
WMBrukerParser Package Documentation 1

 Parsing Bruker-Ultraflex TOF Mass Spectrometry Data

Using the William and Mary Bruker Parser Package

By William Cooke, Maureen Tracy and Dariya Malyarenko
The College of William and Mary

1 Overview of the William and Mary Parser for Bruker-Ultraflex TOF Mass
Spectrometry Data .. 1

1.1 Introduction... 1
1.2 Background ... 1
1.3 Methods... 2
1.4 Examples... 6

1.4.1 Example 1: Parse data from a single run ... 6
1.4.2 Example 2: Parse and concatenate data from multiple runs 7

1.5 Concerns ... 9
1.6 Conclusions and Recommendations ... 10

2 Routines in the W&M Bruker Ultraflex Parser Package ... 11
2.1 BrukerParser ... 11
2.2 ParseAndSave ... 12

3 Data Stuctures Generated... 13
tofList .. 13
tofListMetaData .. 14

4 Acknowlegement ... 17
5 References.. 17

1 Overview of the William and Mary Parser for Bruker-Ultraflex

TOF Mass Spectrometry Data

 1.1 Introduction

Bruker Daltonics Ultraflex MALDI Mass Spectrometers save data in binary format in a
unique directory structure. (For simplicity, this data will be referred to herein as either
Bruker or Bruker-Ultraflex data). In order to facilitate analysis of Bruker data from large
studies (e.g. involving numerous patient samples) in R, it is necessary to parse the Bruker
data and associated experimental parameter files into R objects. The purpose of this
package is to provide this capability and to save the R objects for further signal
processing and statistical analysis.

1.2 Background

Protein profiling using Time-Of-Flight (TOF) Mass spectrometry (MS) is an important
technique in proteomics, as it can direct the identification of biologically significant

WMBrukerParser Package Documentation 2

species (biomarkers). Bruker Daltonics Ultraflex MALDI Mass Spectrometers provide
fast scanning over broad mass ranges which is useful for the analysis of multiple
biological samples. While peak broadening and low signal-to-noise are issues for high
mass ranges, signal processing tools (background subtraction, integrative down-sampling,
deconvolution filtering, pedestal removal, peak detection and alignment) have been
developed [1, 2] to address these challenges. The availability of broad-mass data allows
the application of new signal processing techniques such as the detection of ionization
satellites (distinct from molecular ions) and reconstruction of molecular protein
signatures that further improves selectivity and sensitivity for molecular ions [3, 4].

A typical large-scale study employing MALDI-TOF includes sample purification, using
different affinity capture agents (e.g., C3 or IMAC magnetic beads [3]) and spotting
several replicates of the purified protein mixture with matrix on a MALDI plate (384
spots, numbered (1-24) x (A-P)) for profiling and identification. The chemical
preparation steps are preferably done with a programmable robotic bioprocessor for
better control and reproducibility. A single clinProt (Bruker) bioprocessor run allows
spotting of 96 samples (limited by number of bioprocessor wells) in 4 replicates (row or
column pattern). As an example, a clinical study for 200 samples with three replicates
would require at least 7 bioprocessor runs. The MALDI spectra may then be obtained for
different mass ranges (e.g., 1-20, 15-100, and 20 -150 kDa) to ensure optimal data
acquisition through balancing resolution and sensitivity [3]. The maximum allowed
buffer size for single Bruker Ultraflex spectrum is 0.5 Mb. Therefore, for a typical
experiment (including pooled QC samples), as in our example above, one may expect a
data set size of 0.3-0.5 Gb per mass range.

1.3 Methods

Our package contains two routines. The core routine, “BrukerParser,” reads binary TOF
data (obtained in either Linear or Reflector mode) and associated experimental parameter
files, and parses data and meta-data into R structures, tofList and tofListMetaData. This
involves accessing files in different locations within a data directory tree and reading
different file formats. The second routine, “ParseAndSave” calls the “BrukerParser”
routine as directed by the parameter list provided in an “OptionsAndParameters.txt” file
and saves the tofList and tofListMetaData structures that are returned in .Rdat files.
Parameters in “OptionsAndParameters” can be edited to select options for parsing data
from multiple bioprocessor runs, concatenating parsed data and printing memory usage
information. While parsing the data from a study, it may be useful to reflect experimental
design, e.g., by separately saving the data from different affinity purification agents and
in different mass ranges.

Figure 1 illustrates the Bruker data directory structure for Linear TOF data and highlights
the locations of the binary data file and associated experimental parameter files that are
read by the “BrukerParser” routine. The upper portion of Figure 1 shows the data
directory (in this example, ~C3ValidationExtractSmall/RobotRun1/2-100kDa) which
contains subdirectories with spot names (“0_A1” and “0_B1”), a calibration directory,

WMBrukerParser Package Documentation 3

and optional experimental parameter files (“sample.xml”, and files with extensions
“.axe”, “.par”, and “.isset”). The “sample.xml” file is generated by clinProt robot, and
provides the mapping between the sample well on the bioprocessor and the spot position
on the MALDI plate. Additional information can be provided by the operator in this file,
including sample ID, clinical data (e.g., disease group), affinity surface used for
purification, and replicate number. Other instrumental XML files are initially located in
several different directories of flexControl software and reflect the parameters that are set
in different panes of the instrument controlling software: e.g., “.par” records mass range,
source voltage and gain settings specified in “Detection” pane; “.axe” specifies
information related to laser settings and automated spot reading protocol in the “Auto-
execution” pane; and “.isset” contains detector gain and laser power settings of the
“Setup” pane. The user has to “save” the corresponding parameter files after making

Figure 1: Directory tree containing Bruker Daltonics Ultraflex MALDI Mass Spectrometer
output files for Linear TOF data. In each image, a directory is highlighted on the left and its
contents are displayed on the right. The upper image highlights the data directory which
contains subdirectories with spot names, a calibration directory, and optional experimental
parameter files (“sample.xml”, and file with extensions “.axe”, “.par”, and “.isset”). The lower
image highlights the directory two levels down in the spot subdirectories (~”spot
name”/1/1SLin/fid) that contains the “fid” binary data file, and the required “acqu” acquisition
parameter file. For Reflector TOF data, the “fid” file would reside in a “1SRef” directory
rather than a 1SLin directory.

WMBrukerParser Package Documentation 4

changes, in order to preserve the current settings, and be able to load them later for
reproducible analysis [3]. To parse the above instrumental setting information, the
corresponding parameter files have to be copied to the experimental directory manually
from the flexControl method directories. Since they are not saved automatically, the
parser code has been designed to tolerate their absence (making them optional). When
they are missing, the corresponding attribute structures will not be populated, and the
meta-data fields will be set to N/A. The user has the option (discussed below) of
updating these meta-data fields for use in further analysis. For instance, when the
“sample.xml” file is missing, the user may want to manually assign any relevant sample
ID or disease group information for the study.

The binary mass spectrum data files (required) are named “fid” and are located two levels
down (in /1/1Lin/ for Linear data or /1/1SRef/ for Reflector data) in the spot
subdirectories along with another (required) instrumental parameter file “acqu”. The
lower image in Figure 1 displays the location of the binary data file for spot “0_A1”.
(~C3ValidationExtractSmall/RobotRun1/2-100kDa/0_A1/1/1SLin/fid). There is also a
“fid” file in a parallel location in the “0_B1” subdirectory
(~C3ValidationExtractSmall/RobotRun1/2-100kDa/0_B1/1/1SLin/fid) that is not shown.
The “acqu” file contains much of the summary for experimental acquisition parameters.
While the “acqu” file contains parameters in common with the “optional” files discussed
above, it is less comprehensive, especially for detector and laser pattern settings. Both the
“fid” and the “acqu” files are automatically saved by flexControl in each spot/sample
directory. A third file, also saved automatically by flexControl, is called “proc” and is
saved two directories below the “fid” and “acqu” files. The ”proc” file contains the
processing parameters for flexAnalysis software, which can be ignored, if custom
processing is planned. The only meta-data currently parsed from the proc file is the
calibration date. The examples detailed in Section 1.4 below, provide the parameter
assignments and R commands required to run the parser for the directory structure
illustrated in Figure 1.

Figure 2 shows the output of the parser for the data directory
“~C3ValidationExtractSmall/RobotRun1/2-100kDa”. The location of the
“tofListRun1.Rdat” and “tofListMetaDataRun1.Rdat” files in the data directory is shown
in the upper image in Figure 2. (The string “Run#” has been added to distinguish output
from different bioprocessor runs if multiple runs are parsed.) The lower portion of Figure
2 provides images of partial listings of the tofList and tofListMetaData R structures. For
this example, the tofList contains two spectrum vectors (for two spots, “0_A1” and
“0_B1”). In the tofListMetaData structure, rows correspond to the spectra and columns
correspond to meta-data attributes (See Section 3, “Data Structures Generated” for the
listing of the 61 attributeNames and descriptions.) Each screen shot shows two
conventions for accessing data in these structures. TOF spectrum vectors can be accessed
in the tofList by spectrumName or by index, and metaData values can be accessed in the
tofListMetaData by spectrumName and attributeName or by row and column indices.
Accessing data by spectrumNames and attributeNames is preferred as it is possible for
one structure to be indexed differently from the other. (This could occur if spectrum

WMBrukerParser Package Documentation 5

vectors are sorted according to a clinical parameter and the meta-data is not during
processing.).

Figures 1 and 2 illustrate input and output for parsing data from a single data directory
When parsing data from multiple runs, tofList and tofListMetaData “.Rdat” files for each
run are saved in the each of the corresponding data directories. If data is concatenated (an
option to be used with caution as explained in the “Concerns” section below), the
concatenated tofList and tofListMetaData files are saved in the data directory for the final
run parsed. Figure 3 illustrates the output found in the second data directory when data
from two runs are parsed and concatenated. (The first data directory would contain the
same files as illustrated in Figure 2.) The optional concatenated tofList is 4 vectors long
since each run contains data for two spots. Similarly, the optional concatenated
tofListMetaData would have 4 rows and 61 columns. (The number of meta-data attributes
is unchanged.)

Figure 2: Output files generated by BrukerParser for data directory
“~C3ValidationExtractSmall/RobotRun1/2-100kDa”. The upper image shows the location of
“tofListRun1.Rdat” and “tofListMetaDataRun1.Rdat” in the data directory. The lower images
show partial listings of the tofList and tofListMetaData structures. Two addressing
conventions are shown, by indices and by names. The tofList is a list of time-of-flight mass
spectrum vectors addressable by spectrumName (preferred) or index. The tofListMetaData is
a data.frame with rows and columns addressable by spectrumName and attributeName
(preferred) or indices.

WMBrukerParser Package Documentation 6

1.4 Examples

Two examples are included in this package. The subdirectory “Examples” contains a
Bruker output directory tree and the two OptionsAndParameters text files. These latter
files contain parameters required by the routines in the package and are intended to be
edited by the user for their purposes. “C3ValidationExtractSmall” contains data for two
runs for two spots each (as seen in Figures 1-3) and will be used for both examples.

1.4.1 Example 1: Parse data from a single run

The parameters contained in “OptionsAndParametersParse1Run.txt” are shown below.

------------------OptionsAndParametersParse1Run.txt-------------

Specify laboratory where data was obtained
ParserParams$dataSource <- "EVMS"

Specify if multiple runs are to be parsed, "yes" or "no"
ParserParams$multipleRuns <- "no"

Specify whether or not to concatenate tofLists, "yes" or "no"
ParserParams$concatLists <- "no"

Specify the indices of the runs to parse.
MUST APPEAR IN DATA DIRECTORY PATH
ParserParams$runIndices <- 1

Specify data directory path to the left of the index (or complete path if

Figure 3: Output in the second data directory when data from two runs are parsed and
concatenated. When data from multiple runs are parsed, tofList and tofListMetaData files for
individual runs are saved in their respective data directories and concatenated files (if opted
for) are saved in the data directory from which the final data was parsed.

WMBrukerParser Package Documentation 7

parsing one run)

directory = system.file("Examples", package = "WMBrukerParser")
ParserParams$dataDirLeft <- paste(directory,"/C3ValidationExtractSmall/RobotRun1/2-100kDa "
",sep="")

Specify data directory path to the right of the index (if there is one).
ParserParams$dataDirRight <- ""

Specify whether or not memory and time usage are to printed during parsing
ParserParams$printMemoryUse <- "no"

----------------End OptionsAndParametersParse1Run.txt-------------

To execute the Example 1, type:

> directory = system.file("Examples", package = "WMBrukerParser")
> source(paste(directory,"/OptionsAndParametersParse1Run.txt",sep=""))
> ParseAndSave(ParserParams)

Parsed “tofListRun1.Rdat” and “tofListMetaDataRun1.Rdat” files should be available in
"~C3ValidationExtractSmall/RobotRun1/2-100kDa” as shown in Figure 2.

1.4.2 Example 2: Parse and concatenate data from multiple runs

Parameters in “OptionsAndParametersParseAndCat2Runs.txt” that differ from those in
“OptionsAndParametersParse1Run.txt” used in Example 1 follow:

--

Specify if multiple runs are to be parsed, "yes" or "no"
ParserParams$multipleRuns <- "yes"

Specify whether or not to concatenate tofLists, "yes" or "no"
ParserParams$concatLists <- "yes"

Specify the indices of the runs to parse.
MUST APPEAR IN DATA DIRECTORY PATH
ParserParams$runIndices <- c(1,2)

Specify data directory path to the left of the index (or complete path if
parsing one run)
directory = system.file("Examples", package = "WMBrukerParser")
ParserParams$dataDirLeft <- paste(directory,"/C3ValidationExtractSmall/RobotRun",sep="")

Specify data directory path to the right of the index (if there is one).
ParserParams$dataDirRight <- "/2-100kDa"

Specify whether or not memory and time usage are to printed during parsing
ParserParams$printMemoryUse <- "yes"

WMBrukerParser Package Documentation 8

NOTE: The “run branch” is not required to be one directory up from the data directory.
The use of two parameters (ParserParams$dataDirLeft and ParserParams$dataDirRight) to
construct the data directory path allows the "run branch" to be located at the level of the
data directory or anywhere above.

To execute the Example 2 type:

> directory = system.file("Examples", package = "WMBrukerParser")
> source(paste(directory,"/OptionsAndParametersParseAndCat2RunsRun.txt",sep=""))
> ParseAndSave(ParserParams)

Parsed “tofListRun1.Rdat” and “tofListMetaDataRun1.Rdat” files should be available in
"~C3ValidationExtractSmall/RobotRun1/2-100kDa” as shown in Figure 2. Parsed
“tofListRun2.Rdat”, “tofListMetaDataRun2.Rdat”, “tofListCat_1_2.Rdat”, and
“tofListMetaDataCat_1_2.Rdat” files should be available in
"~C3ValidationExtractSmall/RobotRun2/2-100kDa” as shown in Figure 3.

Here two runs have been concatenated. Additional runs can be easily included in the
concatenation by adding indices to the ParserParams$runIndices parameter in the
"OptionsAndParameters.txt" file. (The indices need not be in order but must appear in the
path to the data directory.) For N runs:

 ParserParams$runIndices <- c(runindex1, runindex2, runindex3,…runindexN);

Since the option to print the memory use during parsing has been selected
(ParserParams$printMemoryUse <- "yes") for this example, memory (in MB) and time
information are printed after loading or removing data for each run. The screen shot on
the left of Figure 4 shows the R console when executing Example 2. For comparison, the
screen shot on the right of Figure 4 shows the R console during execution of the same
data without concatenation. The difference in memory used after the lines
“tofListMetaData for Run2 has been removed” in the two screen shots in Figure 4, 1.259
MB, should be approximately equal to the memory used for the concatenated tofList and
tofListMetaData.

WMBrukerParser Package Documentation 9

1.5 Concerns

Since MS signal processing includes an alignment step, it would be ideal to parse all
spectra from all runs in a given study into a single tofList. However the data files are
large and there is a limit to the amount of memory that R has available (particularly
during further processing which requires twice the memory as required to simply load the
data). According to the R Documentation (on Package utils version 2.8.0) for
memory.size and memory.limit, the Windows version of R is usually limited to 2GB of
memory. To insure the efficient use of memory, the ParseAndSave routine calls the
BrukerParser for one run at a time and removes data once it has been parsed, saved and
(if opted for) concatenated. Even with this precaution, it is possible to exceed the memory
available during parsing. As discussed above, an option has been included to print
memory use during parsing to monitor the growing memory requirements of the
concatenated tofList and tofListMetaData objects.

At this point, it is helpful to consider the size of the original Bruker data files, the size of
the parsed files, and the memory required by R to load the parsed files for Example 2
above.

The size of the Bruker data files on disk are:

Figure 4. R Console during parsing of data from two runs with option to print memory use
selected. The screen shot on the left is for the execution of Example 2. The screen shot on the
right is for parsing the same data as in Example 2 but without concatenation. The differences
between memory used at each step reflects the increasing size of the concatenated tofList and
tofListMetaData objects.

WMBrukerParser Package Documentation 10

~C3ValidationExtractSmall/RobotRun1/2-100kDa/0_A1/1/1SLin/fid: 0.467 MB

~C3ValidationExtractSmall/RobotRun1/2-100kDa/0_B1/1/1SLin/fid: 0.467 MB
~C3ValidationExtractSmall/RobotRun2/2-100kDa/0_A18/1/1SLin/fid: 0.467 MB
~C3ValidationExtractSmall/RobotRun2/2-100kDa/0_A17/1/1SLin/fid: 0.467 MB

The size of the resulting parsed data and meta-data files on disk are:

tofListRun1.Rdat: 0.388 MB
tofListRun2.Rdat: 0.395 MB
tofListCat_1_2.Rdat: 0.782 MB

Memory used to load the parsed data and meta-data files into R (found using command
memory.size(max=FALSE) before and after loading each file) :

tofListRun1.Rdat: 1.00 MB
tofListRun2.Rdat: 1.00 MB
tofListCat_1_2.Rdat: 2.00 MB

While these values may differ for other computers, it appears that the parsed data files
take up less disk space than the raw data files. However, the memory required to load
parsed data files into R is greater by more than a factor of two times their size on disk.
The concatenated tofList files are approximately as large as the sum of the individual
files on disk and in R. The difference in maximum memory used for parsing with and
without concatenation, 10.93 MB and 8.93 MB, shown in the screenshots in Figure 4,
corresponds to the size of the concatenated tofList, 2.00 MB. (The metaData structures in
this example require less than 0.00 MB memory.)

1.6 Conclusions and Recommendations

This package provides the utility for parsing Bruker data into R structures on a run by run
basis. Prior to use of the option to concatenate data from multiple runs, the size of the
resultant concatenated file should be estimated (for an upper limit, multiply the number
of spectra by the size in MB of the “fid” files) and compared with half of the available
memory in R (allowing for the doubled memory requirements for processing). If the
estimate of the size of the concatenated file approaches half of the memory available, it
would be wise to run “ParseAndSave” with ParserParams$multipleRuns <- "yes" ,
ParserParams$concatLists <- "no,” and ParserParams$printMemoryUse <- "yes". The resultant
listing of memory usage in R, considered with the observed size of parsed files on disk
will aid in deciding which runs to include in concatenation. Note that there is the option
of including down-sampling in the subsequent signal processing steps [1] which would
effectively compresses the data for each run separately, and allow concatenation of the
full data set after down-sampling before alignment.

WMBrukerParser Package Documentation 11

2 Routines in the W&M Bruker Ultraflex Parser Package

2.1 BrukerParser

Description

This routine reads the binary “fid” Bruker files, along with other associated experimental
files and creates R structures tofList and tofListMetaData.

Usage

BrukerParser(dataSource, dataDirectory)

Arguments

dataSource - Name of data acquisition site, for example, “EVMS”
dataDirectory - Directory containing spot subdirectories

Details

This routine expects the following contents in the dataDirectory:
 spot subdirectories with names like "0_A1" and "0_L5", each containing:
 EITHER (for Linear TOF data):
 /1/1SLin/fid - the binary data file (required)
 /1/1SLin/acqu - the acquisition information file (required)
 /1/1SLin/pdata/1/proc - the processing file (required)
 OR (for Reflectron TOF data):
 /1/1SRef/fid - the binary data file (required)
 /1/1SRef/acqu - the acquisition information file (required)
 /1/1SRef/pdata/1/proc - the processing file (required)
 a subdirectory with “calibration” in the name (optional)
 a file with the extension “.par” (optional)
 a file with the extension “.axe” (optional)
 a file with the extension “.isset” (optional)
 a file named “sample.xml” (optional)

If any of the optional files are missing, the user has the option updating meta-data fields
in the parsed meta-data structure, tofListMetaData. If the sample.xml file is missing, a
field used in naming data and meta-data structures is missing and placeholders will be
used. In this case, the user may wish to update structure names. Examples of the
procedures to update data field and names are given below Section 3: Data Structures
Generated.

If the final line of the “.axe” file is not blank, R will generate a warning message such as:
 “Warning message:

 In readLines(qq, n = -1) : incomplete final line found on '0-20KDaLin030308.axe' “

WMBrukerParser Package Documentation 12

This has no effect on the reader and can be ignored.

Value

tofList - A list of time-of-flight mass spectrum vectors addressable by spectrumName.
tofListMetaData - A data.frame containing string values for experimental meta-data, with
rows and columns addressable by spectrumName and attributeName.

Author

William Cooke, College of William and Mary

Note

Called by ParseAndSave

2.2 ParseAndSave

Description

This routine calls the BrukerParser to parse data from individual runs. It has options for
parsing data from multiple runs and for concatenating the parsed data structures.
Individual and concatenated tofList and tofListMetaData files are saved as .Rdat files.

Usage

ParseAndSave(ParserParams)

Arguments

ParserParms – List containing:
 ParserParams$dataSource - laboratory where data was obtained
 ParserParams$multipleRuns - number of runs to parse
 ParserParams$ concatLists - whether or not to concatenate tofLists (“yes” or “no”)
 ParserParams$ runIndices - indices of the runs to parse (must appear somewhere in
 the data directory path)
 ParserParams$dataDirLeft - Portion of the data directory path to the left of the run
 index (or full path name if a single run is being parsed)
 ParserParams$dataDirRight - Portion of the data directory path to the right of the run
 index (if it exits)
 ParserParams$ printMemoryUse - if "yes" memory usage and date stamps throughout
 parsing will be printed

Details

WMBrukerParser Package Documentation 13

Since the data files are large, it may not be desirable or possible to concatenate data
parsed from all runs in an experiment. The option to print memory usage through the
parsing of multiple runs allows the user to consider which files to select for
concatenation. Prior to selecting the option to concatenate data, it would be wise to parse
all the data of interest, examine the memory usage throughout parsing in R and size of the
resulting .Rdat files on the disk, keeping in mind the doubling of memory required for the
further processing of this data.

“tofListRun#.Rdat” and “tofListMetaDataRun#.Rdat” files are saved in “dataDirectory”
(the directory containing the spot subdirectories) for “Run#”. Concatenated files are
saved in the directory of the final data parsed. For instance if runs 1, 3, and 2 were
selected for concatenation (ParserParams$runIndices<-c(1,3,2)), the files
“tofListCat_1_3_2.Rdat” and “tofListMetaDataCat_1_3_2.Rdat” would be found in the
dataDirectory for the Run 2.

After tofList and tofListMetaData structures (individual and concatenated) are saved,
they are removed from the workspace.

Value

tofList - A list of time-of-flight mass spectrum vectors addressable by spectrumName

(saved as .Rdat file)
tofListMetaData - A data.frame containing string values for experimental meta-data, with

rows and columns addressable by spectrumName and attributeName. (saved as an
.Rdat file)

Author

Maureen Tracy, College of William and Mary

Note

Calls BrukerParser

3 Data Stuctures Generated

tofList

tofList - A list of time-of-flight mass spectrum vectors addressable by spectrumName.

To access a spectrum vector:

spectrum <- tofList[[spectrumName]];

For example:

spectrum <- tofList[["pool 2_8"]];

WMBrukerParser Package Documentation 14

Alternately, spectrum vectors can be addressed by spectrum index. This option should be
used with caution since data can be reordered during processing.

To update a spectrum's vector:

 tofList[spectrumName] <- list(spectrum);

To update the tofList names (desirable if default assignments were used due to missing
sampleInfo.sampleNames meta-data):

newSpecNames<-list();
numSpec<-length(tofList);
for (i in 1:numSpec) { newSpecNames[i]<-paste("spec", i , sep="") };
names(tofList)<-newSpecNames;

A partial listing of a sample tofList structure is shown in the lower left of Figure 2.

tofListMetaData

A data.frame containing string values for experimental meta-data, with rows and columns
addressable by spectrumName and attributeName.

To access a value:

 sampleName <- tofListMetaData[spectrumName, attributeName];

For example:

 sampleName <- tofListMetaData["pool 2_8", " sampleInfo.sampleName "];

Alternately, meta-data can be addressed using spectrum and attribute indices. Again, this
option should be used with caution since data can be reordered during processing.

To update a value (which is desirable if tofListMetaData includes NAs due to missing
optional parameter files):

 tofListMetaData[spectrumName, attributeName] <- "Test";

To update the tofListMetaData rownames (desirable if default assignments were used due
to missing sampleInfo.sampleNames)

newSpecNames<-list();
numSpec<-length(tofList);
for (i in 1:numSpec) { newSpecNames[i]<-paste("spec", i , sep="") };
row.names(tofListMetaData)<-newSpecNames;

WMBrukerParser Package Documentation 15

A partial listing of a sample tofListMetaData structure is shown in the lower right of
Figure 2.

Meta-data attributes include:

acquisitionInfo.arrayBarcode – target (Bruker plate) identifier string, includes target

and target serial number - Required
acquisitionInfo.ionPolarity – “positive” or “negative” - Required
acquisitionInfo.refId – spectrum identifier, (same as experiment.id),

used for spectrum vector names in tofList and rows names in
tofListMetaData (generated by concatenating strings:
sampleInfo.sampleName,”_”, and replicateNumber. If
sampleInfo.SampleName is unavailable, a default assignment of
the directory name is used.) - Optional

acquisitionInfo.sourceFile – file name (with path) containing binary mass spectrum data,
(from directory structure) - Automatic

acquisitionInfo.spotIndex – spot index on MALDI plate - Automatic
acquisitionInfo.spotName – spot name on MALDI plate - Automatic
adcGain.high – digitizer gain factor - Optional
adcGain.low – linear detector voltage - Optional

array.affinityType – capture agent used for purification of biofluid samples - Optional
deflector.mode – 1=linear, 2=quadratic - Optional

experiment.id – same as acquisitionInfo.refId - Optional
instrument.instrumentType – "Ultraflex 3" (hard coded) - Automatic
instrument.instrumentVendor – name of instrument vendor - Required
instrument.serial – instrument serial number - Required
instrumentSpecificSettings.adcBandwidth – digitizer bandwith limit - Optional
instrumentSpecificSettings.adcOffset – digitizer offset, depends on spectrum type and

gain factor - Optional
instrumentSpecificSettings.adcScale – digitizer sensitivity, depends on gain factor -

Optional

instrumentSpecificSettings.detectorBaseVoltage – detector base voltage, depends on
spectrum type - Optional

instrumentSpecificSettings.laserIntensityBaseRange – minimum laser power - Optional

instrumentSpecificSettings.laserShots – number of laser shots per spot - Required
instrumentSpecificSettings.timeZero – intial time in counts (calculated) - Required

instrumentSpecificSettings.TOFmode – spectrometer mode: LINEAR or REFLTOR –
Optional

instrumentSpecificSettings.warmingShots – number of warming laser shots - Optional
laserIntensity.units – % (hard coded) - Automatic
laserIntensity.value – maximum laser power, percent of full scale - Optional
laserIntensityWarming.units – % (hard coded) - Automatic
laserIntensityWarming.value – warming Laser power, percent of full scale - Optional
mass.units – "Da" (hard coded) - Automatic
mass.value – low mass cut off for matrix suppression - Optional

massCalibration.calibrationSpectrumFile – calibration folder name. (from folder name

WMBrukerParser Package Documentation 16

containing “calibration.” If unavailable "?" is assigned as default)
- Optional

massCalibration.dateCalibrated – calibration date - Required
massCalibration.equation – "c1*((T0+(X-1)*Tdelta)/U)^2+c0*((T0+(X-

1)*Tdelta)/U)+c2" (hard coded) - Automatic
massEnd.units – mass units, “Da” (hard coded) - Automatic
massEnd.value – highest mass in acquisition range – Optional
massStart.units – mass units, “Da” (hard coded) – Automatic

massStart.value – lowest mass in acquisition range - Optional
param.c0 – linear coefficient in calibration equation - Required
param.c1 – quadratic coefficient in calibration equation - Required
param.c2 – constant term in calibration equation - Required
param.Mode – calibration mode: 1=linear, 2= quadratic - Optional

param.T0 – digitizer delay in ns - Required
param.TDelta – dwell time in ns - Required
param.U – nanoseconds/milliseconds conversion factor, "1e6" (hard coded) - Automatic
replicateNumber – index of occurrence of sampleInfo.sampleName - Automatic
sampleInfo.groupName – clinical group that sample belongs to, used for classification

analysis - Optional

sampleInfo.sampleDescription – additional sample description - Optional

sampleInfo.sampleName – sample identifier (read from sample.xml, If
sample.xml, or the field is missing, the directory
name is used as the default value) - Optional

sampleInfo.sampleSource – laboratory where data was acquired (user supplied input
parameter: ParserParams.dataSource) - Required

software.version – version of XACQ software - Required
spottingInfo.spotProtocol – laser movement patern during data acquisition - Optional

timeOfFlightData.dateCreated – data file creation date (from date stamp on fid file)
- Automatic

timeOfFlightData.domain – data domain, "time" (hard coded) - Automatic
timeOfFlightData.encoding – data encoding, "base64" (hard coded) - Automatic
timeOfFlightData.end – number of data points in spectra - Required
timeOfFlightData.offset – initial value for offset of spectra, will be updated during

alignment procedure, "0.0" (hard coded) - Automatic
timeOfFlightData.pairOrder – Order of measurement pairs for TOF data, e.g., time –

intensity, "t-int" (hard coded) - Automatic
timeOfFlightData.scale – initial value for linear scale coefficient for spectra, will be

updated during alignment procedure, hard coded: "1.0" (hard
coded) - Automatic

timeOfFlightData.start – index for onset of data acquisition, hard coded: "1" – Automatic

WMBrukerParser Package Documentation 17

4 Acknowlegement

This research was supported by NIH National Cancer Institute R01 Grant CA126118
from the Advanced Proteomics Platforms and Computational Sciences Program within
the Clinical Proteomics Initiative of the National Cancer Institute (PI: Malyarenko).

5 References

[1] Malyarenko, D. I., et al., Rapid Commun. Mass Spectrom (2006) 20, 1670–1678

[2] Tracy, M.B., et al., Proteomics (2008) 6, 4517-4524

[3] Gatlin-Bunai, C. L., et al., J Proteome Res (2007) 6, 4517-4524

[4] Malyarenko, D.I., et al., Rapid Commun. Mass Spectrom (2009) 23, in press

