  environmental 
change  and  landscape  fragmentation  scenarios 
(e.g.  climate  change  scenarios),  the  example 
hereafter will follow such a scenario. It is however 
also  possible  to  model  dispersal  without 
implementing  environmental  change  into  the 
simulation. If you haven't done it so far, I strongly 
encourage you to read the first part of this user 
guide (that's only 20 pages ;-). Knowing the basic 
principles and the various parameters of  MIGCLIM 
will help you better understand what is going on in 
this example.

Note: Obviously, all the values that we will be using in the tutorial below are only examples and any  
resemblance with a plant or animal species – alive or extinct – is purely coincidental.  In other  
words, you will have to work out your own parameters when using MIGCLIM for your species – this  
hurts, I know.

Getting started: Installing R and the   MIGCLIM   library
If you are interested in using MIGCLIM, chances are that you are already an R guru.  If you're new to R 
however, you should start by going to www.r-project.org and install the R software: it's free, open source 
and works great. What's not to like?

Next  you will  want  to  install  the  MIGCLIM package.  That's  real  easy  to  do:  in  the R console,  go to 
“Packages” > “Install Package(s)”. You will be prompted to choose a mirror location near you, after which 
a (long) list of available packages will be displayed. Scroll down until you see the “MIGCLIM” package, 
select it and click OK. And voilà, you're up and ready to go. I'm sure you can hardly wait!

Note: MIGCLIM occasionally uses functions from two other R packages: “raster” and “SDMTools”.  
So make sure you are also installing these on your computer (in theory these two packages should  
install automatically when you instal the MIGCLIM package).
To verify whether a package is installed or not, simply try loading it by typing library(MigClim), 
library(raster), or library(SDMTools).
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Figure 6. View of the study area (western Swiss Alps) 
from where the test data originates.In our test 
example, our aim will be to model the dispersal of a 
species under a climate change scenario over a period 
of 25 years, from 2001 to 2025. 

http://www.r-project.org/


Loading and exploring the test data
Before being able to run the test simulation, you will need to load the test data that comes with the  
MIGCLIM package. And if you haven't done it so far, you should also load the MIGCLIM package itself before 
that. This is easily done via the following commands:

library(MigClim)
data(MigClim.testData,package="MigClim")

You  should  now  have  a  new  object,  named  “MigClim.testData”,  in  your  R  environment.  The 
MigClim.testData object is a data frame, let's see what it looks like.

head(MigClim.testData)
         X        Y InitialDist hsmap1 hsmap2 hsmap3 hsmap4 hsmap5 Barrier
1 568687.5 115237.5           1   1000   1000   1000   1000   1000       1
2 568887.5 115237.5           1      0      0      0      0      0       0
3 568987.5 115237.5           0      0      0      0      0      0       0
4 568587.5 115337.5           1   1000   1000   1000   1000      0       0
5 568687.5 115337.5           0      0      0      0      0      0       1
6 568787.5 115337.5           0      0      0      0      0      0       1

The MigClim.testData data frame has 9 columns (how exiting!). It is important to understand that the 
MigClim.testData data frame represents spatial data. Each row of the data frame contains information 
about a cell of our study area. The two first columns, X and Y, represent the coordinate of a given cell  
(pixel),  while  columns  3  to  9  each  represent  a  spatial  layer  (i.e.  a  “map”).  For  instance,  the 
“InitialDist” column represents the species initial distribution. Here is a short description of each 
column:

X and Y:  The X and Y coordinates of a cell. Here the coordinates are given in the Swiss coordinate system 
which is a metric system.

InitialDist:  The initial distribution of our species. This column contains only values of either 0 or 1, where 0 
indicates the absence of our species, and 1 the presence of our species (cell is occupied). No other  
values than 0 or 1 are allowed in this input, and the numbers must be integers.

hsmap1 to 5:  Each of  these 5 columns contains habitat  suitability  data for  a  given point  in  time.  “hsMap1” 
contains the habitat suitability information for the average of 2001-2005, “hsMap2” for the average 
of 2006-2010, and so on until “hsMap5” that contains the habitat suitability data for the time period 
from 2021-2025. Note that habitat suitability data must be integer numbers in the range 0:1000.

Barrier:  A layer representing barriers to dispersal  for our species. Barrier must always be binary layers,  
where a value of 1 = barrier cell and a value of 0 = non-barrier cell. In the present case, the barrier  
cells correspond to forested areas as we will  assume that our species cannot disperse through 
forests. No other values than 0 or 1 are allowed in this input, and the numbers must be integers.

Important: It is a requirement for  MIGCLIM to work correctly that all the spatial input data (raster  
datasets) that are used for a given simulation have all exactly the same extent and cell size. In our  
test data, the spatial resolution of our data is of 100 meters (i.e. pixel size is 100 m).

Important: All values of [iniDist], [hsMap] and [barrier] must be integer numbers. Floating point  
numbers are not accepted (this is for efficient memory usage reasons).

Before starting the actual MIGCLIM simulation, we can have a quick look at our input test data. This is not 
something that is needed to actually run MIGCLIM, so feel free to skip to the next section if you're already 
bored.
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As you probably know, spatial data can be represented using different formats. It can be in a data frame 
format such as the MigClim.testData data frame, but it is also very often in what is called a “raster” 
format. A raster can be thought of  as a two-dimensional array of cells or a two-dimensional matrix. 
Rasters themselves can be stored in a large variety of formats, such as “ascii grid”, “R raster” (the native 
format used by the R “raster” package), “geoTIFF” or “ESRI grid” (ESRI grid is the native format of the 
widely used ArcGIS software).

If you want to visualize the data that is given in the  MigClim.testData data frame, you can convert 
values from the data frame into raster files. This is easily done using a function from the SDMTools 
package.

library(SDMTools)
dataframe2asc(MigClim.testData[,c(2,1,3:9)])

The command above should have generated 7 ascii grid files (they should have a “.asc” extension) in your 
working directory (the initial distribution, 5 habitat suitability maps and the barrier layer). We can now 
visualize these raster files either in a GIS or with R, as shown hereafter.

InitialDistribution <- raster("InitialDist.asc")
plot(InitialDistribution)

As can be seen from the figure above, our species' initial distribution [iniDist] is a binary map where cells 
have either a value of 1 (species is present) or a value of 0 (species is absent). Cells outside of the study 
are have a value of “NoData” (-9999). The initial distribution of our species is mainly restricted to the 
lowland area to the west of the study area.

Important: cell with a “0” value simply indicate that the species is absent from those cells at the  
beginning of the simulation. However, it doesn't mean that those cells cannot be suitable for the  
species at  the beginning or later on in the simulation.  This information is given by the habitat  
suitability maps [hsMap].

Note: In this example data, the study area is delimited by “NoData” values (this makes it look  
nice). However, this is not a requirement and one could also give a value of “0” to all cells outside  
of the study area.
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Initial distribution of our species. 
Orange pixels have a value of 1, indicating they are occupied by the species.
Grey pixels have a value of 0, indicating they are unoccupied.



Similarly, we can also have a look at our 5 habitat suitability maps:

hsMap1 <- raster("hsmap1.asc")
plot(hsMap1)

          

      

“hsmap1” represent the habitat suitability for the period 2001-2005, “hsmap2” the habitat suitability for 
the period 2006-2010, … and so on until “hsmap5” that represents habitat suitability for the year 2021-
2025. The entire map series thus reflects the evolution of habitat suitability with climate change from 
2001 to 2025 for our species (well, I know the change between these 5 maps are not overwhelming, but  
if you look carefully you will see differences, the suitable habitat is shifting to the east).

Orange  cells  have  a  value  of  1000  and  indicate  suitable  habitat,  which  can  potentially  be 
colonized/occupied.  Grey  cells  have  a  value  of  0,  indicating  unsuitable  habitat  that  cannot  be 
colonized/occupied.

Finally we can also display the “barrier” layer 
(which actually represents forests in the study 
area):

Barrier <- raster("Barrier.asc")
plot(Barrier)
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hsmap1 (year 2001-2005) hsmap2 (year 206-2010) hsmap3 (year 2011-2015)

hsmap4 (year 2016-2020) hsmap5 (year 2021-2025)

Barrier to dispersal layer.
Green pixels have a value of 1, 
indicating that they are barrier 
cells (they represent forested 
areas through which we assume  
our species cannot disperse).
Grey pixels have a value of 0, 
indicating they are non-barrier 
cells.



Running a   MIGCLIM   simulation

Once you have gathered all  your input parameter values, launching a  MIGCLIM simulation couldn't be 
easier. It's done via a single function, MigClim.migrate(), to which all parameters are passed. Here is 
the call to the function that will run our test data:

N <- MigClim.migrate(iniDist=MigClim.testData[,1:3],
     hsMap=MigClim.testData[,4:8], rcThreshold=500, 
     envChgSteps=5, dispSteps=5, dispKernel=c(1.0,0.4,0.16,0.06,0.03),
     barrier=MigClim.testData[,9], barrierType="strong", 
     iniMatAge=1, propaguleProd=c(0.01,0.08,0.5,0.92),
     lddFreq=0.1, lddMinDist=6, lddMaxDist=15, 
     simulName="MigClimTest", replicateNb=3, overWrite=TRUE, 
     testMode=FALSE, fullOutput=FALSE, keepTempFiles=FALSE)

To start  the simulation,  simply copy the above call  to the  MigClim.migrate() function into your R 
console, hit your “enter” key and hope for the best. Running this simulation on an laptop that's getting 
long in the tooth (1.8 GHz Pentium M, 2GB of RAM)  took about 42 seconds (your millage might vary 
depending on the kind of machine you're working on). Note that most of this time (about 40 seconds) 
was actually spent on converting the data frame inputs ([iniDist],  [hsMap]  and [barrier])  into ascii 
grids, and not on the simulation itself. Thus an actual simulation run took less than 1 second (I tried to  
repeat this simulation 100 times by setting [replicateNb=100] and it would take less than 2 minutes). 
The lesson here is that if you provide the spatial inputs [iniDist], [hsMap] and [barrier] directly as ascii 
files then the simulation will  run a lot  faster  since if  won't  have to do the data frame to ascii  grid 
conversion.

Here is a description of the different parameters values used in the  MigClim.migrate() function call 
above:

In our test example, we model the dispersal of a species under a climate change scenario over a period 
of 25 years, from 2001 to 2025. We start with an initial distribution [iniDist] for the year 2000 where 
our species is mainly occupying the lowland habitats located in the western part of the study area. We 
decide that we want to update our habitat suitability data every 5 years (this update in habitat suitability 
reflects the climate change projections). Since our simulation runs over 25 years, we need 5 different 
habitat  suitability  maps,  each reflecting the environmental  conditions for  a 5-year period (2001-2005, 
2006-2010, 2011-2015, 2016-2020, 2021-2025). These maps are entered through the [hsMap] parameter 
(here a data frame with 5 columns), and the number of environmental change steps is entered by setting 
[envChgSteps=5]. The [rcThreshold] parameter is here to convert our habitat suitability maps values (in 
the range 0 – 1000), into binary values indicating whether the habitat is suitable for our species or not. In  
this example we set [rcThreshold] to 500, meaning that values ≥500 will be considered as favorable to 
our species (such cells can become colonized), while values <500 will be considered unsuitable. We 
assume that our species can disperse once a year, and hence our total simulation needs to perform 25 
dispersal steps (corresponding to the 25 years from 2001 to 2025). As we already set  [envChgSteps=5], 
the number of dispersal steps must be set to 25/5 = 5 [dispSteps=5]. It is important to keep in mind 
that for each environmental change step, [dispSteps]  number of dispersal steps are run (these two 
nested loops can be seen on Figure 1). The total number of dispersal steps that are simulated is thus 
equal to [envChgSteps] × [dispSteps], which in our example equals 25 and corresponds to the 25 years 
from 2001 to 2025.

An important parameter of any dispersal simulation is the dispersal kernel [dispKernel], a vector which 
indicates the probability of a source cell to disperse propagules as a function of distance measured in cell 
units. The maximum regular dispersal distance of our species is of 500 m, which corresponds to 5 cells 
since our input data have a spatial resolution of 100 m (cell size = 100 m). [dispKernel] must thus be a 
vector of 5 values, one for each distance class from 1 to 5 cells. In our example the dispersal kernel 
follows a negative exponential, with values ranging from 1 for a distance of 1 cell, to 0.03 for a distance 
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of 5 cells (illustrated in Fig. 3b). We also wish to implement random long distance dispersal events with a 
frequency of  0.01 [lddFreq=0.01],  a  minimum distance of  6 cells  [lddMinDist=6]  and a maximum 
distance of 15 cells [lddMaxDist=15].  This means that for every cell  that has reached full  propagule 
production potential (i.e.  Pprop = 1; see equation 1), a long distance dispersal event will be generated with 
a probability of 0.01, in a random direction, at a random distance between 6 and 15 cells. If a cell has not 
reached its full propagule production potential, then the probability with which it will generate a LDD 
event at each dispersal step is equal to [lddFreq] x Pprop (see equation 1).

Since we assume that our species is restricted to open habitats and is unable to disperse through 
forested areas, we want to indicate forested cells as “barriers” to dispersal. We do this via the [barrier] 
parameter:  barrier=MigClim.testData[,9] (The 9th column of  the  MigClim.testData data  frame 
contains  the  information  about  whether  a  cells  contains  forested areas  or  not).  The  [barrierType] 
parameter can be set either to “strong” or “weak”, here we chose to set [barrierType="strong"].

Next we need to indicate how the propagule production potential of newly colonized cells evolves over 
time. Let's assume our species is annual, and that a newly colonized cell is ready to produce propagules 
after its first year [iniMatAge=1], but will only reach its maximum production potential after 5 years. Note 
that cell “age” corresponds to the number of dispersal steps elapsed since a cell became colonized, and 
that in our example one dispersal step is equal to one year. For each age between 1 and 4 years we need 
to indicate the probability of a cell  to produce propagules via the [propaguleProd]  parameter. In our 
example,  these  probabilities  are  of  0.01,  0.08,  0.5  and  0.92  for  ages  1  to  4.  We  write  this  as:  
propaguleProd=c(0.01,0.08,0.5,0.92). Note that we do not indicate the values for age 5 and older, 
because we want this value to be 1 (and MigClim will assume that the value is always 1 once it has 
reached the end of the [propaguleProd] vector).

Since our simulations includes some level stochasticity, we chose to repeat it 3 times (the average of the 
3 repetitions will be automatically computed). We indicate this with [replicateNb=3] (note that I chose 
to repeat the simulation only 3 times for the sake of this example, but for real applications if might be 
better to increase that number).

The remaining parameters [fullOutput],  [simulName],  [overWrite],  [testMode],  [keepTempFiles] 
relate to the model outputs and are explained earlier in this document (see here).

In the next section of the tutorial we will look at the different outputs produced by MIGCLIM and see how 
to interpret them.

Note: In our tutorial example, the interval between two successive habitat suitability maps is of 5  
years but you are of course free to use any other interval. For instance, you could implement a  
change in habitat suitability every year, every 10 years or every 20 years. It all comes down to what  
kind  of  data  you  have  available  and  what  kind  of  values  you  think  does  make  sense:  e.g.  
implementing climate change every year might not be ideal because annual variability cannot be  
easily predicted and hence it might be better to work with averages over a few years. On the other  
hand, implementing climate change only every 20 years might not be optimal either because it  
could result in changes that are too abrupt between two successive habitat suitability maps.

Note:  In  the call  to  MigClim.migrate() illustrated  above,  I  have chosen  to  enter  the spatial  
parameters values ([iniDist],  [hsMap], [barrier]) as data frames. If you remember the previous  
sections of this user guide (and sure enough you do, don't you?), you will know that for these  
parameters, MIGCLIM supports both data frame and raster formats (what actually happens is that if  
you give the input in form of a data frame,  MIGCLIM will  internally convert  it  into an ascii  grid  
format). So here is the same call to the MigClim.migrate() function but using raster format as  
input. Remember that you have to give the name of the input raster files, not the actual raster. Also  
note that the code below assumes that you have converted the data to ascii grids, as shown in the  
previous section of this tutorial.
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N <- MigClim.migrate(iniDist=”InitialDist”, hsMap=”hsmap”, rcThreshold=500, 
     envChgSteps=5, dispSteps=5, dispKernel=c(1.0,0.4,0.16,0.06,0.03),
     barrier=”Barrier”, barrierType="strong", 
     iniMatAge=1, propaguleProd=c(0.01,0.08,0.5,0.92),
     lddFreq=0.1, lddMinDist=6, lddMaxDist=15, 
     simulName="MigClimTest", replicateNb=3, overWrite=TRUE, 
     testMode=FALSE, fullOutput=FALSE, keepTempFiles=FALSE)

Interpreting   MIGCLIM  's output

Hopefully your simulation completed successfully, and you should see the following message displayed 
in your R console:

Simulation MigClimTest completed successfully. Outputs stored in [...]/MigClimTest

where […] contains the path where your output directory is located. Looking inside the “MigClimTest” 
directory, you should find the following 12 files:

MigClimTest_params.txt : The “_params.txt” file contains a list of all the parameter values that were 
passed to the MigClim.migrate() function. You can always check this to 
remember which parameter values were used for a given simulation.

MigClimTest1_stats.txt,
MigClimTest2_stats.txt,
MigClimTest3_stats.txt,
MigClimTest_stats.txt :

The “_stats.txt” files contain the detail of how many cells were colonized 
or lost during each dispersal step. They also indicates the numbers of cells 
that would be occupied under the assumption of unlimited or no-dispersal 
for  each dispersal  step,  as  well  as  how many events  of  long distance 
dispersal  were  successful  at  each  dispersal  step.  More  detailed 
explanations on the content of the “_stats.txt” files are given later in this 
document.
Note  that  the  “MigClimTest1_stats.txt”,  “MigClimTest2_stats.txt”  and 
“MigClimTest3_stats.txt” files contain these information for  respectively 
the 3 replicates of  the simulation.  The “MigClimTest_stats.txt” contains 
the average values obtained from the replicates.

MigClimTest1_summary.txt,
MigClimTest2_summary.txt,
MigClimTest3_summary.txt,
MigClimTest_summary.txt : 

The  “_summary.txt”  files  contain  the  same  information  than  the 
“_stats.txt” files but, instead of having this information detailed for each 
dispersal step, these files only provide the totals over the entire simulation. 
The  “MigClimTest1_summary.txt”,  “MigClimTest2_summary.txt”  and 
“MigClimTest3_summary.txt”  contain  the  values  for  respectively  the  3 
replicates.  “MigClimTest_summary.txt”  contains  the  average  of  all 
replicates.

MigClimTest1_raster.asc,
MigClimTest2_raster.asc,
MigClimTest3_raster.asc :

These  files  are  ASCII  grid  raster  that  contain  the  final  state  of  the 
simulation. The values of the cell are coded so that it is possible to know 
which cell  was colonized (or  lost)  during which dispersal  step.  Detailed 
explanations on how to read the values are given later in this document. 
You can display any of these maps using the MigClim.plot() function.

Note: if you perform a simulation without replication then you will have only one “_stats.txt”, one  
“_summary.txt” and one “_raster.asc” file as output. If you perform a simulation with a larger  
number  of  replicates  than  3,  then  you  will  obtain  more  “_stats.txt”,  “_summary.txt”  and  
“_raster.asc”files.
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Understanding the   MIGCLIM   output “_raster.asc” files

As mentioned just above, the  MigClim.migrate() function will  output one (or several,  if  you chose 
more than 1 replication) ASCII grid files. These files have a name ending in “_raster.asc”. You can visualize 
them in R, but also in a variety of other GIS software (e.g. ArcGIS from ESRI).

To display a MIGCLIM output raster in R, you can use the MigClim.plot() function. Here is an example 
of how to display the “MigClimTest1_raster.asc” file that we obtained from our tutorial simulation:

MigClim.plot(asciiFile="MigClimTest/MigClimTest1_raster.asc",
             outDir="", fileFormat="inR", fullOutput=FALSE)

Copy/paste the above line in your R console and you should see the 
following image appear:

The map displays the projected distribution of our test species at 
the  end  of  the  simulation.  The  table  below  explains  the 
interpretation of the different cell values and their color coding. The 
colors indicated in brackets in the first column of the table refer to 
the  color  of  the  cells  when  displaying  a  map  using  the 
MigClim.plot() function.

Cell value Signification

0 [no color] Cells that have never been occupied and are unsuitable habitat at the end of the simulation. There are  
several reasons why a cell can remain non-colonized: 
     - The cell has remained unsuitable during the entire simulation.
     - The cell is part of a barrier.
     - The cell colonization has failed for dispersal-limitation related reasons.

1 (black) Cells  that  belong to  the species'  initial  distribution and that  have remained occupied during the entire  
simulation.

1 < value < 
30'000 [colored 
cells except for 
pink]

Positive values greater than 1 but smaller then 30'000 represent cells that have been colonized during the  
simulation and that remain occupied at the end of the simulation. The value of the cell allows to determine  
the dispersal step during which it was colonized using the following code: each environmental change step 
is given a value of 100 and each dispersal step a value of 1. Here are some examples:
     101 = 1st dispersal step of 1st environmental change step (1 × 1 + 1 × 100 = 101).
     102 = 2nd dispersal step of 1st environmental change step (2 × 1 + 1 × 100 = 102).
     504 = 4th dispersal step of 5th environmental change step (4 × 1 + 5 × 100 = 504).
     1003 = 3rd dispersal step of 10th environmental change step (3 × 1 + 10 × 100 = 101).

30'000 [pink] Cells that are potentially suitable (i.e. habitat is favorable) but that were not colonized due to dispersal  
limitations. These cells represent the difference between the unlimited dispersal scenario and the current  
simulation.

Value < 1 [grey] Negative values indicate cells that were once occupied but have become decolonized, because their habitat  
has  turned  unsuitable.  Their  absolute  value  allows  determining  the  exact  time  when  they  have  been 
decolonized using the same code as explained just above.
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Note: If you are running a simulation without environmental change, then there will be no negative  
values in the output.

Note: parameters of the MigClim.plot() function:
In the example above, the output ascii grid file was displayed in the R console because we set the  
parameter [fileFormat="inR"]. If you prefer to save the image directly as a “jpeg” or “png” file,  
you can do that by specifying [fileFormat="jpeg"] or [fileFormat="png"]. The file will be saved 
in the same directory as the “_raster.asc” file to which it corresponds. If you prefer to have the file  
saved in another directory then you can specify that in the [outDir] parameter (set outDir=”any 
output directory”).
The [asciiFile] parameter is where you enter the name of the “_raster.asc” ascii grid that you  
wish to display. If the file is not located in your current working directory, then you should give the  
relative  path  to  that  directory,  e.g.  asciiFile="MigClimTest/MigClimTest1_raster.asc".  
Finally, if you set  [fullOutput=TRUE], then you will get maps not only for the final state of your  
simulation, but also for every intermediate dispersal step of the simulation. Note that this later  
option  only  works  if  you  have  run  your  simulation  with  [fullOutput=TRUE] in  the 
MigClim.migrate() function (otherwise the required files will not have been produced).
The color coding of the pixels given by the MigClim.plot() function is explained in the table  
above.
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Interpretation of   MIGCLIM  's text file outputs

Now that we have looked at all the raster outputs we will delve into the text files outputs. The text files 
contain more information than the raster files, but that information is no longer spatially explicit.

“_stats.txt” output files
The “_stats.txt”  files  contain  the  complete  output  of  your  MIGCLIM simulation.  They  are  simple  tab 
delimited text files and can thus be opened with any basic text editor, or with a spreadsheet program 
such as OpenOffice/LibreOffice “Calc” or Microsoft “Excel”. The files can also be read as a table in R:

statFile <- read.table("MigClimTest/MigClimTest_stats.txt", h=TRUE)
statFile
envChgStep dispStep stepID univDispersal noDispersal  occupied    absent stepColonized stepDecolonized stepLDDsuccess
         0        0      1         12914       12914  12914.00  117326.0          0.00               0           0.00
         1        1    101         13933       12896  13605.33  116634.7        709.33              18           3.33
         1        2    102         13933       12896  13651.67  116588.3         46.33               0           0.67
         1        3    103         13933       12896  13681.33  116558.7         29.67               0           0.67
         1        4    104         13933       12896  13721.00  116519.0         39.67               0           0.67
         1        5    105         13933       12896  13751.00  116489.0         30.00               0           1.33
         2        1    201         14576       12883  14151.00  116089.0        413.00              13           1.33
         2        2    202         14576       12883  14200.67  116039.3         49.67               0           1.33
         2        3    203         14576       12883  14236.33  116003.7         35.67               0           0.67
         2        4    204         14576       12883  14277.67  115962.3         41.33               0           1.00
         2        5    205         14576       12883  14308.00  115932.0         30.33               0           1.00
         3        1    301         15066       12868  14653.00  115587.0        360.00              15           2.00
         3        2    302         15066       12868  14707.67  115532.3         54.67               0           1.33
         3        3    303         15066       12868  14741.67  115498.3         34.00               0           1.00
         3        4    304         15066       12868  14769.33  115470.7         27.67               0           0.33
         3        5    305         15066       12868  14784.67  115455.3         15.33               0           1.00
         4        1    401         15722       12838  15208.67  115031.3        454.00              30           3.00
         4        2    402         15722       12838  15255.33  114984.7         46.67               0           2.00
         4        3    403         15722       12838  15283.00  114957.0         27.67               0           1.00
         4        4    404         15722       12838  15310.00  114930.0         27.00               0           0.33
         4        5    405         15722       12838  15336.00  114904.0         26.00               0           1.00
         5        1    501         16340       12775  15747.00  114493.0        474.00              63           1.67
         5        2    502         16340       12775  15785.33  114454.7         38.33               0           1.33
         5        3    503         16340       12775  15818.00  114422.0         32.67               0           2.00
         5        4    504         16340       12775  15844.33  114395.7         26.33               0           1.00
         5        5    505         16340       12775  15866.00  114374.0         21.67               0           0.00

The first line of the table represents the initial state of the simulation. Each subsequent line represent 
the state of the simulation at the end of each dispersal step (the table has thus 26 rows: the initial state 
+ 25 dispersal steps). The last row of the table (in this case after 25 dispersal steps) represent the final 
state of the simulation.

The following table will give you a detailed description of what the values of each column mean:

Column Name Description

 envChgStep Number  of  the  environmental  change  step.  In  the  case  of  our  simulation,  we  have  implemented  
environmental change every 5 dispersal steps, therefore you can see that there are always 5 successive lines  
with the same “envChgStep” value.
Note: The fist line has a “envChgStep” value of “0” because this line contains the information regarding the  
initial distribution of the species, before the simulation was started.

 dispStep Number of the dispersal step. In the case of our simulation, we have implemented 5 dispersal steps within  
each environmental change step, and therefore you can see that this column always repeats the numbers 1  
to 5 every 5 lines.
Note: The fist line has a “dispStep” value of “0” because this line contains the information regarding the  
initial distribution of the species, before the simulation was started.

 stepID This column indicates the “coded” value associated to each dispersal step. The “stepID” value of each line is  
computed as follows: stepID = envChgStep number * 100 + dispStep number (e.g. line 2 has a value of 101,  
that is computed as follows: 101 = 1 * 100 + 1). The “stepID” values correspond to the pixel values in the  
output ascii grid files (they use the same coding system).
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The first line of this column contains the number “1” indicating that this line contains the information about  
the initial distribution of the species, before the simulation was started.

 univDispersal This column contains the number of cells that would be occupied in the case of the “Unlimited Dispersal”  
scenario (i.e. this assumes that the species has unlimited dispersal ability and colonizes any cells that is  
suitable, regardless of its location) at the end of each dispersal step. The first line of this column contains  
the number of cells of the species' initial distribution.
Because we have implemented a change in the habitat suitability map every 5 years, you will notice that  
values in this column only changes every 5 th  line. This makes sense, because under the unlimited dispersal  
scenario, all cells that are suitable are colonized immediately when they become suitable. Thus, all suitable  
cells  become colonized during the first  dispersal  step when the habitat  becomes suitable  and there is  
nothing left to colonize during the remaining four dispersal steps of the environmental change step.

 noDispersal This column contains the number of cells that would be occupied in the case of the “No Dispersal” scenario  
(i.e. a scenario in which we consider the dispersal of a species as null) at the end of each dispersal step. The  
first line of this column contains the number of cells of the species' initial distribution.

Because we have implemented change in the habitat suitability every 5 years, you will notice that values in  
this column only change every 5th line. This makes sense, because under the no dispersal scenario, all cells  
are lost immediately when they turn unsuitable. Thus, all cells that will be lost due to environmental change  
are lost during the first dispersal step when the habitat becomes unsuitable and nothing more can be lost  
during the remaining four dispersal steps.

Note: by definition, under the “No Dispersal” scenario, a species can never increase in distribution. Thus the  
values in this column will only decrease, and never increase.

 occupied Number of cells that are in an “occupied” state at the end of the given dispersal step.

 absent Number of cells that are in an “unoccupied” state at the end of the given dispersal step.

 stepColonized Number of cells that turned into “occupied” state (= number of cells that got colonized) during the given  
dispersal step.

 stepDecolonized Number of cells that turned into “unoccupied” state during the given dispersal step.

 stepLDDsuccess Number of successful LDD events (i.e. LDD events that led to the colonization of a cell) that occurred during  
the given dispersal step.

“_summary.txt” output files
As their name suggests, “_summary.txt” files contain a summary of each simulation's output. Overall 
they give similar information as found in the “_stats.txt” files, except that they do not give the details for 
each dispersal step but only for the final state of the simulation.

Again, the “_summary.txt” files are tab delimited text files and can be read with any text or spreadsheet 
editor. You can also load them into R as tables:

summaryFile <- read.table("MigClimTest/MigClimTest_summary.txt", h=TRUE)
summaryFile
    simulName iniCount noDispCount univDispCount occupiedCount absentCount totColonized totDecolonized
 MigClimTest1    12914       12775         16340         15881      114359         3106            139
 MigClimTest2    12914       12775         16340         15877      114363         3102            139
 MigClimTest3    12914       12775         16340         15840      114400         3065            139
  MigClimTest    12914       12775         16340         15866      114374         3091            139

totLDDsuccess runTime
           26    3.00
           35    2.00
           32    3.00
           31    2.67
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Notice that this file has 4 rows: the first 3 rows contain the values for each of our simulation replicates 
(we choose to do 3 replicates), while the last row gives the average of the 3 replicates.

If you chose to do a simulation without replication [replicateNb=1] then the “_summary.txt” file will 
have only 1 row. If you choose to do more than one replicate, then the”_summary.txt” output file will 
contain [replicateNb]+1 rows (the results for each replicate plus the average).

The following table gives a detailed description of each column of a “_summary.txt” file:

Column Name Description

simulName Name of the simulation.

iniCount Number of cells of the species' initial distribution.

noDispCount Number of cells colonized at the end of the simulation under the "No Dispersal" scenario (i.e. this assumes  
that the species cannot disperse and hence cannot colonize any new habitat).

univDispCount Number of cells colonized at the end of the simulation under the "Unlimited Dispersal" scenario (i.e. this  
assumes that the species has unlimited dispersal ability and colonizes any cells that is suitable, regardless  
of its location).

occupiedCount Number of cells in an "occupied" state at the end of the simulation (i.e. the potential distribution of your  
species given the implemented dispersal restrictions).

absentCount Number of cells in "unoccupied" state at the end of the simulation.

totColonized Total number of cells colonized during the entire simulation.

totDecolonized Total number of cells lost due to habitat turning unfavorable during the entire simulation.

totLDDsuccess Total number of successful LDD events (i.e. LDD events that led to the colonization of a cell) that occurred  
during the entire simulation.

runTime Total run time of simulation in seconds (rounded to the nearest second, so if the simulation takes less than  
1 second you might see a value of 0).

“_params.txt” files
The “_params.txt” file  simply contains a log of  all  the parameter inputs that were used for  a given 
simulation, i.e. all the inputs values of the  MigClim.migrate() function. These files can be helpful in 
case you forgot which parameters values were used in a simulation. Each row of the file contains one 
parameter.
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