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1. What does REndo do

REndo is the first R package to implement the most recent internal instrumental variable methods to address
endogeneity. The package includes implementations of the latent instrumental variable approach (Ebbes et
al., 2005), the joint estimation using copula (Park and Gupta, 2012), the higher moments method (Lewbel,
1997) and the heteroskedastic error approach (Lewbel, 2012). To model hierarchical data (not cross-classified)
such as students nested within classrooms, nested within schools, REndo includes the multilevel GMM
estimation proposed by Kim and Frees (2007). All approaches assume a continuous dependent variable.

Internal instrumental variable approaches, also called instrument free methods, have been proposed
as alternative to external instrumental variable approaches (like IV regression) to address endogeneity concerns,
when valid, strong instruments are difficult to find.

The only alternative to REndo we could find in R is the ivlewbel package that implements the heteroskedastic
errors method proposed by Lewbel (2012).

2. Short Description of REndo’s Functions
2.1 Instrument Free Methods for Non-Hierarchial Data

The four instrument free methods presented in this section share the same underlying model presented in
equations (1) and (2) below. The specific characteristics of each method are discussed in the subsequent
sections.

Consider the model:

Yi=pFo+ 1P+ X+ (1) (1)

where t = 1,..,T indexes either time or cross-sectional units, Y; is a 1 x 1 response variable, X; isa k x n
exogenous regressor, P; is a k x 1 continuous endogenous regressor, €; is a structural error term with mean
zero and E(e?) = 02, o and /3 are model parameters. The endogeneity problem arises from the correlation of
P, and €. As such:

Po=~vZ;+vy  (2) (2)

where Z; is a [ x 1 vector of internal instrumental variables, and v; is a random error with mean zero,
E(?) = 02 and E(ev) = 0.,. Z; is assumed to be stochastic with distribution G and v, is assumed to have
density h(:).

The latent instrumental variables and the higher moments models assume Z; to be uncorrelated
with the structural error, which is similar to the exclusion restriction assumption for observed instrumental
variables methods. Moreover, Z; is also assumed unobserved. Therefore, Z; and v; cannot be identified
without distributional assumptions.



The distributions of Z; and v; should be specified such that two conditions are met: (1) endogeneity of P; is
corrected, and (2) the distribution of P; is empirically close to the integral that expresses the amount of
overlap of Z as it is shifted over v (= the convolution between Z; and v;). When the density A(-) is chosen to
be normal, then G cannot be normal because the parameters would not be identified (Ebbes et al., 2005).
Consequently, in the LIV model the distribution of Z; is discrete while in the higher moments and joint
estimation with copulas methods, the distribution of the internal instruments is taken to be skewed.

Latent Instrumental Variable Approach

Ebbes et al. (2005) propose the latent instrumental variables approach whose model is described in equations
(1) and (2) above. A particular characteristic of this approach is that the internal instrumental variables Z;
are assumed unobserved, discrete and exogenous, with an unknown number of groups m, while v is a
vector of group means.

Identification of the parameters relies on the distributional assumptions of the latent instruments, Z;, as well
as that of the endogenous regressor, P;. Specifically:

e P, should have a non-Gaussian distribution.
e Z; should be discrete and have at least two groups with different means.

A continuous distribution for the instruments leads to an unidentified model, while a normal distribution of
the endogenous regressor gives rise to inefficient estimates.

Gaussian Copula Correction Approach

Park and Gupta (2012) propose a method that allows for the joint estimation of the continuous endogenous
regressor and the error term using Gaussian copulas (A copula is a function that maps several conditional
distribution functions (CDF) into their joint CDF).

The underlying idea is that using information contained in the observed data, one selects marginal distributions
for the endogenous regressor and the structural error term, respectively. Then, the copula model enables the
construction of a flexible multivariate joint distribution allowing a wide range of correlations between the two
marginals.

The method allows both continuous and discrete endogenous regressors. In the case of one continuous
endogenous regressor, the model is estimated using maximum likelihood. Otherwise, an alternative
approach, still based on Gaussian copulas, but using an augmented OLS estimation is being used. The
assumption of a skewed endogenous regressor is maintained here as well for the recovery of the correct
parameter estimates.

The structural error €; is assumed to have a normal marginal distribution. The marginal distribution of the
endogenous regressor P, is obtained using the Epanechnikov kernel density estimator, as below:

fz(p>=T1_béK(p;Pt> ®)

where P; is the endogenous regressor, K (x) = 0.75- (1 — 22) - I(||z|| <= 1) and the bandwidth b is equal to
b=0.9 T~/ . min(s,IQR/1.34), as proposed by Silvermann (1969). IQR is the interquartile range while s
is the data sample standard deviation and T is the number of time periods observed in the data.

Higher Moments Approach

The higher moments approach proposed by Lewbel (1997) helps identify structural parameters in regression
models with endogeneity caused by measurement error. Identification is achieved by exploiting third moments
of the data, with no restrictions imposed on the distribution of hte error terms.



The following instruments are constructed and can be used with two-stage least squares estimation to obtain
consistent estimates:

qit = (Gt — G) (3a)
g2t = (Gt — é)(Pt - P) (3b)
g3t = (Gt — ?)(YE -Y) (3¢) (4)
e =Y =Y)(P—P)  (3d)
qs¢ = (P, — P)? (3e)
gor = (Vi = Y)? (3/)

Here, Gy = G(X}) for any given function G that has finite third own and cross moments and X are all the
exogenous in the model. G is the sample mean of G;. The same rule applies also for P; and Y;.

The instruments in equations (3e) and (3f) can be used only when the measurement and the structural errors
are symmetrically distributed. Otherwise, the use of the instruments does not require any distributional
assumptions for the errors. Given that the regressors G(X) = X are included as instruments, G(X) should
not be linear in X in equation (3a) above.

Since the constructed instruments come along with very strong assumptions, one of their best uses is to
provide over-identifying information. The over-identification can be used to test validity of a potential outside
instrument, to increase efficiency, and to check for robustness of parameter estimates based on alternative
identifying assumptions (Lewbel 1997).

Heteroskedastic Errors Approach

The heteroskedastic errors method identifies structural parameters in regression models with endogenous
regressors by means of variables that are uncorrelated with the product of heteroskedastic errors. The
instruments are constructed as simple functions of the model’s data. The method can be applied when no
external instruments are available or to supplement external instruments to improve the efficiency of the IV
estimator (Lewbel, 2012).

Consider the model in equations (1) and (2). This approach assumes that:

. E(XG) = O

° E(XV) = O

o cov(Z,ev) = 0.

e the errors, € and v, may be correlated with each other.

Structural parameters are identified by an ordinary two stage least squares regression of Y on X and P,
using X and [Z — E(Z)]v as instruments. A vital assumption for identification is that cov(Z,v?) # 0.

The strength of the instrument is proportional to the covariance between (Z — Z)v and v, which corresponds
to the degree of heteroskedasticity of v with respect to Z (Lewbel, 2012). This assumption can be empirically
tested. If it is zero or close to zero, the instrument is weak, producing imprecise estimates, with large standard
errors. Under homoskedasticity, the parameters of the model are unidentified. But, identification is achieved
in the presence of heteroskedasticity related to at least some elements of X.

2.2 Instrument Free Methods for Hierarchial Data (Not cross-classified)

Like in single-level regression, also in multilevel models endogeneity is a concern. The additional problem is
that in multilevel models there are multiple independent assumptions involving various random components
at different levels. Any moderate correlation between some predictors and a random component or error
term, can result in a significant bias of the coefficients and of the variance components.



Exploiting the hierarchical structure of multilevel data, Kim and Frees (2007) propose a generalized method of
moments technique for addressing endogeneity in multilevel models without the need of external instrumental
variables. This approach uses both, the between and within variations of the exogenous variables, but only
assumes the within variation of the variables to be endogenous.

The model comes with a set of assumptions such as:
e the errors at each level are normally distributed and independent of each other.
 the slope variables are exogenous.
e level-1 structural error is uncorrelated with any of the regressors.

If the last assumption is not met, additional, external instruments are necessary.

Consider a hierarchical model with three levels like below:

Yest = chstﬁcls + Xclstﬁl + 6ist (5)
s = ZaBi 4 X2 P+ €l (6)
B2 = XIBs+e. (7)

Given the set of disturbance terms at different levels, there exist a couple of possible correlation patterns
that could lead to biased results:

o errors at the higher two levels (2, and €3) are correlated with some of the regressors,
o only third level errors (€2) are correlated with some of the regressors,
e an intermediate case, where there is concern with the higher level errors, but there is not enough

information to estimate level 3 parameters.

The ingenious approach proposed by Kim and Frees (2007) lies in the fact that when all variables are assumed
exogenous, the proposed estimator equals the random effects estimator. When all covariates are assumed
endogenous, it equals the fixed effects estimator.

In facilitating the choice of the estimator to be used for the given data, Kim and Frees (2007) also propose
an omitted variable test (which is reported by the summary function after the estimation using multilevelIV()
function in REndo). This test is based on the Hausman-test (Hausmann, 1978) for panel data. The omitted
variable test allows the comparison of a robust estimator and an estimator that is efficient under the null
hypothesis of no omitted variables, and also the comparison of two robust estimators at different levels.

3. Using REndo

REndo encompasses five functions that allow the estimation of linear models with one or more endogenous
regressors using internal instrumental variables. Depending on the assumptions of the model and the structure
of the data, single or multilevel, the researcher can use one of the following functions:

1. latentIV() - implements the latent instrumental variable estimation as in Ebbes (2005). The endogenous
variable is assumed to have two components - a latent, discrete and exogenous component with an
unknown number of groups and the error term that is assumed normally distributed and correlated with
the structural error. The method supports only one endogenous, continuous regressor and no additional
explanatory variables. The latent instrumental variable function has the following syntax:

latentIV(y ~ P, data, start.params=c())

The first argument is the formula of the model to be estimated, y ~ P, where y is the response and
P is the endogenous regressor. The second argument is the name of the dataset used and the last one,
start.params=c(), which is optional, is a vector with the initial parameter values. When not indicated, the
initial parameter values are taken to be the coefficients returned by the OLS estimator of y on P.



2. copulaCorrection() - models the correlation between the endogenous regressor and the structural
error with the use of Gaussian copula (Park and Gupta, 2012). The endogenous regressor can be
continuous or discrete. The method also allows estimating a model with more than one endogenous
regressor, either continuous, discrete or a mixture of the two. However, the endogenous regressors
cannot have a binomial distribution, due to parameter identification problems.

In the case of only one, continuous endogenous regressor, the method uses maximum likelihood estimation.
In the case of a discrete endogenous regressor, or when several endogenous regressors are suspected, the
estimation is carried out using an augmented OLS estimation which is nonetheless based on Gaussian copulas.

The copula correction function has the following syntax:

copulaCorrection( y ~ X1 + X2 + P1 + P2 | continuous(P1) + discrete(P2),
data, start.params=c(), num.boots=250, optimx.args=1list())

The first argument is a two-part formula of the model to be estimated, with the second part of the RHS
defining the endogenous regressor, here continuous(P1) + discrete(P2). The second argument is the
name of the data, the third argument of the function, start.params, is optional and represents the initial
parameter values supplied by the user (when missing, the OLS estimates are considered); the fourth argument,
num.boots, also optional, is the number of bootstraps to be performed (the default is 250). The fifth
argument,** optimx.args™* is used in order to choose the optimisation algorithm and the maximum number
of iterations for the selected algorithm. The default is the Nelder-Mead algorithm with 100.000 iterations.
Transformation of explanatory variables, such as I(X), In(X) are supported.

3. higherMomentsIV() - implements the higher moments approach described in Lewbel (1997) where
instruments are constructed by exploiting higher moments of the data, under strong model assumptions.
The function allows just one endogenous regressor.

The higherMomentsIV() function has a four-part formula, with the following specification:

higherMomentsIV(y ~ X1 + X2 + P | P | IIV (iiv = gp , g= x2, X1, X2) +
IIV (iiv = yp) | Z1, data)

where: y is the response; the first RHS of the formula, X1 + X2 4 P, is the model to be estimated; the
second part, P, specifies the endogenous regressors; the third part, ITV (), specifies the format of the internal
instruments; the fourth part, Z1, is optional, allowing the user to add any external instruments available.

Regarding the third part of the formula, ITV(), it has a set of three arguments:

e iiv - specifies the form of the instrument,

o g - specifies the transformation to be done on the exogenous regressors,

« the set of exogenous variables from which the internal instruments should be built (any subset of the
exogenous variables).

A set of six instruments can be constructed, which should be specified in the iiv argument of IIV():

e g-for (G; — @),

+ gp - for (G; — G)(P; — P),
« gy -for (Gi = G)(Y; - Y),
o yp-for (Y} =Y)(P - P),
e p2-for (P, — P)?,

e y2-for (Y; —Y)2.

where G = G(X;) can be either 22, 23, In(z) or 1/x and should be specified in the g argument of the third
RHD of the formula, as x2, x3, Inx or 1/x. In case of internal instruments built only from the endogenous
regressor, e.g. p2, or from the response and the endogenous regressor, like for example in yp, there is no
need to specify g or the set of exogenous regressors in the IIV() part of the formula. The function returns
a set of tests for checking the validity of the instruments and the endogeneity assumption. Here as well,
transformation of explanatory variables, such as I(X), In(X), are supported.



4. hetErrorsIV () - uses the heteroskedasticity of the errors in a linear projection of the endogenous
regressor on the other covariates to solve the endogeneity problem induced by measurement error, as
proposed by Lewbel (2012). The function allows more than one endogenous regressors.

The function hetErrorsIV() has a four-part formula specification:
hetErrorsIV(y ~ X1 + X2 + X3 + P | P | IIV(X1,X2) | Z1, data)

where: y is the response variable, X1 + X2 + X3 4 P represents the model to be estimated; the second part,
P, specifies the endogenous regressors, the third part, ITV (X1, X2), specifies the exogenous heteroskedastic
variables from which the instruments are derived, while the final part Z1 is optional, allowing the user
to include additional external instrumental variables. Like in the higher moments approach, allowing the
inclusion of additional external variables is a convenient feature of the function, since it increases the efficiency
of the estimates. Transformation of the expalnatory variables, such as I(X), In(X) are possible both in the
model specification as well as in the ITV() specification.

5. multilevellV () - implements the instrument free multilevel GMM method proposed by Kim and Frees
(2007) where identification is possible due to the different levels of the data. Endogenous regressors at
different levels can be present. The function comes along a built in omitted variable test, which helps
in deciding which model is robust to omitted variables at different levels.

The multilevelIV () function allows the estimation of a multilevel model with up to three levels, and it has
a syntax in the spirit of the lmer() function:

multilevelIV(y ~ X11 + X12 + X21 + X22 + X23 + X31 + X33 + X34 +
(1]CID) + (1]SID) | endo(X12), data)

The call has a two-part formula and an argument for data specification. In the formula, the first part is the
model specification, with fixed and random parameter specification, and the second part which specifies the
regressors assumed endogenous, here X12. The function returns the parameter estimates obtained with fixed
effects, random effects and the GMM estimator proposed by Kim and Frees (2007), such that a comparison
across models can be done.

4. Examples using Real Data

Using the publicly available dataset CASchools which comes with the AER. package, the results of imple-
menting the instrument-free methods are presented.

The data contain information on test performance, school characteristics and student demographic backgrounds
for schools in different districts in California. The data are aggregated at the district level, across different
California counties. In trying to answer the question of how does student/teacher ratio affects the
average reading score, we use as covariates the following variables:

o student/teacher ratio (students/teachers),

 lunch (percent qualifying for reduced-price lunch),

o english(percent of English learners),

« calworks(percent qualifying for income assistance),

o income(district average income in USD 1.000),

o grades (a dummy variable if the grade is equal to KK-08)
o county (dummy for county).

The student/teacher ratio might be endogenous here since it could be correlated with unobserved factors
such as teacher salaries or teacher working conditions, which are both unobserved, but can affect the reading
score of the students. Having access to an additional variable, namely expenditure (the expenditure per
student aggregated at district level), we can use it as external instrumental variable. This is possible since it
is correlated with the student/teacher ratio (a correlation of —0.61), but does not directly explain the reading
score tests of the students. Therefore, we can apply both external(two-stage least squares) and internal
instrumental variables techniques to estimate the model and compare their performance.



In orde to have a reference point, we apply OLS on the above data:

library (AER)

library (REndo)

set.seed(421)

data("CASchools")

school <- CASchools

school$stratio <- with(CASchools, students/teachers)

ml.ols <- Ilm(read ~ stratio + english + lunch + grades + income + calworks + county,
data=school)

summary (ml.ols)

#>

#> Call:

#> Ilm(formula = read ~ stratio + english + lunch + grades + income +
#> calworks + county, data = school)

#>

#> Restiduals:

#> Min 10 Median 3@ Mazx

#> -27.973 -3.883 0.000 4.228 25.466

#>

#> Coefficients:

#> Estimate Std. Error t wvalue Pr(>/t/)

#> (Intercept) 683.45306 9.56214 T1.475 < 2e-16 **x*
#> stratio -0.30036 0.25797 -1.164 0.24505

#> english -0.20550 0.03765 -5.458 8.87e-08 x**
#> lunch -0.38684 0.03701 -10.452 < 2e-16 x**
#> gradesKK-08 -1.91291 1.35865 -1.408 0.15999

#> income 0.71615 0.09833  7.283 1.99e-12 ***
#> calworks -0.05273 0.06155 -0.857 0.39212

#> countyButte -5.64523 8.31528 -0.679 0.49763

#> countyCalaveras -4.95294 10.70095 -0.463 0.64374

#> countyContra Costa -12.20339 8.06121 -1.514 0.13092

#> countyEl Dorado -9.50023 7.91101 -1.201 0.23057

#> countyFresno -12.05892 7.95612 -1.516 0.13046

#> countyGlenn 2.19167 8.79250 0.249 0.80329

#> countyHumboldt -3.08632 7.83011 -0.394 0.69369

#> countyImperial -13.00591 8.23206 -1.580 0.11498

#> countyInyo -5.54425 10.67474 -0.519 0.60381

#> countyKern -15.48627 7.75823 -1.996 0.04666 *
#> countyKings -9.87188 8.01894 -1.231 0.21908

#> countyLake -10.54766 9.45291 -1.116 0.26523

#> countyLassen -6.39578 8.30968 -0.770 0.44198

#> countyLos Angeles -13.52654 7.75674 -1.744 0.08202 .
#> countyMadera -9.12052 8.30801 -1.098 0.27301

#> countyMarin -9.07511 8.03938 -1.129 0.25970

#> countyMendocino -12.35672  10.71474 -1.153 0.24956

#> countyMerced -10.94356 7.96004 -1.375 0.17002

#> countyMonterey -15.56170 8.13875 -1.912 0.05664 .
#> countylNevada =7.08341 7.95868 -0.890 0.37403

#> countyOrange -12.87871 7.96190 -1.618 0.10662

#> countyPlacer -8.40483 7.89059 -1.065 0.28750

#> countyRiverside -17.1567 8.54321 -2.008 0.04535 *



#> countySacramento -16.65124 8.25221 -2.018 0.04434 *
#> countySan Benito -22.23391 8.70515 -2.554 0.01105 *
#> countySan Bernardino -15.72159 7.96618 -1.974 0.04918 *
#> countySan Diego -8.66640 T.75449 -1.118 0.26447
#> countySan Joaquin -21.38580 8.16483 -2.619 0.00918 *x*
#> countySan Luis Obispo -8.72532 9.26257 -0.942 0.34681
#> countySan Mateo -14.77321 7.78241 -1.898 0.05844 .
#> countySanta Barbara -9.39084 7.92940 -1.184 0.23705
#> countySanta Clara -11.73141 7.76056 -1.512 0.13147
#> countySanta Cruz -4.09549 8.11085 -0.505 0.61390
#> countyShasta -5.89520 7.90799 -0.745 0.45646
#> countySiskiyou -7.59588 8.11768 -0.936 0.35003
#> countySonoma -8.44710 7.71614 -1.095 0.27435
#> countyStanislaus -10.51403 8.07918 -1.301 0.19394
#> countySutter -16.31996 8.18308 -1.994 0.04685 *
#> countyTehama -6.53982 8.08240 -0.809 0.41895
#> countyTrinity 14.21480 9.32882 1.524 0.12843
#> countyTulare -12.82005 7.80790 -1.642 0.10146
#> countyTuolumne -8.09766 8.21279 -0.986 0.32479
#> countylVentura -13.32761 8.03568 -1.659 0.09806 .
#> countyYuba 2.51893 9.31943 0.270 0.78709
#> ——

#> Signif. codes: O '¥¥x' 0.001 '¥x' 0.01 '¥' 0.05 '.' 0.1 ' ' 1
#>

#> Restdual standard error: 7.515 on 369 degrees of freedom

#>
#>

Multiple R-squared: 0.877, Adjusted R-squared: 0.8603
F-statistic: 52.62 on 50 and 369 DF, p-value: < 2.2e-16

The OLS coefficient estimate for the student/teacher ratio is -0.30. Now, using expenditure as external IV,
we can estimate a two-stage least squares model, using ivreg():

m2.2sls <- ivreg(read ~ stratio +
county| expenditure +
county , data=school)

english + lunch + grades + income + calworks +
english + lunch + grades + income + calworks +

summary (m2.2sls)

#>

#> Call:

#> dvureg(formula = read ~ stratio + english + lunch + grades + income +
#> calworks + county | expenditure + english + lunch + grades +
#> income + calworks + county, data = school)

#>

#> Restiduals:

#> Min 1§  Median 30Q Mazx

#> -29.0462 -3.7187 0.0505 @ 4.1665 25.8737

#>

#> Coefficients:

#> Estimate Std. Error t wvalue Pr(>/t/)

#> (Intercept) 700.47892  13.58064 51.579 < 2e-16 xxx
#> stratio -1.13674 0.53534 -2.123 0.0344 *

#> english -0.21397 0.03848 -5.561 5.16e-08 *xx*
#> lunch -0.39384 0.03774 -10.437 < 2e-16 **x*
#> gradesKK-08 -1.89228 1.37792 -1.373 0.1705

#> income 0.62488 0.11199  5.580 4.67e-08 xxx*



#> calworks -0.04951 0.06244 -0.793  0.4284
#> countyButte =-5.52747 8.43314 -0.655 0.5126
#> countyCalaveras -2.90824 10.91220 -0.267 0.7900
#> countyContra Costa -10.58271 8.22516 -1.287 0.1990
#> countyEl Dorado -8.72667 8.03452 -1.086 0.2781
#> countyFresno -11.82403 8.06971 -1.465  0.1437
#> countyGlenn 4.49013 9.00875 0.498 0.6185
#> countyHumboldt -3.42491 7.94310 -0.431  0.6666
#> countyImperial -10.73839 8.44397 -1.272  0.2043
#> countylInyo -3.82602 10.86816 -0.352  0.7250
#> countyKern -14.23285 7.89903 -1.802 0.0724 .
#> countyKings -8.71091 8.15816 -1.068 0.2863
#> countyLake -10.67969 9.58689 -1.114  0.2660
#> countyLassen —4.43217 8.49825 -0.522 0.6023
#> countyLos Angeles -10.86844 8.00527 -1.358 0.1754
#> countyMadera -8.40685 8.43493 -0.997 0.3196
#> countyMarin -8.19774 8.16779 -1.004 0.3162
#> countyMendocino -10.97330  10.89371 -1.007 0.3144
#> countyMerced -9.64042 8.10536 -1.189 0.2351
#> countyMonterey -13.35809 8.34508 -1.601 0.1103
#> countylNevada =7.04427 8.07127 -0.873 0.3834
#> countyOrange -10.07189 8.22523 -1.225 0.2215
#> countyPlacer -6.81552 8.05126 -0.847 0.3978
#> countyRiverside -14.86610 8.75796 -1.697 0.0905 .
#> countySacramento -16.10164 8.37465 -1.923 0.0553 .
#> countySan Benito -22.27075 8.82830 -2.523 0.0121 *
#> countySan Bernardino -13.60833 8.16459 -1.667 0.0964 .
#> countySan Diego =7.10461 7.91238 -0.898  0.3698
#> countySan Joaquin -20. 52627 8.29421 -2.475 0.0138 *
#> countySan Luis Obispo -7.89207 9.40509 -0.839 0.4019
#> countySan Mateo -13.73300 7.91382 -1.735 0.0835 .
#> countySanta Barbara =7.38357 8.11930 -0.909 0.3637
#> countySanta Clara -9.63336 7.95705 -1.211 0.2268
#> countySanta Cruz -2.92678 8.25142 -0.355  0.7230
#> countyShasta -5.58137 8.02175 -0.696  0.4870
#> countySiskiyou -10.04256 8.34509 -1.203 0.2296
#> countySonoma -8.17297 7.82677 -1.044  0.2971
#> countyStanislaus -9.20225 8.22613 -1.119 0.2640
#> countySutter -14.89933 8.33665 -1.787 0.0747 .
#> countyTehama -5.90143 8.20446 -0.719  0.4724
#> countyTrinity 13.98620 9.46162 1.478 0.1402
#> countyTulare -11.13579 7.97399 -1.397 0.1634
#> countyTuolumne -8.75429 8.33701 -1.050 0.2944
#> countyVentura -10.36121 8.31598 -1.246 0.2136
#> countyYuba 3.28346 9.46088  0.347 0.7287
#> -—

#> Signif. codes: 0 '#*x' 0.001 '¥x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Restdual standard error: 7.621 on 369 degrees of freedom
#> Multiple R-Squared: 0.8735, Adjusted R-squared: 0.8564
#> Wald test: 51.23 on 50 and 369 DF, p-value: < 2.2e-16

The external IV method returns an estimate for the assumed endogenous regressor equal to -1.13, very
different from the OLS estimate.



Next, we estimate the same model using the instrument-free methods from REndo. The latent instru-
mental variables approach will probably return a coefficient very different from the other methods, given
that the only regressor allowed is the endogenous one. Let’s see:

m3.1liv <- latentIV(read ~ stratio, data=school)

#> No start parameters were given. The linear model read ~ stratio is fitted to derive them.

#> The start parameters c((Intercept)=706.449, stratio=-2.621, pt11=19.64, pi2=21.532, thetab=1, thetab=
summary (m3.1iv)

#>

#> Call:

#> latentIV(formula = read ~ stratio, data = school)
#>

#> Coefficients:

#> Estimate Std. Error z-score Pr(>/z/)
#> (Intercept) 728.581 331.182 2.200 0.0284 *
#> stratio -3.749 16.865 -0.222 0.8242
#> ——

#> Signif. codes: O 'k¥¥x' 0.001 '¥x' 0.01 '¥' 0.05 '.' 0.1 ' ' 1
#>

#> Further parameters estimated during model fitting:
#> pil pi2 thetab theta6 theta7 theta8

#> 19.6378 7.3628 19.5503 0.2032 1.8768 29.0726

#> (see help file for detatils)

#>

#> Initial parameter wvalues:

#> (Intercept)=706.4485 stratio=-2.621 p11=19.6404 pi2=21.5322
#> thetab=1 theta6=1 theta7=1 theta8=0

#>

#> The value of the log-likelihood function: 2705.969

#> AIC: -5395.937 , BIC: -5363.615

#> KKT1: TRUE KKT2: FALSE Optimz Convergence Code: O

Indeed, the value retured is equal to -3.75. The latentIV () function returns, besides the coefficient estimates,
also the initial parameter values used in the maximum likelihood optimisation and the AIC and BIC. The
latter two can also be accessed calling AIC(ma3.liv) and BIC(m3.liv). The function also returns the fitted
values and the residuals, as well as the confidence interval for the coefficients.

Next, we call the copulaCorrection() function:

set.seed(110)

m4.cc <- copulaCorrection(read ~ stratio + english + lunch + calworks +
grades + income + county | continuous(stratio), data= school,
optimx.args = list(method=c("Nelder-Mead"), itnmax= 60000),
verbose = FALSE)

summary (mé.cc)

#>

#> Call:

#> copulaCorrection(formula = read ~ stratio + english + lunch +

#> calworks + grades + income + county | continuous(stratio),

#> data = school, verbose = FALSE, optimz.args = list(method = c("Nelder-Mead"),
#> itnmaz = 60000))

#>

#> Coefficients:

#> Estimate Std. Error z-score Pr(>/z/)
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#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

(Intercept) 684
stratio -0
english -0
lunch -0
calworks -0
gradesKK-08 -1
tncome 0
countyButte -6
countyCalaveras 0
countyContra Costa -11
countyEl Dorado -8
countyFresno -11
countyGlenn 1
countyHumboldt -2
countyImperial -11
countylnyo 3
countyKern -15
countyKings -9
countyLake -9
countylLassen -5
countylos Angeles -13
countyMadera =7
countyMarin -6
countyMendocino =7
countyMerced -10
countyMonterey -14
countylNevada -8
countyOrange -11
countyPlacer =7
countyRiverside -15
countySacramento -16.
countySan Benito 22
countySan Bernardino -—14.
countySan Diego e
countySan Joaquin -20.
countySan Luis Obispo —4.
countySan Mateo -12.
countySanta Barbara =7
countySanta Clara -9
countySanta Cruz -3
countyShasta -5
countySiskiyou =7
countySonoma =7
countyStanislaus -9
countySutter -15
countyTehama -6
countyTrinity 15
countyTulare -13
countyTuolumne -9
countylVentura -12
countyYuba 2.
Signif. codes: 0 '*¥x' 0.

78481 6.74247
.38486  0.32269
.23312  0.02991
.37699  0.03660
02970  0.06477
.98028  1.97490
66776 0.07924
19750  1.90938
.42491  33.50122
.27866  3.86122
.89485  3.09213
.86727  5.03640
61260  4.66479
7Tl 1.59155
.90203  4.70297
.87219  20.33526
.59639  2.05633
.28114  3.33435
.06738  5.17736
.37653  4.03214
.06004  2.06301
.59843  1.91900
.78488  1.95995
16696  19.24502
12141  1.62846
16648  2.56539
.10738  2.58739
.59828  2.88684
47835  4.94150
.93667  8.62508
19463  5.35793
.90116  3.15570
66422  1.76130
03931  1.41843
01166  15.17976
96978  16.26523
99329  2.32464
.60725  1.58364
79272 1.96031
.29255  11.68693
69210  2.04789
.33149  2.29704
.22127  3.59973
62275  4.90843
67686  4.75774
90474 2.73975
.67963  25.80725
.31190  2.93840
11412 5.86198
(64479 4.1445/
42576  18.17052
001 '¥*' 0.01 '*'
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101.563
-1.193
~7.795

-10.302

.459

.003

427

.246

.013

.921

.877

.356

.346

.45

.531

.190

.585

.783

751

.333

.331

. 960

.462

.372

.215

.522

.133

.018

.513

.848

.023

-7.257

.326

.668

.318

.306

.589

.804

. 996

.282

779

192

.006

. 960

.295

.520

.608

.530

.555

.051

.133

0.05 '.

< 2e-16
0.233669
5.15e-14

< 2e-16
. 646802
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73e-16
. 001265
. 989886
.003678
. 004225
.018918
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. 005621
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.29e-10
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. 000592
709779
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.001849
.97e-05
. 130938

. 002660
.93e-12
.20e-15
.70e-08
.188119
.760102
.11e-08
.17e-06
.63e-07
778290
. 005689
.001521
. 045492

.001068
. 012099
. 543804,
.69e-06
.120752
. 002426
. 893862
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#>

#> Further parameters estimated during model fitting:

#> Tho sigma

#> —2.447 2.314

#> (see help file for details)

#>

#> Initial parameter wvalues:

#> (Intercept)=683.4531 stratio=-0.3004 english=-0.2055

#> lunch=-0.3868 calworks=-0.0527 gradesKK-08=-1.9129 income=0.7162
#> countyButte=-5.6452 countyCalaveras=-4.9529 countyContra

#> Costa=-12.2034 countyEl Dorado=-9.5002 countyFresno=-12.0589
#> countyGlenn=2.1917 countyHumboldt=-3.0863

#> countyImperial=-13.0059 countylnyo=-5.5442 countyKern=-15.4863
#> countyKings=-9.8719 countylLake=-10.5477 countylLassen=-6.3958
#> countylos Angeles=-13.5265 countyMadera=-9.1205

#> countyMarin=-9.0751 countyMendocino=-12.3567

#> countyMerced=-10.9436 countyMonterey=-15.5617

#> countyNevada=-7.0834 countyOrange=-12.8787 countyPlacer=-8.4048
#> countyRiverside=-17.1567 countySacramento=-16.6512 countySan
#> Benito=-22.2339 countySan Bernardino=-15.7216 countySan

#> Diego=-8.6664 countySan Joaquin=-21.3858 countySan Luis

#> Obispo=-8.7253 countySan Mateo=-14.7732 countySanta

#> Barbara=-9.3908 countySanta Clara=-11.7314 countySanta

#> Cruz=-4.0955 countyShasta=-5.8952 countySiskiyou=-7.5959

#> countySonoma=-8.4471 countyStanislaus=-10.514

#> countySutter=-16.32 countyTehama=-6.5398 countylrinity=14.2148
#> countyTulare=-12.8201 countyTuolumne=-8.0977

#> countyVentura=-13.3276 countyYuba=2.5189 rho=0 sigma=1

#>

#> The wvalue of the log-likelihood function: 1783.164

#> AIC: -3460.328 , BIC: -3246.195

#> KKT1: FALSE KKT2: NA Optimz Convergence Code: 0O

The copula correction with one endogenous continuous regressor, estimates the model using maximum
likelihood. The optimization algorithm used is the Nelder-Mead, which it is known to converge slowly,
so it might happen that sometimes your code will not converge (Converge Code = 1). Therefore, the
copulaCorrection() allows the user to specify the desired optimiation algorithm (see the optimx() function for
a list of vailable options) and also the maximum number of iterations for the optimization algorithm.

In the current case, the algorithm converged, and we see that the coefficient of the student/teacher ratio
returned is equal to -0.38.

The heteroskedastic errors approach returns an estimate of the student/teacher ratio equal to 0.71, far
away from the coefficients returned by the external instrumental variables or even OLS. As Lewbel(2012)
underlined, it is often better to use this approach in order to create additional instruments, which together
with external ones, could lead to improved efficiency.

set.seed(111)
m5.hetEr <- hetErrorsIV(read ~ stratio + english + lunch + calworks + income +
grades+ county | stratio | IIV(income, english), data=school)

summary (m5.hetEr)

#>

#> Call:

#> hetErrorsIV(formula = read ~ stratio + english + lunch + calworks +
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#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

income + grades + county [ stratio | IIV(income, english),

data = school)
Residuals:
Min
-30.700151 -4.217847

Coeffictents:

(Intercept)
stratio

english

lunch

calworks

tncome
gradeskKK-08
countyButte
countyCalaveras
countyContra Costa
countyEl Dorado
countyFresno
countyGlenn
countyHumboldt
countyImperial
countylInyo
countyKern
countyKings
countyLake
countylLassen
countyLos Angeles
countyMadera
countyMarin
countyMendocino
countyMerced
countyMonterey
countyNevada
countylOrange
countyPlacer
countyRiverstide
countySacramento
countySan Benito

countySan Bernardino

countySan Diego
countySan Joaquin

countySan Luts Obispo

countySan Mateo

countySanta Barbara

countySanta Clara
countySanta Cruz
countyShasta
countySiskiyou
countySonoma
countyStanislaus

Medzan
-0.005104

39
4.668987 24.971417

Mazx

Estimate Std. Error t walue Pr(>[t/)

662.

-7.
-14.
-10.
-12.
-0.
-2.
-15.
-7.
-17.
-11
-10.
-8.
-16.
-9.
-10.
-14.
-12.
-18.
-7.
-16.
-10.
-19.
-17.
-22.
-18.
-10.
-22.
-9.
-16.
-11.
-14.
-5.
-6.
_4‘
-8.
-12.

78792

. 71481
.19522
. 37834
. 05665
. 8269
. 93796
. 78817

43471
17050
43914
34401
59809
67536
75811
62974
00761

.28101

38742
77910
75282
98673
14003
03584,
52525
23633
13092
28550
33386
93701
31832
18920
28656
56202
42905
73669
03575
82716
27791
51401
27611
62622
77983
10620

27.90173

1.31077
. 04058
.03928
. 06302
17237
. 38723
.48989
. 36530
. 59657
.16217
.12935
. 64386
. 00961
. 09557
.21118
.14978
.37728
.65135
.00202
. 90759
.55103
.31615
.14156
. 36803
97019
.12418
.19897
.41593
.40301
. 46574
.88612
. 75495
.27072
. 43821
.54108
.10296
. 66086
.55153
47149
. 08659
9.09788
7.88762
8.48930

@ % % % % © 0 ® % % % © % © N % W~ W0 OO WNHKOBOO0WNHDKNDKRSOSOO

13

23.
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KKk

kKK
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kKK

* % X %
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754 < 2e-16
545  0.5859
811 2.19e-06
632 < 2e-16
.899  0.3693
.798 2.34e-06
.397 0.1633
682  0.4958
.65 0.5134
.648  0.1001
279  0.2017
.518  0.1298
.062  0.9506
.334 0.7386
733 0.0840 .
.681  0.4966
.087  0.0376
347 0.1789
.076  0.2825
.975  0.3301
.881  0.0608 .
168 0.2436
.219  0.2235
.260  0.2085
497  0.1353
.033  0.0428
.878  0.3807
770 0.0775 .
.228  0.2203
120 0.0346
046  0.0415
497 0.0130
.089  0.037
277 0.2024
.658  0.0082
.021  0.3082
979 0.0486
.366  0.1729
670  0.0958 .
.651 0.5155
776 0.4382
.508 0.6114
113 0.2664
426 0.1547



#> countySutter -18. 04425 8.63306 -2.090 0.0373 *
#> countyTehama =7.31467 8.30826 -0.880 0.3792
#> countyTrinity 14.49227 9.52902 1.521 0.1292
#> countyTulare -14.86433 8.37901 -1.774 0.0769 .
#> countyTuolumne =7.30068 8.44374 -0.865 0.3878
#> countyVentura -16.92807 9.38201 -1.804  0.0720 .
#> countyYuba 1.59098 9.58511 0.166 0.8683
#>

#> Diagnostic tests:

#> dfl1 df2 statistic p-value

#> Weak instruments 2 368 7.738 0.000511 *xx

#> Wu-Hausman 1 368 0.651 0.420400

#> Sargan 1 NA 0.104 0.747600

H>N———

#> Signif. codes: 0 '#**x' 0.001 'xx' 0.01 '¥' 0.05 '.' 0.1 ' ' 1
#>

#> Restdual standard error: 7.671 on 369 degrees of freedom
#> Multiple R-Squared: 0.8718, Adjusted R-squared: 0.8545
#> Wald test: 50.48 on 50 and 369 DF, p-value: < 2.2e-16

Last, but not least, higher moments approach returns an estimate in the range of the estimate produced
by the two-stage least squares and control function methods, namely -1.30:

set.seed(112)
m6.highMoment <- higherMomentsIV(read ~ stratio + english + lunch + calworks + income +
grades + county| stratio | IIV(g = x3,iiv = gp, income), data=school)

summary (m6 . highMoment)

#>

#> Call:

#> higherMomentsIV(formula = read ~ stratio + english + lunch +

#> calworks + income + grades + county [ stratio [ IIV(g = 23,
#> 1iv = gp, income), data = school)

#>

#> Restduals:

#> Min 1Q Median 3 Mazx

#> -29.36633 -3.85498  0.04463  4.10135 25.95692

#>

#> Coefficients:

#> Estimate Std. Error t walue Pr(>/t])

#> (Intercept) 703.95606  56.18285 12.530 < 2e-16 ***
#> stratio -1.30755 2.73072 -0.479 0.6323

#> english -0.21570 0.04726 -4.564 6.85e-06 **x
#> lunch -0.39527 0.04409 -8.965 < 2e-16 **x
#> calworks -0.04885 0.06368 -0.767 0.4435

#> income 0.60624 0.31313 1.936 0.0536 .
#> gradesKK-08 -1.88806 1.38805 -1.360 0.1746

#> countyButte -5.50342 8.49392 -0.648 0.517

#> countyCalaveras -2.49065  12.78252 -0.195 0.8456

#> countyContra Costa -10.25172 9.76761 -1.050 0.2946

#> countyEl Dorado -8.56869 8.46511 -1.013 0.3115

#> countyFresno -11.77606 8.15459 -1.444 0.1496

#> countyGlenn 4.95954  11.67444  0.425 0.6712

#> countyHumboldt =3.49406 8.06561 -0.433 0.6651
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#> countyImperial -10.27530  11.17431 -0.920 0.3584
#> countyInyo =3.47511  12.24073 -0.284  0.7766
#> countyKern -13.97686 8.90326 -1.570 0.1173
#> countyKings -8.47380 9.01077 -0.940  0.3476
#> countyLake -10.70665 9.65572 -1.109 0.2682
#> countyLassen -4.03115 10.61236 -0.380  0.7043
#> countyLos Angeles -10.32558  11.71617 -0.881 0.3787
#> countyMadera -8.26110 8.78937 -0.940  0.3479
#> countyMarin -8.01855 8.68510 -0.923 0.3565
#> countyMendocino -10.69077 11.82199 -0.904  0.3664
#> countyMerced -9.37428 9.16044 -1.023 0.3068
#> countyMonterey -12.90805  10.96616 -1.177 0.2399
#> countylNevada =7.03627 8.12240 -0.866 0.3869
#> countyOrange -9.49866  12.21514 -0.778  0.4373
#> countyPlacer —-6.49094 9.56602 -0.679  0.4979
#> countyRiverside -14.39829  11.46357 -1.256  0.2099
#> countySacramento -15.98939 8.60826 -1.857 0.0640 .
#> countySan Benito -22.27827 8.88395 -2.508 0.0126 *
#> countySan Bernardino -13.17675 10.64160 -1.238 0.2164
#> countySan Diego -6.78565 9.40082 -0.722  0.4709
#> countySan Joaquin -20.35073 8.78762 -2.316 0.0211 *
#> countySan Luis Obispo -7.72189 9.83218 -0.785  0.4327
#> countySan Mateo -13.52057 8.63103 -1.567 0.1181
#> countySanta Barbara -6.97363  10.39340 -0.671  0.5027
#> countySanta Clara -9.20488  10.44988 -0.881  0.3790
#> countySanta Cruz -2.68810 9.10649 -0.295 0.7680
#> countyShasta -5.51727 8.13387 -0.678  0.4980
#> countySiskiyou -10.54224  11.48204 -0.918 0.3591
#> countySonoma -8.11698 7.92414 -1.024 0.3063
#> countyStanislaus -8.93435 9.28127 -0.963 0.3364
#> countySutter -14.60919 9.54161 -1.531  0.1266
#> countyTehama -5.77106 8.50457 -0.679  0.4978
#> countyTrinity 13.93952 9.54850 1.460  0.1452
#> countyTulare -10.79181 9.66641 -1.116 0.2650
#> countyTuolumne -8.88840 8.64810 -1.028  0.3047
#> countylVentura -9.75539  12.65573 -0.771  0.4413
#> countyYuba 3.43960 9.82916 0.350 0.7266
#>

#> Diagnostic tests:

#> df1 df2 statistic p-value

#> Weak instruments 1 369 3.461 0.0636 .

#> Wu-Hausman 1 368 0.143 0.7059

#> Sargan 0 NA NA NA

#> ——

#> Signif. codes: O '#,¥x' 0.001 '¥x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Restdual standard error: 7.668 on 369 degrees of freedom
#> Multiple R-Squared: 0.8719, Adjusted R-squared: 0.8546
#> Wald test: 50.51 on 50 and 369 DF, p-value: < 2.2e-16

The CASchools dataset has information at the district level, where the districts are clustered into counties.
One could be tempted to apply the multilevel GMM method to these data, as implemented in the multi-
levellIV() function. However, the endogeneity problem solved by the multilevel GMM approach considers
only correlations between level-1 variables and level-2 errors, while the endogeneity presented in the example
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above deals with endogeneity between a level-1 variable and the level-1 error. Therefore, we expect that the
multilevellIIV () function will indicate the use of fized effects method. In other words, the results should
be similar with the ones returned by OLS since we included county dummy variables. Indeed, the omitted
variable test between the fixed effects and the GMM model rejects the null hypothesis, therefore indicating
an endogeneity problem at level one and the use of fixed effects.

set.seed(113)

school$gr08 <- school$grades=="KK-06"

m7 .multilevel <- multilevelIV(read ~ stratio + english + lunch + income + gr08 +
calworks + (1|county) | endo(stratio), data=school)

summary (m7 .multilevel)

#>

#> Call:

#> multilevelIV(formula = read ~ stratio + english + lunch + tncome +
#> gr08 + calworks + (1 | county) [ endo(stratio), data = school)
#>

#> Number of levels: 2
#> Number of observations: 420
#> Number of groups: L2(county): 45

#>

#> Coefficients for model REF:

#> Estimate Std. Error z-score Pr(>/z/)

#> (Intercept) 675.82287 5.58009 121.113 < 2e-16 ***
#> stratio -0.49561 0.23923 -2.072 0.0383 *
#> english -0.25998 0.03414 -7.616 2.61e-14 **x*
#> lunch -0.36930 0.03560 -10.373 < 2e-16 **x*
#> dincome 0.67231 0.08862  7.586 3.29e-14 **x*
#> grOSTRUE 2.15903 1.28167 1.685 0.0921 .
#> calworks -0.05706 0.05712 -0.999 0.3178

#> ——-

#> Signif. codes: O 'xxx' (0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Omitted variable tests for model REF:

#> df Chisq p-value

#> FE_L2 vs_REF 7 40.886 8.52e-07 **x

#> GMM_L2 vs_REF 1 0.644 0.422

#> ——-

#> Signif. codes: 0 '¥*x' 0.001 '¥x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

However, we can use the simulated data that comes with the package in order to give an example of the
workings of the multilevelIV() function.

The dataset has five level-1 regressors, X11, X12, X13, X14 and X15, where X15 is correlated with the level
two error, thus endogenous. There are four level-2 regressors, X21, X22, X23 and X24, and three level-3
regressors, X31, X32, X33, all exogenous. We estimate a three-level model with X15 assumed endogenous.

Having a three-level hierarchy, multilevelIV() returns five estimators, from the most robust to omitted
variables (FE_L2), to the most efficient (REF), i.e. lowest mean squared error. The random effects estimator
(REF) is efficient assuming no omitted variables, whereas the fixed effects estimator (FE) is unbiased and
asymptotically normal even in the presence of omitted variables. Because of the efficiency, one would choose
the random effects estimator if confident that no important variables were omitted. On the contrary, the
robust estimator would be preferable if there was a concern that important variables were likely to be omitted.
The estimation result is below:

data(dataMultilevelIV)
set.seed(114)
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formulal <- y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1 | CID) + (1 | SID) | endo(X15)

m8.multilevel <- multilevelIV(formula = formulal, data = dataMultilevelIV)
summary (m8.multilevel)

#>

#> Call:

#> multilevelIV(formula = formulal, data = dataMultilevelIV)

#>

#> Number of levels: 3

#> Number of observations: 2645

#> Number of groups: L2(CID): 1312 L3(SID): 4O

#>

#> Coefficients for model REF:

#> Estimate Std. Error z-score Pr(>/z/)

#> (Intercept) 61.74287 8.64859  7.139 9.4e-13 *xx
#> X11 2.95180 0.02821 104.649 < 2e-16 ***
#> X12 8.96712 0.02742 326.980 < 2e-16 ***
#> X13 -2.01830 0.02602 -77.5556 < 2e-16 ***
#> X14 2.04931 0.02601 78.797 < 2e-16 ***
#> X15 -0.53069 0.02006 -26.462 < 2e-16 ***
#> X21 -1.65462 0.14560 -11.364 < 2e-16 ***
#> X22 =3.79644 0.12272 -30.936 < 2e-16 ***
#> X23 -2.82338 0.06926 —40.766 < 2e-16 ***
#> X24 5.53316 0.26596 20.804 < 2e-16 ***
#> X31 1.66032 0.09753 17.024 < 2e-16 *x*
#> X32 0.53706 0.24700 2.174  0.0297 *
#> X33 0.09387 0.05863 1.601 0.1093

# ——-

#> Signif. codes: 0 '#¢¥x' (0.001 '¥x' 0.01 '¥' 0.05 '.' 0.1 ' ' 1
#>

#> Omitted variable tests for model REF:

#> af Chisq p-value

#> GMM_L2 vs_REF 4  34.15 6.95e-07 #+**
#> GMM_L3_vs_REF 13 -3602.99 1.000000

#> FE_ L2 vs_REF 13  40.00 0.000138 #**

#> FE L3 vs_REF 13  39.99 0.000138 #**

#> ——-

#> Signif. codes: O 'x¥*' 0.001 'x*' 0.01 '¥' 0.05 '.' 0.1 ' ' 1

As we have simulated the data, we know that the true parameter value of the endogenous regressor (X15) is
—1. Looking at the coefficients of X15 returned by the five models, we see that they form two clusters: one
cluster is composed of the level-two fixed effects estimator and the level-two GMM estimator (both return
—0.99), while the other cluster is composed of the other three estimators, FE_L3, GMM_ L3, REF, all three
having a value of —0.59. The bias of the last three estimators is to be expected since we have simulated the
data such that X15 is correlated with the level-two error, to which only FE_ L2 and GMM__L2 are robust.

To provide guidance for selecting the appropriate estimator, multilvelIV () function performs an omitted
variable test. The results are returned by the summary() function. For example, in a three-level setting,
different estimator comparisons are possible:

o Fixed effects versus random effects estimators: To test for omitted level-two and level-three
omitted effects, simultaneously, one compares FE_ L2 to REF. The test does not indicate the level at
which omitted variables might exist.

o Fixed effects versus GMM estimators: Once it was established that there exist omitted effects
but not certain at which level (see 1), we test for level-two omitted effects by comparing FE_L2 versus
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GMM__L3. A rejection of the null hypothesis will imply omitted variables at level-two. The same is
accomplished by testing FE L2 versus GMM__ L2, since the latter is consistent only if there are no
omitted effects at level two.

o Fixed effects versus fixed effects estimators: We can test for omitted level-two effects, while
allowing for omitted level-three effects. This can be done by comparing FE_ 1.2 versus FE_ L3since
FE_L2 is robust against both level-two and level-three omitted effects while FE_ L3 is only robust to
level-three omitted variables.

In general, testing for higher level endogeneity in multilevel settings one would start by looking at the results
of the omitted variable test comparing REF and FE_L2. If the null hypothesis if rejected, this means the
model suffers from omitted variables, either at level two or level three. Next, test whether there are level-two
omitted effects, since testing for omitted level three effects relies on the assumption there are no level-two
omitted effects. To this end, rely on one of the following model comparisons: FE_ L2 versus FE_ L3 or
FE_ L2 versus GMM_ L2. If no omitted variables at level-two are found, proceed with testing for omitted
level-three effects by comparing FE_ L3 versus GMM_ L3 or GMM_ L2 versus GMM__L3.

The summary() function takes two arguments: the name of the model object (here m8.multilevel) and
the estimation method (here REF). Without a second argument, the summary displays simultaneously the
coefficients obtained with all the different estimation approaches (fixed effects, GMM, random effects). The
second parameter can take the following values, depending on the model estimated (two or three levels):
REF, GMM_ L2, GMM_ L3, FE_L2, FE_L3. It returns the estimated coefficients under the model specified
in the second argument, together with their standard errors and z-scores, Further, it returns the chi-squared
statistic, degrees of freedom and p-value of the omitted variable test between the focal model (here REF) and
all the other possible options (here FE_L3, GMM_ L2 and GMM__L3).

summary (m8.multilevel, "REF")

#>

#> Call:

#> multilevelIV(formula = formulal, data = dataMultilevelIV)
#>

#> Number of levels: 3

#> Number of observations: 2645

#> Number of groups: L2(CID): 1312 L3(SID): 40

#>

#> Coefficients for model REF:

#> Estimate Std. Error z-score Pr(>/z/)

#> (Intercept) 61.74287 8.64859  7.139 9.4e-13 ***
#> X11 2.95180 0.02821 104.649 < 2e-16 **x*
#> X12 8.96712 0.02742 326.980 < 2e-16 **x*
#> X13 -2.01830 0.02602 -77.555 < 2e-16 ***
#> X14 2.04931 0.02601 78.797 < 2e-16 ***
#> X15 -0.53069 0.02006 -26.462 < 2e-16 ***
#> X21 -1.65462 0.14560 -11.364 < 2e-16 **x*
#> X22 =3.79644 0.12272 -30.936 < 2e-16 ***
#> X23 -2.82338 0.06926 -40.766 < 2e-16 **x*
#> X24 5.53316 0.26596 20.804 < 2e-16 ***
#> X31 1.66032 0.09753 17.024 < 2e-16 ***
#> X32 0.53706 0.24700 2.174  0.0297 *
#> X33 0.09387 0.05863 1.601 0.1093

#> ——=

#> Signif. codes: 0 '*¥x' 0.001 '¥x' 0.01 '¥' 0.05 '.' 0.1 ' ' 1
#>

#> Omitted variable tests for model REF:

#> af Chisq p-value

#> GMM_L2_vs_REF 4 34.15 6.95e—07 *+*
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#> GMM_L3_vs_REF 13 -3602.99 1.000000
#> FE_ L2 vs_REF 13  40.00 0.000138 #**

#> FE L3 vs_REF 13  39.99 0.000138 #**

#> ——-

#> Signif. codes: 0 'x#*' 0.001 '#¥' 0.01 'x' 0.05 '.' 0.1 ' ' 1

In the example above, we compare the random effects (REF) with all the other estimators. Testing REF,
the most efficient estimator, against the level-two fixed effects estimator, FE_ L2, which is the most robust
estimator, we are actually testing simultaneously for level-2 and level-3 omitted effects. Since the null
hypothesis is rejected with a p-value of 7.28e — 05, the test indicates severe bias in the random effects
estimator. In order to test for level-two omitted effects regardless of the presence of level-three omitted effects,
we have to compare the two fixed effects estimators, FE_ L2 versus FE_ L3:

summary (m8.multilevel,"FE_L2")

#>

#> Call:

#> multilevelIV(formula = formulal, data = dataMultilevellV)
#>

#> Number of levels: 3

#> Number of observations: 2645

#> Number of groups: L2(CID): 1312 L3(SID): 40

#>

#> Coefficients for model FE_LZ2:

#> Estimate Std. Error z-score Pr(>/z/)

#> (Intercept) 0.000e+00 9.999e-19 0.00 1

#> X11 2.989e+00 3.284e-02 91.01 <2e-16 *xx
#> X12 8.941e+00 3.588e-02 249.17 <2e-16 x**
#> X13 —2.033e+00 3.337e-02 -60.93 <2e-16 x**
#> X14 2.076e+00 3.361e-02 61.76 <2e-16 *xx*
#> X15 -9.931e-01 3.600e-02 -27.59 <2e-16 x**
#> X21 0.000e+00 2.066e-18 0.00 1

#> X22 0.000e+00 2.295e-18 0.00 1

#> X23 0.000e+00 1.601e-18 0.00 1

#> X24 0.000e+00 1.024e-18 0.00 1

#> X31 0.000e+00 2.365e-17 0.00 1

#> X32 0.000e+00 1.937e-17 0.00 1

#> X33 0.000e+00 8.574e-17 0.00 1

#> ——

#> Signif. codes: 0 '#**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Omitted variable tests for model FE_L2:

#> df Chisq p-value

#> FE_L2_vs_REF 13 40.00 0.000138 **x*

#> FE_ L2 vs_FE_ L3 9 37.83 1.87e-05 *xx

#> FE_L2_vs_GMM_L2 12 40.00 7.20e-05 ***

#> FE_L2 vs_GMM_L3 13 40.00 0.000138 ***

#> ———

#> Signif. codes: O '#«¥x' 0.001 '¥x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The null hypothesis of no omitted level-two effects is rejected (p-value is equal to 1.09e — 05). Therefore,
we conclude that there are omitted effects at level-two. This finding is no surprise as we simulated the
dataset with the level-two error correlated with X15, which leads to biased FE_ L3 coefficients. The omitted
variable test between level-two fixed effects and level-two GMM should shows that the null hypothesis of no
omitted level-two effects is rejected (p-value is 0). In case of wrongly assuming that an endogenous variable
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is exogenous, the random effects as well as the GMM estimators will be biased, since the former will be
constructed using the wrong set of internal instrumental variables. Consequently, comparing the results of
the omitted variable tests when the variable is considered endogenous versus exogenous can indicate whether
the variable is indeed endogenous or not. To conclude this example, the test results provide support that the
FE L2 should be used.
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