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1 Introduction

The R package SimCorMultRes is suitable for simulation of correlated ordinal or nominal multinomial
responses (with three or more response categories) and of correlated binary responses conditional on a model
specification for the marginal probabilities, which is accomplished by extending existing threshold approaches
that give rise to regression models for independent binary and multinomial responses. We describe some
theoretical details of these approaches and we provide simple examples to illustrate the use of the core
functions in SimCorMultRes.

Let Yit be the binary or multinomial response for subject i (i = 1, . . . , N) at the measurement occasion
t (t = 1, . . . , T ), and let xit be the associated covariates vector. Note that we assume that Yit ∈ {0, 1} for
binary responses and Yit ∈ {1, 2, . . . , J ≥ 3} for multinomial responses.

2 Correlated Nominal Multinomial Responses

The function rmult.bcl() simulates correlated nominal multinomial responses under the marginal baseline
category logit model specification

log

(
Pr(Yit = j|xit)

Pr(Yit = I|xit)

)
= (βt0j − βt0J) + (βtj − βtJ)′xit = β∗t0j + β∗′tjxit, (1)

where βt0j and βtj is the j-th response category specific intercept and parameter vector at the t-th mea-
surement occasion respectively. The popular identifiability constraints βt0J = 0 and βtJ = 0 imply that
β∗t0j = βt0j and β∗tj = βtj for all j = 1, . . . , J − 1.
Define

Uitj = µitj + eitj ,

where µitj = β0j + β′tjxit and where the random variables {eitj} satisfy the following conditions:

1. Marginally, eitj follows a standard extreme value distribution for all i, t and j.

2. Random variables associated with different subjects are independent. That is, the random variables
ei1t1j1 and ei2t2j2 are independent provided that i1 6= i2.

3. Category specific random variables for each subject at a given measurement occasion are independent,
i.e., eitj1 and eitj2 are independent for all i, t and j1 6= j2.

It can be shown that using the threshold

Yit = j ⇔ Uitj = max{Uit1, . . . , UitJ}

correlated nominal multinomial responses that satisfy the marginal baseline category logit model specifica-
tion in (1) are generated. The above threshold approach extends the principle of maximum random utility
(McFadden, 1973) to correlated nominal multinomial responses.

The function rmult.bcl() requires the user to provide the common cluster size T (clsize), the num-
ber of nominal response categories J (ncategories), the linear predictor of model (1) in a matrix form
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(lin.pred) and the correlation matrix in the multivariate normal distribution of the NORTA method
(cor.matrix). The lin.pred argument should be an N × (TJ) matrix such that the i-th row has ele-
ments (µi11, . . . , µi1J , µi21, . . . , µi2J , · · · , µiT1, . . . , µiTJ).

For example, suppose that we want to simulate nominal multinomial responses under a marginal baseline
category logit model with N = 500, J = 4, T = 3, (βt01, βt02, βt03, βt04) = (β01, β02, β03, β04) = (1, 3, 5, 0)
and βt = β = (β1, β2, β3, β4) = (2, 4, 6, 0) for all t, and a time-stationary covariate for each subject drawn
from a standard normal distribution. For the sake of simplicity, suppose that {eitj} are independent. The
following R code is used to simulate nominal multinomial responses under this sampling scheme

> library("SimCorMultRes")

> set.seed(1)

> N <- 500

> ncategories <- 4

> clsize <- 3

> Xmat <- matrix(rnorm(N),N,ncategories)

> betas <- c(1,2,3,4,5,6)

> lin.pred <- matrix(c(betas[c(2,4,6)],0),N,4,byrow=TRUE)*Xmat+

+ matrix(c(betas[c(1,3,5)],0),N,4,byrow=TRUE)

> lin.pred <- matrix(lin.pred,N,ncategories*clsize)

> cor.matrix <- diag(1,12)

> Y <- rmult.bcl(clsize,ncategories,lin.pred,cor.matrix)

The simulated clustered nominal multinomial responses for the first six subjects are

> head(Y$Ysim)

[,1] [,2] [,3]

[1,] 3 3 1

[2,] 2 3 3

[3,] 4 2 3

[4,] 3 3 3

[5,] 3 3 3

[6,] 1 1 3

3 Correlated Ordinal Multinomial Responses

Generation of correlated ordinal multinomial responses is feasible under either a marginal cumulative link
model or a marginal continuation ratio model specification.

3.1 Marginal cumulative link model

The function rmult.clm() simulates correlated ordinal multinomial responses under the marginal cumulative
link model specification

Pr(Yit ≤ j|xit) = F (βt0j + β′txit) (2)

where βt0j is the j-th category specific intercept at the t-th measurement occasion and βt is the parameter
vector at the t-th measurement occasion, and F is a cumulative distribution function. The response category
specific intercepts are assumed to be monotone increasing, that is

−∞ = βt00 < βt01 < βt02 < · · · < βt0(J−1) < βt0J =∞

for all t. Define
Uit = µit + eit,

where µit = β′txit and where the random variables {eit} satisfy the following conditions:

1. Marginally, eit follows the distribution specified by F for all i and t.
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2. Random variables associated with different subjects are independent, i.e., the random variables ei1t1
and ei2t2 are independent for all i1 6= i2.

It can be shown that using the threshold

Yit = j ⇔ βt0(j−1) < Uit ≤ βt0j

correlated ordinal multinomial responses under the marginal cumulative link model specification in (2) are
generated. This threshold extends the approach of McCullagh (1980) to generating correlated multinomial
responses.

The function rmult.clm() requires the user to provide the common cluster size T (clsize), the linear
predictor of model (2) excluding the response category intercepts in a matrix form (lin.pred), the corre-
lation matrix in the multivariate normal distribution of the NORTA method (cor.matrix), the response
category specific intercepts β0tj ’s (intercepts) and the cumulative distribution function F (link). The
lin.pred argument should be an N × T matrix such that the i-th row has elements (µi1, µi2, · · · , µiT ).

For example, suppose that we want to simulate correlated ordinal multinomial responses from a marginal
cumulative probit model with N = 500, J = 5, T = 4, (βt01, βt02, βt03, βt04) = (β01, β02, β03, β04) =
(−1.5,−0.5, 0.5, 1.5) and βt = β = 1 for all t, a single time-stationary covariate for each subject drawn
from a standard normal distribution and a latent correlation matrix equal to

1.00 0.85 0.50 0.15
0.85 1.00 0.85 0.50
0.50 0.15 1.00 0.85
0.15 0.85 0.50 1.00


The following R code generates the clustered ordinal multinomial responses under this configuration

> set.seed(12345)

> N <- 500

> clsize <- 4

> intercepts <- c(-1.5,-0.5,0.5,1.5)

> cor.matrix <- toeplitz(c(1,0.85,0.5,0.15))

> lin.pred <- rsmvnorm(N,toeplitz(c(1,rep(0.85,clsize-1))))

> Y <- rmult.clm(clsize,lin.pred,cor.matrix,intercepts,"probit")

The simulated clustered ordinal multinomial responses for the first six subjects are

> head(Y$Ysim)

[,1] [,2] [,3] [,4]

[1,] 2 2 1 2

[2,] 3 5 4 3

[3,] 3 2 3 3

[4,] 5 4 3 3

[5,] 4 2 2 3

[6,] 5 5 5 5

3.2 Marginal continuation ratio model

The function rmult.crm() simulates correlated ordinal multinomial responses under the marginal continu-
ation ratio model specification

Pr(Yit = j|Yit ≥ j,xit) = F (βt0j + β
′

txit) (3)

where βt0j and βt is the j-th category specific intercept and the parameter vector at the t-th measurement
occasion respectively, and F is a cumulative distribution function. The response category specific intercepts
are assumed to be monotone increasing at each measurement occasion, that is

−∞ = βt00 < βt01 < βt02 < . . . < βt0(J−1) < βt0J =∞
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for all t. Define
Uitj = µit + eitj ,

where µit = β′txit and where the random variables {eitj} satisfy the following conditions:

1. Marginally, eitj follows the distribution specified by F for all i, t and j.

2. Random variables associated with different subjects are independent, i.e., the random variables ei1t1j1
and ei2t2j2 are independent for all i1 6= i2.

3. The category specific random variables for each subject at a given measurement occasion are indepen-
dent, i.e., the random variables eitj1 and eitj2 are independent for all j1 6= j2.

It can be shown that using the threshold

Yit = j, given Yit ≥ j ⇔ Uitj ≤ βt0j
correlated ordinal multinomial responses that satisfy the marginal continuation ratio model specification in
(3) are generated. This approach extends the latent variable representation described in Tutz (1991) to
generating correlated multinomial responses.

The function rmult.crm() requires the user to provide the common cluster size T (clsize), the linear
predictor of model (3) excluding the response category intercepts in a matrix form (lin.pred), the corre-
lation matrix of the multivariate normal distribution in the NORTA method (cor.matrix), the category
specific intercepts β0j ’s (intercepts) and the cumulative distribution function F (link). The lin.pred

argument should be an N × T matrix such that the i-th row has elements (µi1, µi2, · · · , µiT ).
For example, suppose that we want to simulate ordinal multinomial responses under a marginal con-

tinuation ratio probit model with N = 500, J = 5, T = 4, (βt01, βt02, βt03, βt04) = (β01, β02, β03, β04) =
(−1.5,−0.5, 0.5, 1.5) and βt = β = 1 for all t and a single time-stationary covariate for each subject drawn
from a standard normal distribution. To simplify matters further, suppose that {eitj} are independent. The
following R code generates the clustered ordinal multinomial responses under this configuration

> set.seed(1)

> N <- 500

> clsize <- 4

> intercepts <- c(-1.5,-0.5,0.5,1.5)

> cor.matrix <- diag(1,16)

> x <- rnorm(N)

> lin.pred <- matrix(rep(x,clsize),N,clsize,byrow=TRUE)

> Y <- rmult.crm(clsize,lin.pred,cor.matrix,intercepts,link="probit")

The simulated clustered ordinal multinomial responses for the first six subjects are

> head(Y$Ysim)

[,1] [,2] [,3] [,4]

[1,] 2 5 2 3

[2,] 5 5 2 4

[3,] 2 5 5 4

[4,] 2 4 3 1

[5,] 5 4 2 5

[6,] 1 5 5 5

4 Correlated Binary Responses

The function rbin() simulates correlated binary responses under the marginal model

Pr(Yit = 1|xit) = F (βt0 + β′txit) (4)

where βt0 and βt is the intercept and the parameter vector at the t-th measurement occasion respectively,
and F is a cumulative distribution function.
For subject i, define µit = β′txit and define the random variables {eit} such that:
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1. Marginally, eit follows the distribution specified by F for all i and t.

2. Random variables associated with different subjects are independent, i.e., the random variables ei1t1
and ei2t2 are independent for all i1 6= i2.

It can be shown that using the threshold

Yit = I(eit ≤ βt0 + µit),

correlated binary responses under the marginal model specification in (4) are generated. Here, I(A) is the
indicator function of the event A.

The function rbin() requires the user to provide the common cluster size T (clsize), the linear predictor
of model (4) excluding the intercept in a matrix form (lin.pred), the correlation matrix in the multivariate
normal distribution of the NORTA method (cor.matrix), the intercepts β01, . . . , β0T (intercepts) and the
cumulative distribution function F (link). The lin.pred argument should be an N × T matrix such that
the i-th row has elements (µi1, µi2, · · · , µiT ).

For example, suppose that we want to simulate correlated binary responses from a marginal cumulative
probit model with N = 500, J = 5, βt0 = β0 = 1 and βt = β = 1 for all t, a single time-stationary covariate
for each subject drawn from a standard normal distribution and a latent correlation matrix equal to

1.00 0.85 0.50 0.15
0.85 1.00 0.85 0.50
0.50 0.15 1.00 0.85
0.15 0.85 0.50 1.00


The following R code generates the clustered binary responses under this configuration

> set.seed(1)

> N <- 500

> clsize <- 4

> intercepts <- 1

> cor.matrix <- toeplitz(c(1,0.85,0.5,0.15))

> lin.pred <- matrix(rnorm(N),N,clsize)

> Y <- rbin(clsize,lin.pred,cor.matrix,intercepts,"probit")

The simulated clustered binary responses for the first six subjects are

> head(Y$Ysim)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 1 1 1 1

[3,] 1 1 1 0

[4,] 1 1 1 1

[5,] 1 1 1 1

[6,] 0 0 1 1
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