collapse and dplyr

Fast (Weighted) Aggregations and Transformations in a Piped Workflow

Sebastian Krantz

2020-11-01

collapse is a C/C++ based package for data transformation and statistical computing in R. It’s aims are:

  1. To facilitate complex data transformation, exploration and computing tasks in R.
  2. To help make R code fast, flexible, parsimonious and programmer friendly.

This vignette focuses on the integration of collapse and the popular dplyr package by Hadley Wickham. In particular it will demonstrate how using collapse’s fast functions and some fast alternatives for dplyr verbs can substantially facilitate and speed up basic data manipulation, grouped and weighted aggregations and transformations, and panel data computations (i.e. between- and within-transformations, panel-lags, differences and growth rates) in a dplyr (piped) workflow.


Notes:


1. Fast Aggregations

A key feature of collapse is it’s broad set of Fast Statistical Functions (fsum, fprod, fmean, fmedian, fmode, fvar, fsd, fmin, fmax, fnth, ffirst, flast, fNobs, fNdistinct) which are able to substantially speed-up column-wise, grouped and weighted computations on vectors, matrices or data frames. The functions are S3 generic, with a default (vector), matrix and data frame method, as well as a grouped_df method for grouped tibbles used by dplyr. The grouped tibble method has the following arguments:

FUN.grouped_df(x, [w = NULL,] TRA = NULL, [na.rm = TRUE,]
               use.g.names = FALSE, keep.group_vars = TRUE, [keep.w = TRUE,] ...)

where w is a weight variable, and TRA and can be used to transform x using the computed statistics and one of 10 available transformations ("replace_fill", "replace", "-", "-+", "/", "%", "+", "*", "%%", "-%%", discussed in section 2). na.rm efficiently removes missing values and is TRUE by default. use.g.names generates new row-names from the unique combinations of groups (default: disabled), whereas keep.group_vars (default: enabled) will keep the grouping columns as is custom in the native data %>% group_by(...) %>% summarize(...) workflow in dplyr. Finally, keep.w regulates whether a weighting variable used is also aggregated and saved in a column. For fsum, fmean, fmedian, fnth, fvar, fsd and fmode this will compute the sum of the weights in each group, whereas fprod returns the product of the weights.

With that in mind, let’s consider some straightforward applications.

1.1 Simple Aggregations

Consider the Groningen Growth and Development Center 10-Sector Database included in collapse and introduced in the main vignette:

library(collapse)
head(GGDC10S)
#   Country Regioncode             Region Variable Year      AGR      MIN       MAN        PU
# 1     BWA        SSA Sub-saharan Africa       VA 1960       NA       NA        NA        NA
# 2     BWA        SSA Sub-saharan Africa       VA 1961       NA       NA        NA        NA
# 3     BWA        SSA Sub-saharan Africa       VA 1962       NA       NA        NA        NA
# 4     BWA        SSA Sub-saharan Africa       VA 1963       NA       NA        NA        NA
# 5     BWA        SSA Sub-saharan Africa       VA 1964 16.30154 3.494075 0.7365696 0.1043936
# 6     BWA        SSA Sub-saharan Africa       VA 1965 15.72700 2.495768 1.0181992 0.1350976
#         CON      WRT      TRA     FIRE      GOV      OTH      SUM
# 1        NA       NA       NA       NA       NA       NA       NA
# 2        NA       NA       NA       NA       NA       NA       NA
# 3        NA       NA       NA       NA       NA       NA       NA
# 4        NA       NA       NA       NA       NA       NA       NA
# 5 0.6600454 6.243732 1.658928 1.119194 4.822485 2.341328 37.48229
# 6 1.3462312 7.064825 1.939007 1.246789 5.695848 2.678338 39.34710

# Summarize the Data: 
# descr(GGDC10S, cols = is.categorical)
# aperm(qsu(GGDC10S, ~Variable, cols = is.numeric))

# Efficiently converting to tibble (no deep copy)
GGDC10S <- qTBL(GGDC10S)

Simple column-wise computations using the fast functions and pipe operators are performed as follows:

library(dplyr)

GGDC10S %>% fNobs                       # Number of Observations
#    Country Regioncode     Region   Variable       Year        AGR        MIN        MAN         PU 
#       5027       5027       5027       5027       5027       4364       4355       4355       4354 
#        CON        WRT        TRA       FIRE        GOV        OTH        SUM 
#       4355       4355       4355       4355       3482       4248       4364
GGDC10S %>% fNdistinct                  # Number of distinct values
#    Country Regioncode     Region   Variable       Year        AGR        MIN        MAN         PU 
#         43          6          6          2         67       4353       4224       4353       4237 
#        CON        WRT        TRA       FIRE        GOV        OTH        SUM 
#       4339       4344       4334       4349       3470       4238       4364
GGDC10S %>% select_at(6:16) %>% fmedian # Median
#        AGR        MIN        MAN         PU        CON        WRT        TRA       FIRE        GOV 
#  4394.5194   173.2234  3718.0981   167.9500  1473.4470  3773.6430  1174.8000   960.1251  3928.5127 
#        OTH        SUM 
#  1433.1722 23186.1936
GGDC10S %>% select_at(6:16) %>% fmean   # Mean
#        AGR        MIN        MAN         PU        CON        WRT        TRA       FIRE        GOV 
#  2526696.5  1867908.9  5538491.4   335679.5  1801597.6  3392909.5  1473269.7  1657114.8  1712300.3 
#        OTH        SUM 
#  1684527.3 21566436.8
GGDC10S %>% fmode                       # Mode
#            Country         Regioncode             Region           Variable               Year 
#              "USA"              "ASI"             "Asia"              "EMP"             "2010" 
#                AGR                MIN                MAN                 PU                CON 
# "171.315882316326"                "0" "4645.12507642586"                "0" "1.34623115930777" 
#                WRT                TRA               FIRE                GOV                OTH 
# "21.8380052682527" "8.97743416914571" "40.0701608636442"                "0" "3626.84423577048" 
#                SUM 
# "37.4822945751317"
GGDC10S %>% fmode(drop = FALSE)         # Keep data structure intact
# # A tibble: 1 x 16
#   Country Regioncode Region Variable  Year   AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV
# * <chr>   <chr>      <chr>  <chr>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 USA     ASI        Asia   EMP       2010  171.     0 4645.     0  1.35  21.8  8.98  40.1     0
# # ... with 2 more variables: OTH <dbl>, SUM <dbl>

Moving on to grouped statistics, we can compute the average value added and employment by sector and country using:

GGDC10S %>% 
  group_by(Variable, Country) %>%
  select_at(6:16) %>% fmean
# # A tibble: 85 x 13
#    Variable Country     AGR     MIN     MAN     PU    CON    WRT    TRA   FIRE     GOV    OTH    SUM
#    <chr>    <chr>     <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>  <dbl>  <dbl>
#  1 EMP      ARG       1420.   52.1   1932.  1.02e2 7.42e2 1.98e3 6.49e2  628.   2043.  9.92e2 1.05e4
#  2 EMP      BOL        964.   56.0    235.  5.35e0 1.23e2 2.82e2 1.15e2   44.6    NA   3.96e2 2.22e3
#  3 EMP      BRA      17191.  206.    6991.  3.65e2 3.52e3 8.51e3 2.05e3 4414.   5307.  5.71e3 5.43e4
#  4 EMP      BWA        188.   10.5     18.1 3.09e0 2.53e1 3.63e1 8.36e0   15.3    61.1 2.76e1 3.94e2
#  5 EMP      CHL        702.  101.     625.  2.94e1 2.96e2 6.95e2 2.58e2  272.     NA   1.00e3 3.98e3
#  6 EMP      CHN     287744. 7050.   67144.  1.61e3 2.09e4 2.89e4 1.39e4 4929.  22669.  3.10e4 4.86e5
#  7 EMP      COL       3091.  145.    1175.  3.39e1 5.24e2 2.07e3 4.70e2  649.     NA   1.73e3 9.89e3
#  8 EMP      CRI        231.    1.70   136.  1.43e1 5.76e1 1.57e2 4.24e1   54.9   128.  6.51e1 8.87e2
#  9 EMP      DEW       2490.  407.    8473.  2.26e2 2.09e3 4.44e3 1.48e3 1689.   3945.  9.99e2 2.62e4
# 10 EMP      DNK        236.    8.03   507.  1.38e1 1.71e2 4.55e2 1.61e2  181.    549.  1.11e2 2.39e3
# # ... with 75 more rows

Similarly we can aggregate using any other of the above functions.

It is important to not use dplyr’s summarize together with these functions since that would eliminate their speed gain. These functions are fast because they are executed only once and carry out the grouped computations in C++, whereas summarize will apply the function to each group in the grouped tibble.


Excursus: What is Happening Behind the Scenes?

To better explain this point it is perhaps good to shed some light on what is happening behind the scenes of dplyr and collapse. Fundamentally both packages follow different computing paradigms:

dplyr is an efficient implementation of the Split-Apply-Combine computing paradigm. Data is split into groups, these data-chunks are then passed to a function carrying out the computation, and finally recombined to produce the aggregated data.frame. This modus operandi is evident in the grouping mechanism of dplyr. When a data.frame is passed through group_by, a ‘groups’ attribute is attached:

GGDC10S %>% group_by(Variable, Country) %>% attr("groups")
# # A tibble: 85 x 3
#    Variable Country       .rows
#  * <chr>    <chr>   <list<int>>
#  1 EMP      ARG            [62]
#  2 EMP      BOL            [61]
#  3 EMP      BRA            [62]
#  4 EMP      BWA            [52]
#  5 EMP      CHL            [63]
#  6 EMP      CHN            [62]
#  7 EMP      COL            [61]
#  8 EMP      CRI            [62]
#  9 EMP      DEW            [61]
# 10 EMP      DNK            [64]
# # ... with 75 more rows

This object is a data.frame giving the unique groups and in the third (last) column vectors containing the indices of the rows belonging to that group. A command like summarize uses this information to split the data.frame into groups which are then passed sequentially to the function used and later recombined. These steps are also done in C++ which makes dplyr quite efficient.

Now collapse is based around one-pass grouped computations at the C++ level using its own grouped statistical functions. In other words the data is not split and recombined at all but the entire computation is performed in a single C++ loop running through that data and completing the computations for each group simultaneously. This modus operandi is also evident in collapse grouping objects. The method GRP.grouped_df takes a dplyr grouping object from a grouped tibble and efficiently converts it to a collapse grouping object:

GGDC10S %>% group_by(Variable, Country) %>% GRP %>% str
# List of 8
#  $ N.groups   : int 85
#  $ group.id   : int [1:5027] 46 46 46 46 46 46 46 46 46 46 ...
#  $ group.sizes: int [1:85] 62 61 62 52 63 62 61 62 61 64 ...
#  $ groups     :List of 2
#   ..$ Variable: chr [1:85] "EMP" "EMP" "EMP" "EMP" ...
#   .. ..- attr(*, "label")= chr "Variable"
#   .. ..- attr(*, "format.stata")= chr "%9s"
#   ..$ Country : chr [1:85] "ARG" "BOL" "BRA" "BWA" ...
#   .. ..- attr(*, "label")= chr "Country"
#   .. ..- attr(*, "format.stata")= chr "%9s"
#  $ group.vars : chr [1:2] "Variable" "Country"
#  $ ordered    : logi [1:2] TRUE TRUE
#  $ order      : NULL
#  $ call       : language GRP.grouped_df(X = .)
#  - attr(*, "class")= chr "GRP"

This object is a list where the first three elements give the number of groups, the group-id to which each row belongs and a vector of group-sizes. A function like fsum uses this information to (for each column) create a result vector of size ‘N.groups’ and the run through the column using the ‘group.id’ vector to add the i’th data point to the ’group.id[i]’th element of the result vector. When the loop is finished, the grouped computation is also finished.

It is obvious that collapse is faster than dplyr since it’s method of computing involves less steps, and it does not need to call statistical functions multiple times. See the benchmark section.


1.2 More Speed using collapse Verbs

collapse fast functions do not develop their maximal performance on a grouped tibble created with group_by because of the additional conversion cost of the grouping object incurred by GRP.grouped_df. This cost is already minimized through the use of C++, but we can do even better replacing group_by with collapse::fgroup_by. fgroup_by works like group_by but does the grouping with collapse::GRP (up to 10x faster than group_by) and simply attaches a collapse grouping object to the grouped_df. Thus the speed gain is 2-fold: Faster grouping and no conversion cost when calling collapse functions.

Another improvement comes from replacing the dplyr verb select with collapse::fselect, and, for selection using column names, indices or functions use collapse::get_vars instead of select_at or select_if. Next to get_vars, collapse also introduces the predicates num_vars, cat_vars, char_vars, fact_vars, logi_vars and Date_vars to efficiently select columns by type.

GGDC10S %>% fgroup_by(Variable, Country) %>% get_vars(6:16) %>% fmedian
# # A tibble: 85 x 13
#    Variable Country     AGR     MIN     MAN     PU    CON    WRT    TRA   FIRE     GOV    OTH    SUM
#    <chr>    <chr>     <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>  <dbl>  <dbl>
#  1 EMP      ARG       1325.   47.4   1988.  1.05e2 7.82e2 1.85e3 5.80e2  464.   1739.   866.  9.74e3
#  2 EMP      BOL        943.   53.5    167.  4.46e0 6.60e1 1.32e2 9.70e1   15.3    NA    384.  1.84e3
#  3 EMP      BRA      17481.  225.    7208.  3.76e2 4.05e3 6.45e3 1.58e3 4355.   4450.  4479.  5.19e4
#  4 EMP      BWA        175.   12.2     13.1 3.71e0 1.90e1 2.11e1 6.75e0   10.4    53.8   31.2 3.61e2
#  5 EMP      CHL        690.   93.9    607.  2.58e1 2.30e2 4.84e2 2.05e2  106.     NA    900.  3.31e3
#  6 EMP      CHN     293915  8150.   61761.  1.14e3 1.06e4 1.70e4 9.56e3 4328.  19468.  9954.  4.45e5
#  7 EMP      COL       3006.   84.0   1033.  3.71e1 4.19e2 1.55e3 3.91e2  655.     NA   1430.  8.63e3
#  8 EMP      CRI        216.    1.49   114.  7.92e0 5.50e1 8.98e1 2.55e1   19.6   122.    60.6 7.19e2
#  9 EMP      DEW       2178   320.    8459.  2.47e2 2.10e3 4.45e3 1.53e3 1656    3700    900   2.65e4
# 10 EMP      DNK        187.    3.75   508.  1.36e1 1.65e2 4.61e2 1.61e2  169.    642.   104.  2.42e3
# # ... with 75 more rows

microbenchmark(collapse = GGDC10S %>% fgroup_by(Variable, Country) %>% get_vars(6:16) %>% fmedian,
               hybrid = GGDC10S %>% group_by(Variable, Country) %>% select_at(6:16) %>% fmedian,
               dplyr = GGDC10S %>% group_by(Variable, Country) %>% select_at(6:16) %>% summarise_all(median, na.rm = TRUE))
# Unit: microseconds
#      expr      min        lq      mean    median        uq       max neval cld
#  collapse   938.46  1022.354  1130.047  1046.898  1097.324  7569.703   100 a  
#    hybrid 12165.16 12642.649 13353.758 12950.337 13519.303 20939.736   100  b 
#     dplyr 58681.15 60824.925 63850.124 62604.338 66157.140 81467.906   100   c

Benchmarks on the different components of this code and with larger data are provided under ‘Benchmarks’. Note that a grouped tibble created with fgroup_by can no longer be used for grouped computations with dplyr verbs like mutate or summarize. To avoid errors with these functions and print.grouped_df, [.grouped_df etc., the classes assigned after fgroup_by are reshuffled, so that the data.frame is treated by the dplyr ecosystem like a normal tibble:

class(group_by(GGDC10S, Variable, Country))
# [1] "grouped_df" "tbl_df"     "tbl"        "data.frame"

class(fgroup_by(GGDC10S, Variable, Country))
# [1] "GRP_df"     "tbl_df"     "tbl"        "grouped_df" "data.frame"

In general fgroup_by first assigns the class GDP_df which is for printing grouping information, then the object classes (tbl_df, data.table or whatever else), followed by classes grouped_df and data.frame, and adds the grouping object in a ‘groups’ attribute. The function fungroup removes classes ‘GDP_df’ and ‘grouped_df’ and the ‘groups’ attribute (and can thus also be used for grouped tibbles created with dplyr::group_by). Thus any kind of data frame based class can be grouped with fgroup_by, and still retain full responsiveness to all methods defined for that class. Functions performing aggregation on the grouped data frame remove the grouping object and classes afterwards, yielding an object with the same class and attributes as the input.

The print method shown below reports the grouping variables, and then in square brackets the information [number of groups | average group size (standard-deviation of group sizes)]:

head(fgroup_by(GGDC10S, Variable, Country))
# # A tibble: 6 x 16
#   Country Regioncode Region Variable  Year   AGR   MIN    MAN     PU    CON   WRT   TRA  FIRE   GOV
#   <chr>   <chr>      <chr>  <chr>    <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA     SSA        Sub-s~ VA        1960  NA   NA    NA     NA     NA     NA    NA    NA    NA   
# 2 BWA     SSA        Sub-s~ VA        1961  NA   NA    NA     NA     NA     NA    NA    NA    NA   
# 3 BWA     SSA        Sub-s~ VA        1962  NA   NA    NA     NA     NA     NA    NA    NA    NA   
# 4 BWA     SSA        Sub-s~ VA        1963  NA   NA    NA     NA     NA     NA    NA    NA    NA   
# 5 BWA     SSA        Sub-s~ VA        1964  16.3  3.49  0.737  0.104  0.660  6.24  1.66  1.12  4.82
# 6 BWA     SSA        Sub-s~ VA        1965  15.7  2.50  1.02   0.135  1.35   7.06  1.94  1.25  5.70
# # ... with 2 more variables: OTH <dbl>, SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

Note further that fselect and get_vars are not full drop-in replacements for select because they do not have a grouped_df method:

GGDC10S %>% group_by(Variable, Country) %>% select_at(6:16) %>% tail(3)
# # A tibble: 3 x 13
# # Groups:   Variable, Country [1]
#   Variable Country   AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV   OTH    SUM
#   <chr>    <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
# 1 EMP      EGY     5206.  29.0 2436.  307. 2733. 2977. 1992.  801. 5539.    NA 22020.
# 2 EMP      EGY     5186.  27.6 2374.  318. 2795. 3020. 2048.  815. 5636.    NA 22219.
# 3 EMP      EGY     5161.  24.8 2348.  325. 2931. 3110. 2065.  832. 5736.    NA 22533.
GGDC10S %>% group_by(Variable, Country) %>% get_vars(6:16) %>% tail(3)
# # A tibble: 3 x 11
#     AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV   OTH    SUM
#   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
# 1 5206.  29.0 2436.  307. 2733. 2977. 1992.  801. 5539.    NA 22020.
# 2 5186.  27.6 2374.  318. 2795. 3020. 2048.  815. 5636.    NA 22219.
# 3 5161.  24.8 2348.  325. 2931. 3110. 2065.  832. 5736.    NA 22533.

Since by default keep.group_vars = TRUE in the Fast Statistical Functions, the end result is nevertheless the same:

GGDC10S %>% group_by(Variable, Country) %>% select_at(6:16) %>% fmean %>% tail(3)
# # A tibble: 3 x 13
#   Variable Country     AGR     MIN     MAN      PU    CON    WRT    TRA   FIRE     GOV    OTH    SUM
#   <chr>    <chr>     <dbl>   <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>  <dbl>  <dbl>
# 1 VA       VEN      6.86e3  3.55e4  19553.   1064. 1.17e4 1.93e4 8.03e3 5.60e3 NA      19986. 1.28e5
# 2 VA       ZAF      1.64e4  4.29e4  87572.  13826. 1.64e4 6.83e4 4.53e4 6.64e4  7.58e4 30167. 4.63e5
# 3 VA       ZMB      1.27e6  1.01e6 899510. 219164. 8.66e5 2.10e6 7.05e5 9.10e5  1.10e6 81871. 9.16e6
GGDC10S %>% group_by(Variable, Country) %>% get_vars(6:16) %>% fmean %>% tail(3)
# # A tibble: 3 x 13
#   Variable Country     AGR     MIN     MAN      PU    CON    WRT    TRA   FIRE     GOV    OTH    SUM
#   <chr>    <chr>     <dbl>   <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>  <dbl>  <dbl>
# 1 VA       VEN      6.86e3  3.55e4  19553.   1064. 1.17e4 1.93e4 8.03e3 5.60e3 NA      19986. 1.28e5
# 2 VA       ZAF      1.64e4  4.29e4  87572.  13826. 1.64e4 6.83e4 4.53e4 6.64e4  7.58e4 30167. 4.63e5
# 3 VA       ZMB      1.27e6  1.01e6 899510. 219164. 8.66e5 2.10e6 7.05e5 9.10e5  1.10e6 81871. 9.16e6

Another useful verb introduced by collapse is fgroup_vars, which can be used to efficiently obtain the grouping columns or grouping variables from a grouped tibble:

# fgroup_by fully supports grouped tibbles created with group_by or fgroup_by: 
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars %>% head(3)
# # A tibble: 3 x 2
#   Variable Country
#   <chr>    <chr>  
# 1 VA       BWA    
# 2 VA       BWA    
# 3 VA       BWA
GGDC10S %>% fgroup_by(Variable, Country) %>% fgroup_vars %>% head(3)
# # A tibble: 3 x 2
#   Variable Country
#   <chr>    <chr>  
# 1 VA       BWA    
# 2 VA       BWA    
# 3 VA       BWA

# The other possibilities:
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("unique") %>% head(3)
# # A tibble: 3 x 2
#   Variable Country
#   <chr>    <chr>  
# 1 EMP      ARG    
# 2 EMP      BOL    
# 3 EMP      BRA
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("names")
# [1] "Variable" "Country"
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("indices")
# [1] 4 1
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("named_indices")
# Variable  Country 
#        4        1
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("logical")
#  [1]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("named_logical")
#    Country Regioncode     Region   Variable       Year        AGR        MIN        MAN         PU 
#       TRUE      FALSE      FALSE       TRUE      FALSE      FALSE      FALSE      FALSE      FALSE 
#        CON        WRT        TRA       FIRE        GOV        OTH        SUM 
#      FALSE      FALSE      FALSE      FALSE      FALSE      FALSE      FALSE

Another collapse verb to mention here is fsubset, a faster alternative to dplyr::filter which also provides an option to flexibly subset columns after the select argument:

# Two equivalent calls, the first is substantially faster
GGDC10S %>% fsubset(Variable == "VA" & Year > 1990, Country, Year, AGR:GOV) %>% head(3)
# # A tibble: 3 x 11
#   Country  Year   AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV
#   <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA      1991  303. 2647.  473.  161.  580.  807.  233.  433. 1073.
# 2 BWA      1992  333. 2691.  537.  178.  679.  725.  285.  517. 1234.
# 3 BWA      1993  405. 2625.  567.  219.  634.  772.  350.  673. 1487.

GGDC10S %>% filter(Variable == "VA" & Year > 1990) %>% select(Country, Year, AGR:GOV) %>% head(3)
# # A tibble: 3 x 11
#   Country  Year   AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV
#   <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA      1991  303. 2647.  473.  161.  580.  807.  233.  433. 1073.
# 2 BWA      1992  333. 2691.  537.  178.  679.  725.  285.  517. 1234.
# 3 BWA      1993  405. 2625.  567.  219.  634.  772.  350.  673. 1487.

collapse also offers roworder, frename, colorder and ftransform/TRA as fast replacements for dplyr::arrange, dplyr::rename, dplyr::relocate and dplyr::mutate.

1.3 Multi-Function Aggregations

One can also aggregate with multiple functions at the same time. For such operations it is often necessary to use curly braces { to prevent first argument injection so that %>% cbind(FUN1(.), FUN2(.)) does not evaluate as %>% cbind(., FUN1(.), FUN2(.)):

GGDC10S %>%
  fgroup_by(Variable, Country) %>%
  get_vars(6:16) %>% {
    cbind(fmedian(.),
          add_stub(fmean(., keep.group_vars = FALSE), "mean_"))
    } %>% head(3)
#   Variable Country        AGR       MIN       MAN         PU        CON      WRT        TRA
# 1      EMP     ARG  1324.5255  47.35255 1987.5912 104.738825  782.40283 1854.612  579.93982
# 2      EMP     BOL   943.1612  53.53538  167.1502   4.457895   65.97904  132.225   96.96828
# 3      EMP     BRA 17480.9810 225.43693 7207.7915 375.851832 4054.66103 6454.523 1580.81120
#         FIRE      GOV       OTH       SUM   mean_AGR  mean_MIN  mean_MAN    mean_PU  mean_CON
# 1  464.39920 1738.836  866.1119  9743.223  1419.8013  52.08903 1931.7602 101.720936  742.4044
# 2   15.34259       NA  384.0678  1842.055   964.2103  56.03295  235.0332   5.346433  122.7827
# 3 4354.86210 4449.942 4478.6927 51881.110 17191.3529 206.02389 6991.3710 364.573404 3524.7384
#    mean_WRT  mean_TRA  mean_FIRE mean_GOV  mean_OTH  mean_SUM
# 1 1982.1775  648.5119  627.79291 2043.471  992.4475 10542.177
# 2  281.5164  115.4728   44.56442       NA  395.5650  2220.524
# 3 8509.4612 2054.3731 4413.54448 5307.280 5710.2665 54272.985

The function add_stub used above is a collapse function adding a prefix (default) or suffix to variables names. The collapse predicate add_vars provides a more efficient alternative to cbind.data.frame. The idea here is ‘adding’ variables to the data.frame in the first argument i.e. the attributes of the first argument are preserved, so the expression below still gives a tibble instead of a data.frame:

GGDC10S %>%
  fgroup_by(Variable, Country) %>% {
   add_vars(get_vars(., "Reg", regex = TRUE) %>% ffirst, # Regular expression matching column names
            num_vars(.) %>% fmean(keep.group_vars = FALSE) %>% add_stub("mean_"), # num_vars selects all numeric variables
            fselect(., PU:TRA) %>% fmedian(keep.group_vars = FALSE) %>% add_stub("median_"), 
            fselect(., PU:CON) %>% fmin(keep.group_vars = FALSE) %>% add_stub("min_"))      
  } %>% head(3)
# # A tibble: 3 x 22
#   Variable Country Regioncode Region mean_Year mean_AGR mean_MIN mean_MAN mean_PU mean_CON mean_WRT
#   <chr>    <chr>   <chr>      <chr>      <dbl>    <dbl>    <dbl>    <dbl>   <dbl>    <dbl>    <dbl>
# 1 EMP      ARG     LAM        Latin~     1980.    1420.     52.1    1932.  102.       742.    1982.
# 2 EMP      BOL     LAM        Latin~     1980      964.     56.0     235.    5.35     123.     282.
# 3 EMP      BRA     LAM        Latin~     1980.   17191.    206.     6991.  365.      3525.    8509.
# # ... with 11 more variables: mean_TRA <dbl>, mean_FIRE <dbl>, mean_GOV <dbl>, mean_OTH <dbl>,
# #   mean_SUM <dbl>, median_PU <dbl>, median_CON <dbl>, median_WRT <dbl>, median_TRA <dbl>,
# #   min_PU <dbl>, min_CON <dbl>

Another nice feature of add_vars is that it can also very efficiently reorder columns i.e. bind columns in a different order than they are passed. This can be done by simply specifying the positions the added columns should have in the final data frame, and then add_vars shifts the first argument columns to the right to fill in the gaps.

GGDC10S %>%
  fsubset(Variable == "VA", Country, AGR, SUM) %>% 
  fgroup_by(Country) %>% {
   add_vars(fgroup_vars(.,"unique"),
            fmean(., keep.group_vars = FALSE) %>% add_stub("mean_"),
            fsd(., keep.group_vars = FALSE) %>% add_stub("sd_"), 
            pos = c(2,4,3,5))
  } %>% head(3)
# # A tibble: 3 x 5
#   Country mean_AGR sd_AGR mean_SUM  sd_SUM
#   <chr>      <dbl>  <dbl>    <dbl>   <dbl>
# 1 ARG       14951. 33061.  152534. 301316.
# 2 BOL        3300.  4456.   22619.  33173.
# 3 BRA       76870. 59442. 1200563. 976963.

A much more compact solution to multi-function and multi-type aggregation is offered by the function collapg:

# This aggregates numeric colums using the mean (fmean) and categorical columns with the mode (fmode)
GGDC10S %>% fgroup_by(Variable, Country) %>% collapg %>% head(3)
# # A tibble: 3 x 16
#   Variable Country Regioncode Region  Year    AGR   MIN   MAN     PU   CON   WRT   TRA   FIRE   GOV
#   <chr>    <chr>   <chr>      <chr>  <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl>
# 1 EMP      ARG     LAM        Latin~ 1980.  1420.  52.1 1932. 102.    742. 1982.  649.  628.  2043.
# 2 EMP      BOL     LAM        Latin~ 1980    964.  56.0  235.   5.35  123.  282.  115.   44.6   NA 
# 3 EMP      BRA     LAM        Latin~ 1980. 17191. 206.  6991. 365.   3525. 8509. 2054. 4414.  5307.
# # ... with 2 more variables: OTH <dbl>, SUM <dbl>

By default it aggregates numeric columns using the fmean and categorical columns using fmode, and preserves the order of all columns. Changing these defaults is very easy:

# This aggregates numeric colums using the median and categorical columns using the first value
GGDC10S %>% fgroup_by(Variable, Country) %>% collapg(fmedian, flast) %>% head(3)
# # A tibble: 3 x 16
#   Variable Country Regioncode Region  Year    AGR   MIN   MAN     PU    CON   WRT    TRA   FIRE
#   <chr>    <chr>   <chr>      <chr>  <dbl>  <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl>  <dbl>  <dbl>
# 1 EMP      ARG     LAM        Latin~ 1980.  1325.  47.4 1988. 105.    782.  1855.  580.   464. 
# 2 EMP      BOL     LAM        Latin~ 1980    943.  53.5  167.   4.46   66.0  132.   97.0   15.3
# 3 EMP      BRA     LAM        Latin~ 1980. 17481. 225.  7208. 376.   4055.  6455. 1581.  4355. 
# # ... with 3 more variables: GOV <dbl>, OTH <dbl>, SUM <dbl>

One can apply multiple functions to both numeric and/or categorical data:

GGDC10S %>% fgroup_by(Variable, Country) %>%
  collapg(list(fmean, fmedian), list(first, fmode, flast)) %>% head(3)
# # A tibble: 3 x 32
#   Variable Country first.Regioncode fmode.Regioncode flast.Regioncode first.Region fmode.Region
#   <chr>    <chr>   <chr>            <chr>            <chr>            <chr>        <chr>       
# 1 EMP      ARG     LAM              LAM              LAM              Latin Ameri~ Latin Ameri~
# 2 EMP      BOL     LAM              LAM              LAM              Latin Ameri~ Latin Ameri~
# 3 EMP      BRA     LAM              LAM              LAM              Latin Ameri~ Latin Ameri~
# # ... with 25 more variables: flast.Region <chr>, fmean.Year <dbl>, fmedian.Year <dbl>,
# #   fmean.AGR <dbl>, fmedian.AGR <dbl>, fmean.MIN <dbl>, fmedian.MIN <dbl>, fmean.MAN <dbl>,
# #   fmedian.MAN <dbl>, fmean.PU <dbl>, fmedian.PU <dbl>, fmean.CON <dbl>, fmedian.CON <dbl>,
# #   fmean.WRT <dbl>, fmedian.WRT <dbl>, fmean.TRA <dbl>, fmedian.TRA <dbl>, fmean.FIRE <dbl>,
# #   fmedian.FIRE <dbl>, fmean.GOV <dbl>, fmedian.GOV <dbl>, fmean.OTH <dbl>, fmedian.OTH <dbl>,
# #   fmean.SUM <dbl>, fmedian.SUM <dbl>

Applying multiple functions to only numeric (or only categorical) data allows return in a long format:

GGDC10S %>% fgroup_by(Variable, Country) %>%
  collapg(list(fmean, fmedian), cols = is.numeric, return = "long") %>% head(3)
# # A tibble: 3 x 15
#   Function Variable Country  Year    AGR   MIN   MAN     PU   CON   WRT   TRA   FIRE   GOV   OTH
#   <chr>    <chr>    <chr>   <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
# 1 fmean    EMP      ARG     1980.  1420.  52.1 1932. 102.    742. 1982.  649.  628.  2043.  992.
# 2 fmean    EMP      BOL     1980    964.  56.0  235.   5.35  123.  282.  115.   44.6   NA   396.
# 3 fmean    EMP      BRA     1980. 17191. 206.  6991. 365.   3525. 8509. 2054. 4414.  5307. 5710.
# # ... with 1 more variable: SUM <dbl>

Finally, collapg also makes it very easy to apply aggregator functions to certain columns only:

GGDC10S %>% fgroup_by(Variable, Country) %>%
  collapg(custom = list(fmean = 6:8, fmedian = 10:12)) %>% head(3)
# # A tibble: 3 x 8
#   Variable Country fmean.AGR fmean.MIN fmean.MAN fmedian.CON fmedian.WRT fmedian.TRA
#   <chr>    <chr>       <dbl>     <dbl>     <dbl>       <dbl>       <dbl>       <dbl>
# 1 EMP      ARG         1420.      52.1     1932.       782.        1855.       580. 
# 2 EMP      BOL          964.      56.0      235.        66.0        132.        97.0
# 3 EMP      BRA        17191.     206.      6991.      4055.        6455.      1581.

To understand more about collapg, look it up in the documentation (?collapg).

1.4 Weighted Aggregations

Weighted aggregations are possible with the functions fsum, fprod, fmean, fmedian, fnth, fmode, fvar and fsd. The implementation is such that by default (option keep.w = TRUE) these functions also aggregate the weights, so that further weighted computations can be performed on the aggregated data. fprod saves the product of the weights, whereas the other functions save the sum of the weights in a column next to the grouping variables. If na.rm = TRUE (the default), rows with missing weights are omitted from the computation.

# This computes a frequency-weighted grouped standard-deviation, taking the total EMP / VA as weight
GGDC10S %>%
  fgroup_by(Variable, Country) %>%
  fselect(AGR:SUM) %>% fsd(SUM) %>% head(3)
# # A tibble: 3 x 13
#   Variable Country  sum.SUM    AGR   MIN   MAN    PU   CON   WRT    TRA   FIRE   GOV   OTH
#   <chr>    <chr>      <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl> <dbl>
# 1 EMP      ARG      653615.  225.   22.2  176. 20.5   285.  856.  195.   493.  1123.  506.
# 2 EMP      BOL      135452.   99.7  17.1  168.  4.87  123.  324.   98.1   69.8   NA   258.
# 3 EMP      BRA     3364925. 1587.   73.8 2952. 93.8  1861. 6285. 1306.  3003.  3621. 4257.

# This computes a weighted grouped mode, taking the total EMP / VA as weight
GGDC10S %>%
  fgroup_by(Variable, Country) %>%
  fselect(AGR:SUM) %>% fmode(SUM) %>% head(3)
# # A tibble: 3 x 13
#   Variable Country  sum.SUM    AGR   MIN    MAN    PU   CON    WRT   TRA   FIRE    GOV    OTH
#   <chr>    <chr>      <dbl>  <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl>  <dbl>  <dbl>  <dbl>
# 1 EMP      ARG      653615.  1162. 127.   2164. 152.  1415.  3768. 1060.  1748.  4336.  1999.
# 2 EMP      BOL      135452.   819.  37.6   604.  10.8  433.   893.  333.   321.    NA   1057.
# 3 EMP      BRA     3364925. 16451. 313.  11841. 388.  8154. 21860. 5169. 12011. 12149. 14235.

The weighted variance / standard deviation is currently only implemented with frequency weights.

Weighted aggregations may also be performed with collapg. By default fsum is used to compute a sum of the weights, but it is also possible here to aggregate the weights with other functions:

# This aggregates numeric colums using the weighted mean (the default) and categorical columns using the weighted mode (the default).
# Weights (column SUM) are aggregated using both the sum and the maximum. 
GGDC10S %>% group_by(Variable, Country) %>% 
  collapg(w = SUM, wFUN = list(fsum, fmax)) %>% head(3)
# # A tibble: 3 x 17
#   Variable Country fsum.SUM fmax.SUM Regioncode Region  Year    AGR   MIN   MAN     PU   CON    WRT
#   <chr>    <chr>      <dbl>    <dbl> <chr>      <chr>  <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl>  <dbl>
# 1 EMP      ARG      653615.   17929. LAM        Latin~ 1985.  1361.  56.5 1935. 105.    811.  2217.
# 2 EMP      BOL      135452.    4508. LAM        Latin~ 1987.   977.  57.9  296.   7.07  167.   400.
# 3 EMP      BRA     3364925.  102572. LAM        Latin~ 1989. 17746. 238.  8466. 389.   4436. 11376.
# # ... with 4 more variables: TRA <dbl>, FIRE <dbl>, GOV <dbl>, OTH <dbl>

2. Fast Transformations

collapse also provides some fast transformations that significantly extend the scope and speed of manipulations that can be performed with dplyr::mutate.

2.1 Fast Transform and Compute Variables

The function ftransform can be used to manipulate columns in the same ways as mutate:

GGDC10S %>% fsubset(Variable == "VA", Country, Year, AGR, SUM) %>%
  ftransform(AGR_perc = AGR / SUM * 100,  # Computing % of VA in Agriculture
             AGR_mean = fmean(AGR),       # Average Agricultural VA
             AGR = NULL, SUM = NULL) %>%  # Deleting columns AGR and SUM
             head
# # A tibble: 6 x 4
#   Country  Year AGR_perc AGR_mean
#   <chr>   <dbl>    <dbl>    <dbl>
# 1 BWA      1960     NA   5137561.
# 2 BWA      1961     NA   5137561.
# 3 BWA      1962     NA   5137561.
# 4 BWA      1963     NA   5137561.
# 5 BWA      1964     43.5 5137561.
# 6 BWA      1965     40.0 5137561.

The modification brought by ftransformv enables transformations of groups of columns like dplyr::mutate_at and dplyr::mutate_if:

# This replaces variables mpg, carb and wt by their log (.c turns expressions into character vectors)
mtcars %>% ftransformv(.c(mpg, carb, wt), log) %>% head
#                        mpg cyl disp  hp drat        wt  qsec vs am gear      carb
# Mazda RX4         3.044522   6  160 110 3.90 0.9631743 16.46  0  1    4 1.3862944
# Mazda RX4 Wag     3.044522   6  160 110 3.90 1.0560527 17.02  0  1    4 1.3862944
# Datsun 710        3.126761   4  108  93 3.85 0.8415672 18.61  1  1    4 0.0000000
# Hornet 4 Drive    3.063391   6  258 110 3.08 1.1678274 19.44  1  0    3 0.0000000
# Hornet Sportabout 2.928524   8  360 175 3.15 1.2354715 17.02  0  0    3 0.6931472
# Valiant           2.895912   6  225 105 2.76 1.2412686 20.22  1  0    3 0.0000000

# Logging numeric variables
iris %>% ftransformv(is.numeric, log) %>% head
#   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 1     1.629241    1.252763    0.3364722  -1.6094379  setosa
# 2     1.589235    1.098612    0.3364722  -1.6094379  setosa
# 3     1.547563    1.163151    0.2623643  -1.6094379  setosa
# 4     1.526056    1.131402    0.4054651  -1.6094379  setosa
# 5     1.609438    1.280934    0.3364722  -1.6094379  setosa
# 6     1.686399    1.360977    0.5306283  -0.9162907  setosa

Instead of column = value type arguments, it is also possible to pass a single list of transformed variables to ftransform, which will be regarded in the same way as an evaluated list of column = value arguments. It can be used for more complex transformations:

# Logging values and replacing generated Inf values
mtcars %>% ftransform(fselect(., mpg, cyl, vs:gear) %>% lapply(log) %>% replace_Inf) %>% head
#                        mpg      cyl disp  hp drat    wt  qsec vs am     gear carb
# Mazda RX4         3.044522 1.791759  160 110 3.90 2.620 16.46 NA  0 1.386294    4
# Mazda RX4 Wag     3.044522 1.791759  160 110 3.90 2.875 17.02 NA  0 1.386294    4
# Datsun 710        3.126761 1.386294  108  93 3.85 2.320 18.61  0  0 1.386294    1
# Hornet 4 Drive    3.063391 1.791759  258 110 3.08 3.215 19.44  0 NA 1.098612    1
# Hornet Sportabout 2.928524 2.079442  360 175 3.15 3.440 17.02 NA NA 1.098612    2
# Valiant           2.895912 1.791759  225 105 2.76 3.460 20.22  0 NA 1.098612    1

If only the computed columns need to be returned, fcompute provides an efficient alternative:

GGDC10S %>% fsubset(Variable == "VA", Country, Year, AGR, SUM) %>%
  fcompute(AGR_perc = AGR / SUM * 100,
           AGR_mean = fmean(AGR)) %>% head
# # A tibble: 6 x 2
#   AGR_perc AGR_mean
#      <dbl>    <dbl>
# 1     NA   5137561.
# 2     NA   5137561.
# 3     NA   5137561.
# 4     NA   5137561.
# 5     43.5 5137561.
# 6     40.0 5137561.

ftransform and fcompute are an order of magnitude faster than mutate, but they do not support grouped computations using arbitrary functions. We will see that this is hardly a limitation as collapse provides very efficient and elegant alternative programming mechanisms…

2.2 Replacing and Sweeping out Statistics

All statistical (scalar-valued) functions in the collapse package (fsum, fprod, fmean, fmedian, fmode, fvar, fsd, fmin, fmax, fnth, ffirst, flast, fNobs, fNdistinct) have a TRA argument which can be used to efficiently transforms data by either (column-wise) replacing data values with computed statistics or sweeping the statistics out of the data. Operations can be specified using either an integer or quoted operator / string. The 10 operations supported by TRA are:

Simple transformations are again straightforward to specify:

# This subtracts the median value from all data points i.e. centers on the median
GGDC10S %>% num_vars %>% fmedian(TRA = "-") %>% head
# # A tibble: 6 x 12
#    Year    AGR   MIN    MAN    PU    CON    WRT    TRA  FIRE    GOV    OTH     SUM
#   <dbl>  <dbl> <dbl>  <dbl> <dbl>  <dbl>  <dbl>  <dbl> <dbl>  <dbl>  <dbl>   <dbl>
# 1   -22    NA    NA     NA    NA     NA     NA     NA    NA     NA     NA      NA 
# 2   -21    NA    NA     NA    NA     NA     NA     NA    NA     NA     NA      NA 
# 3   -20    NA    NA     NA    NA     NA     NA     NA    NA     NA     NA      NA 
# 4   -19    NA    NA     NA    NA     NA     NA     NA    NA     NA     NA      NA 
# 5   -18 -4378. -170. -3717. -168. -1473. -3767. -1173. -959. -3924. -1431. -23149.
# 6   -17 -4379. -171. -3717. -168. -1472. -3767. -1173. -959. -3923. -1430. -23147.

# This replaces all data points with the mode
GGDC10S %>% char_vars %>% fmode(TRA = "replace") %>% head
# # A tibble: 6 x 4
#   Country Regioncode Region Variable
#   <chr>   <chr>      <chr>  <chr>   
# 1 USA     ASI        Asia   EMP     
# 2 USA     ASI        Asia   EMP     
# 3 USA     ASI        Asia   EMP     
# 4 USA     ASI        Asia   EMP     
# 5 USA     ASI        Asia   EMP     
# 6 USA     ASI        Asia   EMP

Similarly for grouped transformations:

# Replacing data with the 2nd quartile (25%)
GGDC10S %>%
  fselect(Variable, Country, AGR:SUM) %>% 
   fgroup_by(Variable, Country) %>% fnth(0.25, TRA = "replace_fill") %>% head(3)
# # A tibble: 3 x 13
#   Variable Country   AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV   OTH   SUM
#   <chr>    <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 VA       BWA      61.3  21.7  23.1  6.31  23.2  26.7  8.98  11.3  27.0  10.1  220.
# 2 VA       BWA      61.3  21.7  23.1  6.31  23.2  26.7  8.98  11.3  27.0  10.1  220.
# 3 VA       BWA      61.3  21.7  23.1  6.31  23.2  26.7  8.98  11.3  27.0  10.1  220.
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

# Scaling sectoral data by Variable and Country
GGDC10S %>%
  fselect(Variable, Country, AGR:SUM) %>% 
   fgroup_by(Variable, Country) %>% fsd(TRA = "/") %>% head
# # A tibble: 6 x 13
#   Variable Country     AGR      MIN      MAN       PU      CON      WRT      TRA     FIRE      GOV
#   <chr>    <chr>     <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>
# 1 VA       BWA     NA      NA       NA       NA       NA       NA       NA       NA       NA      
# 2 VA       BWA     NA      NA       NA       NA       NA       NA       NA       NA       NA      
# 3 VA       BWA     NA      NA       NA       NA       NA       NA       NA       NA       NA      
# 4 VA       BWA     NA      NA       NA       NA       NA       NA       NA       NA       NA      
# 5 VA       BWA      0.0270  5.56e-4  5.23e-4  3.88e-4  5.11e-4  0.00194  0.00154  5.23e-4  0.00134
# 6 VA       BWA      0.0260  3.97e-4  7.23e-4  5.03e-4  1.04e-3  0.00220  0.00180  5.83e-4  0.00158
# # ... with 2 more variables: OTH <dbl>, SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

The benchmarks below will demonstrate that these internal sweeping and replacement operations fully performed in C++ compute significantly faster than using dplyr::mutate, especially as the number of groups grows large. The S3 generic nature of the Fast Statistical Functions further allows us to perform grouped mutations on the fly (together with ftransform or fcompute), without the need of first creating a grouped tibble:

# AGR_gmed = TRUE if AGR is greater than it's median value, grouped by Variable and Country
# Note: This calls fmedian.default
settransform(GGDC10S, AGR_gmed = AGR > fmedian(AGR, list(Variable, Country), TRA = "replace"))
tail(GGDC10S, 3)
# # A tibble: 3 x 17
#   Country Regioncode Region Variable  Year   AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV
#   <chr>   <chr>      <chr>  <chr>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EGY     MENA       Middl~ EMP       2010 5206.  29.0 2436.  307. 2733. 2977. 1992.  801. 5539.
# 2 EGY     MENA       Middl~ EMP       2011 5186.  27.6 2374.  318. 2795. 3020. 2048.  815. 5636.
# 3 EGY     MENA       Middl~ EMP       2012 5161.  24.8 2348.  325. 2931. 3110. 2065.  832. 5736.
# # ... with 3 more variables: OTH <dbl>, SUM <dbl>, AGR_gmed <lgl>

# Dividing (scaling) the sectoral data (columns 6 through 16) by their grouped standard deviation
settransformv(GGDC10S, 6:16, fsd, list(Variable, Country), TRA = "/", apply = FALSE)
tail(GGDC10S, 3)
# # A tibble: 3 x 17
#   Country Regioncode Region Variable  Year   AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV
#   <chr>   <chr>      <chr>  <chr>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EGY     MENA       Middl~ EMP       2010  8.41  2.28  4.32  3.56  3.62  3.75  3.75  3.14  3.80
# 2 EGY     MENA       Middl~ EMP       2011  8.38  2.17  4.21  3.68  3.70  3.81  3.86  3.19  3.86
# 3 EGY     MENA       Middl~ EMP       2012  8.34  1.95  4.17  3.76  3.88  3.92  3.89  3.26  3.93
# # ... with 3 more variables: OTH <dbl>, SUM <dbl>, AGR_gmed <lgl>
rm(GGDC10S)

Weights are easily added to any grouped transformation:

# This subtracts weighted group means from the data, using SUM column as weights.. 
GGDC10S %>%
  fselect(Variable, Country, AGR:SUM) %>% 
   fgroup_by(Variable, Country) %>% fmean(SUM, "-") %>% head
# # A tibble: 6 x 13
#   Variable Country   SUM    AGR     MIN    MAN    PU    CON    WRT    TRA   FIRE    GOV    OTH
#   <chr>    <chr>   <dbl>  <dbl>   <dbl>  <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
# 1 VA       BWA      NA      NA      NA     NA    NA     NA     NA     NA     NA     NA     NA 
# 2 VA       BWA      NA      NA      NA     NA    NA     NA     NA     NA     NA     NA     NA 
# 3 VA       BWA      NA      NA      NA     NA    NA     NA     NA     NA     NA     NA     NA 
# 4 VA       BWA      NA      NA      NA     NA    NA     NA     NA     NA     NA     NA     NA 
# 5 VA       BWA      37.5 -1301. -13317. -2965. -529. -2746. -6540. -2157. -4431. -7551. -2613.
# 6 VA       BWA      39.3 -1302. -13318. -2964. -529. -2745. -6540. -2156. -4431. -7550. -2613.
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

Sequential operations are also easily performed:

# This scales and then subtracts the median
GGDC10S %>%
  fselect(Variable, Country, AGR:SUM) %>% 
   fgroup_by(Variable, Country) %>% fsd(TRA = "/") %>% fmedian(TRA = "-")
# # A tibble: 5,027 x 13
#    Variable Country    AGR    MIN    MAN     PU    CON     WRT     TRA    FIRE    GOV     OTH    SUM
#  * <chr>    <chr>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>  <dbl>   <dbl>  <dbl>
#  1 VA       BWA     NA     NA     NA     NA     NA     NA      NA      NA      NA     NA      NA    
#  2 VA       BWA     NA     NA     NA     NA     NA     NA      NA      NA      NA     NA      NA    
#  3 VA       BWA     NA     NA     NA     NA     NA     NA      NA      NA      NA     NA      NA    
#  4 VA       BWA     NA     NA     NA     NA     NA     NA      NA      NA      NA     NA      NA    
#  5 VA       BWA     -0.182 -0.235 -0.183 -0.245 -0.118 -0.0820 -0.0724 -0.0661 -0.108 -0.0848 -0.146
#  6 VA       BWA     -0.183 -0.235 -0.183 -0.245 -0.117 -0.0817 -0.0722 -0.0660 -0.108 -0.0846 -0.146
#  7 VA       BWA     -0.180 -0.235 -0.183 -0.245 -0.117 -0.0813 -0.0720 -0.0659 -0.107 -0.0843 -0.145
#  8 VA       BWA     -0.177 -0.235 -0.183 -0.245 -0.117 -0.0826 -0.0724 -0.0659 -0.107 -0.0841 -0.146
#  9 VA       BWA     -0.174 -0.235 -0.183 -0.245 -0.117 -0.0823 -0.0717 -0.0661 -0.108 -0.0848 -0.146
# 10 VA       BWA     -0.173 -0.234 -0.182 -0.243 -0.115 -0.0821 -0.0715 -0.0660 -0.108 -0.0846 -0.145
# # ... with 5,017 more rows
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

Of course it is also possible to combine multiple functions as in the aggregation section, or to add variables to existing data:

# This adds a groupwise observation count next to each column
add_vars(GGDC10S, seq(7,27,2)) <- GGDC10S %>%
    fgroup_by(Variable, Country) %>% fselect(AGR:SUM) %>%
    fNobs("replace_fill") %>% add_stub("N_")

head(GGDC10S)
# # A tibble: 6 x 27
#   Country Regioncode Region Variable  Year   AGR N_AGR   MIN N_MIN    MAN N_MAN     PU  N_PU    CON
#   <chr>   <chr>      <chr>  <chr>    <dbl> <dbl> <int> <dbl> <int>  <dbl> <int>  <dbl> <int>  <dbl>
# 1 BWA     SSA        Sub-s~ VA        1960  NA      47 NA       47 NA        47 NA        47 NA    
# 2 BWA     SSA        Sub-s~ VA        1961  NA      47 NA       47 NA        47 NA        47 NA    
# 3 BWA     SSA        Sub-s~ VA        1962  NA      47 NA       47 NA        47 NA        47 NA    
# 4 BWA     SSA        Sub-s~ VA        1963  NA      47 NA       47 NA        47 NA        47 NA    
# 5 BWA     SSA        Sub-s~ VA        1964  16.3    47  3.49    47  0.737    47  0.104    47  0.660
# 6 BWA     SSA        Sub-s~ VA        1965  15.7    47  2.50    47  1.02     47  0.135    47  1.35 
# # ... with 13 more variables: N_CON <int>, WRT <dbl>, N_WRT <int>, TRA <dbl>, N_TRA <int>,
# #   FIRE <dbl>, N_FIRE <int>, GOV <dbl>, N_GOV <int>, OTH <dbl>, N_OTH <int>, SUM <dbl>,
# #   N_SUM <int>
rm(GGDC10S)

There are lots of other examples one could construct using the 10 operations and 14 functions listed above, the examples provided just outline the suggested programming basics. Performance considerations make it very much worthwhile to spend some time and think how complex operations can be implemented in this programming framework, before defining some function in R and applying it to data using dplyr::mutate.

2.3 More Control using the TRA Function

Towards this end, calling TRA() directly also facilitates more complex and customized operations. Behind the scenes of the TRA = ... argument, the Fast Statistical Functions first compute the grouped statistics on all columns of the data, and these statistics are then directly fed into a C++ function that uses them to replace or sweep them out of data points in one of the 10 ways described above. This function can also be called directly by the name of TRA.

Fundamentally, TRA is a generalization of base::sweep for column-wise grouped operations1. Direct calls to TRA enable more control over inputs and outputs.

The two operations below are equivalent, although the first is slightly more efficient as it only requires one method dispatch and one check of the inputs:

# This divides by the product
GGDC10S %>%
  fgroup_by(Variable, Country) %>%
    get_vars(6:16) %>% fprod(TRA = "/") %>% head
# # A tibble: 6 x 11
#          AGR        MIN        MAN        PU        CON        WRT       TRA      FIRE        GOV
#        <dbl>      <dbl>      <dbl>     <dbl>      <dbl>      <dbl>     <dbl>     <dbl>      <dbl>
# 1 NA         NA         NA         NA        NA         NA         NA        NA        NA        
# 2 NA         NA         NA         NA        NA         NA         NA        NA        NA        
# 3 NA         NA         NA         NA        NA         NA         NA        NA        NA        
# 4 NA         NA         NA         NA        NA         NA         NA        NA        NA        
# 5  1.29e-105  2.81e-127  1.40e-101  4.44e-74  4.19e-102  3.97e-113  6.91e-92  1.01e-97  2.51e-117
# 6  1.24e-105  2.00e-127  1.94e-101  5.75e-74  8.55e-102  4.49e-113  8.08e-92  1.13e-97  2.96e-117
# # ... with 2 more variables: OTH <dbl>, SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

# Same thing
GGDC10S %>%
  fgroup_by(Variable, Country) %>%
    get_vars(6:16) %>% 
     TRA(fprod(., keep.group_vars = FALSE), "/") %>% head # [same as TRA(.,fprod(., keep.group_vars = FALSE),"/")]
# # A tibble: 6 x 11
#          AGR        MIN        MAN        PU        CON        WRT       TRA      FIRE        GOV
#        <dbl>      <dbl>      <dbl>     <dbl>      <dbl>      <dbl>     <dbl>     <dbl>      <dbl>
# 1 NA         NA         NA         NA        NA         NA         NA        NA        NA        
# 2 NA         NA         NA         NA        NA         NA         NA        NA        NA        
# 3 NA         NA         NA         NA        NA         NA         NA        NA        NA        
# 4 NA         NA         NA         NA        NA         NA         NA        NA        NA        
# 5  1.29e-105  2.81e-127  1.40e-101  4.44e-74  4.19e-102  3.97e-113  6.91e-92  1.01e-97  2.51e-117
# 6  1.24e-105  2.00e-127  1.94e-101  5.75e-74  8.55e-102  4.49e-113  8.08e-92  1.13e-97  2.96e-117
# # ... with 2 more variables: OTH <dbl>, SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

TRA.grouped_df was designed such that it matches the columns of the statistics (aggregated columns) to those of the original data, and only transforms matching columns while returning the whole data frame. Thus it is easily possible to only apply a transformation to the first two sectors:

# This only demeans Agriculture (AGR) and Mining (MIN)
GGDC10S %>%
  fgroup_by(Variable, Country) %>%
    TRA(fselect(., AGR, MIN) %>% fmean(keep.group_vars = FALSE), "-") %>% head
# # A tibble: 6 x 16
#   Country Regioncode Region Variable  Year   AGR    MIN    MAN     PU    CON   WRT   TRA  FIRE   GOV
#   <chr>   <chr>      <chr>  <chr>    <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA     SSA        Sub-s~ VA        1960   NA     NA  NA     NA     NA     NA    NA    NA    NA   
# 2 BWA     SSA        Sub-s~ VA        1961   NA     NA  NA     NA     NA     NA    NA    NA    NA   
# 3 BWA     SSA        Sub-s~ VA        1962   NA     NA  NA     NA     NA     NA    NA    NA    NA   
# 4 BWA     SSA        Sub-s~ VA        1963   NA     NA  NA     NA     NA     NA    NA    NA    NA   
# 5 BWA     SSA        Sub-s~ VA        1964 -446. -4505.  0.737  0.104  0.660  6.24  1.66  1.12  4.82
# 6 BWA     SSA        Sub-s~ VA        1965 -446. -4506.  1.02   0.135  1.35   7.06  1.94  1.25  5.70
# # ... with 2 more variables: OTH <dbl>, SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

Since TRA is already built into all Fast Statistical Functions as an argument, it is best used in computations where grouped statistics are computed using some other function.

# Same as above, with one line of code using fmean.data.frame and ftransform...
GGDC10S %>% ftransform(fmean(list(AGR = AGR, MIN = MIN), list(Variable, Country), TRA = "-")) %>% head
# # A tibble: 6 x 16
#   Country Regioncode Region Variable  Year   AGR    MIN    MAN     PU    CON   WRT   TRA  FIRE   GOV
#   <chr>   <chr>      <chr>  <chr>    <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA     SSA        Sub-s~ VA        1960   NA     NA  NA     NA     NA     NA    NA    NA    NA   
# 2 BWA     SSA        Sub-s~ VA        1961   NA     NA  NA     NA     NA     NA    NA    NA    NA   
# 3 BWA     SSA        Sub-s~ VA        1962   NA     NA  NA     NA     NA     NA    NA    NA    NA   
# 4 BWA     SSA        Sub-s~ VA        1963   NA     NA  NA     NA     NA     NA    NA    NA    NA   
# 5 BWA     SSA        Sub-s~ VA        1964 -446. -4505.  0.737  0.104  0.660  6.24  1.66  1.12  4.82
# 6 BWA     SSA        Sub-s~ VA        1965 -446. -4506.  1.02   0.135  1.35   7.06  1.94  1.25  5.70
# # ... with 2 more variables: OTH <dbl>, SUM <dbl>

Another potential use of TRA is to do computations in two- or more steps, for example if both aggregated and transformed data are needed, or if computations are more complex and involve other manipulations in-between the aggregating and sweeping part:

# Get grouped tibble
gGGDC <- GGDC10S %>% fgroup_by(Variable, Country)

# Get aggregated data
gsumGGDC <- gGGDC %>% fselect(AGR:SUM) %>% fsum
head(gsumGGDC)
# # A tibble: 6 x 13
#   Variable Country     AGR     MIN     MAN     PU     CON    WRT    TRA   FIRE     GOV    OTH    SUM
#   <chr>    <chr>     <dbl>   <dbl>   <dbl>  <dbl>   <dbl>  <dbl>  <dbl>  <dbl>   <dbl>  <dbl>  <dbl>
# 1 EMP      ARG      8.80e4   3230.  1.20e5  6307.  4.60e4 1.23e5 4.02e4 3.89e4  1.27e5 6.15e4 6.54e5
# 2 EMP      BOL      5.88e4   3418.  1.43e4   326.  7.49e3 1.72e4 7.04e3 2.72e3 NA      2.41e4 1.35e5
# 3 EMP      BRA      1.07e6  12773.  4.33e5 22604.  2.19e5 5.28e5 1.27e5 2.74e5  3.29e5 3.54e5 3.36e6
# 4 EMP      BWA      8.84e3    493.  8.49e2   145.  1.19e3 1.71e3 3.93e2 7.21e2  2.87e3 1.30e3 1.85e4
# 5 EMP      CHL      4.42e4   6389.  3.94e4  1850.  1.86e4 4.38e4 1.63e4 1.72e4 NA      6.32e4 2.51e5
# 6 EMP      CHN      1.73e7 422972.  4.03e6 96364.  1.25e6 1.73e6 8.36e5 2.96e5  1.36e6 1.86e6 2.91e7

# Get transformed (scaled) data
head(TRA(gGGDC, gsumGGDC, "/"))
# # A tibble: 6 x 16
#   Country Regioncode Region Variable  Year      AGR      MIN      MAN       PU      CON      WRT
#   <chr>   <chr>      <chr>  <chr>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>
# 1 BWA     SSA        Sub-s~ VA        1960 NA       NA       NA       NA       NA       NA      
# 2 BWA     SSA        Sub-s~ VA        1961 NA       NA       NA       NA       NA       NA      
# 3 BWA     SSA        Sub-s~ VA        1962 NA       NA       NA       NA       NA       NA      
# 4 BWA     SSA        Sub-s~ VA        1963 NA       NA       NA       NA       NA       NA      
# 5 BWA     SSA        Sub-s~ VA        1964  7.50e-4  1.65e-5  1.66e-5  1.03e-5  1.57e-5  6.82e-5
# 6 BWA     SSA        Sub-s~ VA        1965  7.24e-4  1.18e-5  2.30e-5  1.33e-5  3.20e-5  7.72e-5
# # ... with 5 more variables: TRA <dbl>, FIRE <dbl>, GOV <dbl>, OTH <dbl>, SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

As discussed, whether using the argument to fast statistical functions or TRA directly, these data transformations are essentially a two-step process: Statistics are first computed and then used to transform the original data.

Although both steps are efficiently done in C++, it would be even more efficient to do them in a single step without materializing all the statistics before transforming the data. Such slightly more efficient functions are provided for the very commonly applied tasks of centering and averaging data by groups (widely known as ‘between’-group and ‘within’-group transformations), and scaling and centering data by groups (also known as ‘standardizing’ data).

2.4 Faster Centering, Averaging and Standardizing

The functions fbetween and fwithin are slightly more memory efficient implementations of fmean invoked with different TRA options:

GGDC10S %>% # Same as ... %>% fmean(TRA = "replace")
  fgroup_by(Variable, Country) %>% get_vars(6:16) %>% fbetween %>% tail(2)
# # A tibble: 2 x 11
#     AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV   OTH    SUM
#   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
# 1 4444.  34.9 1614.  131.  997. 1307.  799.  320. 2958.    NA 12605.
# 2 4444.  34.9 1614.  131.  997. 1307.  799.  320. 2958.    NA 12605.
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

GGDC10S %>% # Same as ... %>% fmean(TRA = "replace_fill")
  fgroup_by(Variable, Country) %>% get_vars(6:16) %>% fbetween(fill = TRUE) %>% tail(2)
# # A tibble: 2 x 11
#     AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV   OTH    SUM
#   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
# 1 4444.  34.9 1614.  131.  997. 1307.  799.  320. 2958.    NA 12605.
# 2 4444.  34.9 1614.  131.  997. 1307.  799.  320. 2958.    NA 12605.
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

GGDC10S %>% # Same as ... %>% fmean(TRA = "-")
  fgroup_by(Variable, Country) %>% get_vars(6:16) %>% fwithin %>% tail(2)
# # A tibble: 2 x 11
#     AGR    MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV   OTH   SUM
#   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1  742.  -7.35  760.  187. 1798. 1713. 1249.  495. 2678.    NA 9614.
# 2  717. -10.1   734.  194. 1934. 1803. 1266.  512. 2778.    NA 9928.
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

Apart from higher speed, fwithin has a mean argument to assign an arbitrary mean to centered data, the default being mean = 0. A very common choice for such an added mean is just the overall mean of the data, which can be added in by invoking mean = "overall.mean":

GGDC10S %>% 
  fgroup_by(Variable, Country) %>% 
    fselect(Country, Variable, AGR:SUM) %>% fwithin(mean = "overall.mean") %>% tail(3)
# # A tibble: 3 x 13
#   Country Variable     AGR     MIN     MAN      PU     CON     WRT    TRA   FIRE    GOV   OTH    SUM
#   <chr>   <chr>      <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl> <dbl>  <dbl>
# 1 EGY     EMP       2.53e6  1.87e6  5.54e6 335856.  1.80e6  3.39e6 1.47e6 1.66e6 1.71e6    NA 2.16e7
# 2 EGY     EMP       2.53e6  1.87e6  5.54e6 335867.  1.80e6  3.39e6 1.47e6 1.66e6 1.71e6    NA 2.16e7
# 3 EGY     EMP       2.53e6  1.87e6  5.54e6 335873.  1.80e6  3.39e6 1.47e6 1.66e6 1.72e6    NA 2.16e7
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

This can also be done using weights. The code below uses the SUM column as weights, and then for each variable and each group subtracts out the weighted mean, and then adds the overall weighted column mean back to the centered columns. The SUM column is just kept as it is and added after the grouping columns.

GGDC10S %>% 
  fgroup_by(Variable, Country) %>% 
    fselect(Country, Variable, AGR:SUM) %>% fwithin(SUM, mean = "overall.mean") %>% tail(3)
# # A tibble: 3 x 13
#   Country Variable    SUM     AGR     MIN     MAN      PU     CON     WRT    TRA   FIRE    GOV   OTH
#   <chr>   <chr>     <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl> <dbl>
# 1 EGY     EMP      22020.  4.29e8  3.70e8  7.38e8  2.73e7  2.83e8  4.33e8 1.97e8 1.55e8 2.10e8    NA
# 2 EGY     EMP      22219.  4.29e8  3.70e8  7.38e8  2.73e7  2.83e8  4.33e8 1.97e8 1.55e8 2.10e8    NA
# 3 EGY     EMP      22533.  4.29e8  3.70e8  7.38e8  2.73e7  2.83e8  4.33e8 1.97e8 1.55e8 2.10e8    NA
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

Another argument to fwithin is the theta parameter, allowing partial- or quasi-demeaning operations, e.g. fwithin(gdata, theta = theta) is equal to gdata - theta * fbetween(gdata). This is particularly useful to prepare data for variance components (also known as ‘random-effects’) estimation.

Apart from fbetween and fwithin, the function fscale exists to efficiently scale and center data, to avoid sequential calls such as ... %>% fsd(TRA = "/") %>% fmean(TRA = "-").

# This efficiently scales and centers (i.e. standardizes) the data
GGDC10S %>%
  fgroup_by(Variable, Country) %>%
    fselect(Country, Variable, AGR:SUM) %>% fscale
# # A tibble: 5,027 x 13
#    Country Variable    AGR    MIN    MAN     PU    CON    WRT    TRA   FIRE    GOV    OTH    SUM
#  * <chr>   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#  1 BWA     VA       NA     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA    
#  2 BWA     VA       NA     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA    
#  3 BWA     VA       NA     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA    
#  4 BWA     VA       NA     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA    
#  5 BWA     VA       -0.738 -0.717 -0.668 -0.805 -0.692 -0.603 -0.589 -0.635 -0.656 -0.596 -0.676
#  6 BWA     VA       -0.739 -0.717 -0.668 -0.805 -0.692 -0.603 -0.589 -0.635 -0.656 -0.596 -0.676
#  7 BWA     VA       -0.736 -0.717 -0.668 -0.805 -0.692 -0.603 -0.589 -0.635 -0.656 -0.595 -0.676
#  8 BWA     VA       -0.734 -0.717 -0.668 -0.805 -0.692 -0.604 -0.589 -0.635 -0.655 -0.595 -0.676
#  9 BWA     VA       -0.730 -0.717 -0.668 -0.805 -0.692 -0.604 -0.588 -0.635 -0.656 -0.596 -0.676
# 10 BWA     VA       -0.729 -0.716 -0.667 -0.803 -0.690 -0.603 -0.588 -0.635 -0.656 -0.596 -0.675
# # ... with 5,017 more rows
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

fscale also has additional mean and sd arguments allowing the user to (group-) scale data to an arbitrary mean and standard deviation. Setting mean = FALSE just scales the data but preserves the means, and is thus different from fsd(..., TRA = "/") which simply divides all values by the standard deviation:

# Saving grouped tibble
gGGDC <- GGDC10S %>%
  fgroup_by(Variable, Country) %>%
    fselect(Country, Variable, AGR:SUM)

# Original means
head(fmean(gGGDC)) 
# # A tibble: 6 x 13
#   Variable Country     AGR    MIN     MAN      PU     CON    WRT    TRA   FIRE     GOV    OTH    SUM
#   <chr>    <chr>     <dbl>  <dbl>   <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>   <dbl>  <dbl>  <dbl>
# 1 EMP      ARG       1420.   52.1  1932.   102.     742.  1.98e3 6.49e2  628.   2043.  9.92e2 1.05e4
# 2 EMP      BOL        964.   56.0   235.     5.35   123.  2.82e2 1.15e2   44.6    NA   3.96e2 2.22e3
# 3 EMP      BRA      17191.  206.   6991.   365.    3525.  8.51e3 2.05e3 4414.   5307.  5.71e3 5.43e4
# 4 EMP      BWA        188.   10.5    18.1    3.09    25.3 3.63e1 8.36e0   15.3    61.1 2.76e1 3.94e2
# 5 EMP      CHL        702.  101.    625.    29.4    296.  6.95e2 2.58e2  272.     NA   1.00e3 3.98e3
# 6 EMP      CHN     287744. 7050.  67144.  1606.   20852.  2.89e4 1.39e4 4929.  22669.  3.10e4 4.86e5

# Mean Preserving Scaling
head(fmean(fscale(gGGDC, mean = FALSE)))
# # A tibble: 6 x 13
#   Variable Country     AGR    MIN     MAN      PU     CON    WRT    TRA   FIRE     GOV    OTH    SUM
#   <chr>    <chr>     <dbl>  <dbl>   <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>   <dbl>  <dbl>  <dbl>
# 1 EMP      ARG       1420.   52.1  1932.   102.     742.  1.98e3 6.49e2  628.   2043.  9.92e2 1.05e4
# 2 EMP      BOL        964.   56.0   235.     5.35   123.  2.82e2 1.15e2   44.6    NA   3.96e2 2.22e3
# 3 EMP      BRA      17191.  206.   6991.   365.    3525.  8.51e3 2.05e3 4414.   5307.  5.71e3 5.43e4
# 4 EMP      BWA        188.   10.5    18.1    3.09    25.3 3.63e1 8.36e0   15.3    61.1 2.76e1 3.94e2
# 5 EMP      CHL        702.  101.    625.    29.4    296.  6.95e2 2.58e2  272.     NA   1.00e3 3.98e3
# 6 EMP      CHN     287744. 7050.  67144.  1606.   20852.  2.89e4 1.39e4 4929.  22669.  3.10e4 4.86e5
head(fsd(fscale(gGGDC, mean = FALSE)))
# # A tibble: 6 x 13
#   Variable Country   AGR   MIN   MAN    PU   CON   WRT   TRA  FIRE   GOV   OTH   SUM
#   <chr>    <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP      ARG      1.    1.    1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.  
# 2 EMP      BOL      1.    1.00  1.    1.00  1.00  1.    1.    1.   NA     1.    1.  
# 3 EMP      BRA      1.    1.    1.    1.00  1.    1.00  1.00  1.00  1.    1.00  1.00
# 4 EMP      BWA      1.00  1.00  1.    1.    1.    1.00  1.    1.00  1.    1.00  1.00
# 5 EMP      CHL      1.    1.    1.00  1.    1.    1.    1.00  1.   NA     1.    1.00
# 6 EMP      CHN      1.    1.    1.    1.00  1.00  1.    1.    1.    1.00  1.00  1.

One can also set mean = "overall.mean", which group-centers columns on the overall mean as illustrated with fwithin. Another interesting option is setting sd = "within.sd". This group-scales data such that every group has a standard deviation equal to the within-standard deviation of the data:

# Just using VA data for this example
gGGDC <- GGDC10S %>%
  fsubset(Variable == "VA", Country, AGR:SUM) %>% 
      fgroup_by(Country)

# This calculates the within- standard deviation for all columns
fsd(num_vars(ungroup(fwithin(gGGDC))))
#       AGR       MIN       MAN        PU       CON       WRT       TRA      FIRE       GOV       OTH 
#  45046972  40122220  75608708   3062688  30811572  44125207  20676901  16030868  20358973  18780869 
#       SUM 
# 306429102

# This scales all groups to take on the within- standard deviation while preserving group means 
fsd(fscale(gGGDC, mean = FALSE, sd = "within.sd"))
# # A tibble: 43 x 12
#    Country      AGR      MIN      MAN     PU     CON     WRT     TRA    FIRE     GOV     OTH     SUM
#    <chr>      <dbl>    <dbl>    <dbl>  <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#  1 ARG       4.50e7   4.01e7   7.56e7 3.06e6  3.08e7  4.41e7  2.07e7  1.60e7  2.04e7  1.88e7  3.06e8
#  2 BOL       4.50e7   4.01e7   7.56e7 3.06e6  3.08e7  4.41e7  2.07e7  1.60e7 NA       1.88e7  3.06e8
#  3 BRA       4.50e7   4.01e7   7.56e7 3.06e6  3.08e7  4.41e7  2.07e7  1.60e7  2.04e7  1.88e7  3.06e8
#  4 BWA       4.50e7   4.01e7   7.56e7 3.06e6  3.08e7  4.41e7  2.07e7  1.60e7  2.04e7  1.88e7  3.06e8
#  5 CHL       4.50e7   4.01e7   7.56e7 3.06e6  3.08e7  4.41e7  2.07e7  1.60e7 NA       1.88e7  3.06e8
#  6 CHN       4.50e7   4.01e7   7.56e7 3.06e6  3.08e7  4.41e7  2.07e7  1.60e7  2.04e7  1.88e7  3.06e8
#  7 COL       4.50e7   4.01e7   7.56e7 3.06e6  3.08e7  4.41e7  2.07e7  1.60e7 NA       1.88e7  3.06e8
#  8 CRI       4.50e7   4.01e7   7.56e7 3.06e6  3.08e7  4.41e7  2.07e7  1.60e7  2.04e7  1.88e7  3.06e8
#  9 DEW       4.50e7   4.01e7   7.56e7 3.06e6  3.08e7  4.41e7  2.07e7  1.60e7  2.04e7  1.88e7  3.06e8
# 10 DNK       4.50e7   4.01e7   7.56e7 3.06e6  3.08e7  4.41e7  2.07e7  1.60e7  2.04e7  1.88e7  3.06e8
# # ... with 33 more rows

A grouped scaling operation with both mean = "overall.mean" and sd = "within.sd" thus efficiently achieves a harmonization of all groups in the first two moments without changing the fundamental properties (in terms of level and scale) of the data.

2.5 Lags / Leads, Differences and Growth Rates

This section introduces 3 further powerful collapse functions: flag, fdiff and fgrowth. The first function, flag, efficiently computes sequences of fully identified lags and leads on time series and panel data. The following code computes 1 fully-identified panel-lag and 1 fully identified panel-lead of each variable in the data:

GGDC10S %>%
  fselect(-Region, -Regioncode) %>% 
    fgroup_by(Variable, Country) %>% flag(-1:1, Year)
# # A tibble: 5,027 x 36
#    Country Variable  Year F1.AGR   AGR L1.AGR F1.MIN   MIN L1.MIN F1.MAN    MAN L1.MAN  F1.PU     PU
#  * <chr>   <chr>    <dbl>  <dbl> <dbl>  <dbl>  <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#  1 BWA     VA        1960   NA    NA     NA    NA    NA     NA    NA     NA     NA     NA     NA    
#  2 BWA     VA        1961   NA    NA     NA    NA    NA     NA    NA     NA     NA     NA     NA    
#  3 BWA     VA        1962   NA    NA     NA    NA    NA     NA    NA     NA     NA     NA     NA    
#  4 BWA     VA        1963   16.3  NA     NA     3.49 NA     NA     0.737 NA     NA      0.104 NA    
#  5 BWA     VA        1964   15.7  16.3   NA     2.50  3.49  NA     1.02   0.737 NA      0.135  0.104
#  6 BWA     VA        1965   17.7  15.7   16.3   1.97  2.50   3.49  0.804  1.02   0.737  0.203  0.135
#  7 BWA     VA        1966   19.1  17.7   15.7   2.30  1.97   2.50  0.938  0.804  1.02   0.203  0.203
#  8 BWA     VA        1967   21.1  19.1   17.7   1.84  2.30   1.97  0.750  0.938  0.804  0.203  0.203
#  9 BWA     VA        1968   21.9  21.1   19.1   5.24  1.84   2.30  2.14   0.750  0.938  0.578  0.203
# 10 BWA     VA        1969   23.1  21.9   21.1  10.2   5.24   1.84  4.15   2.14   0.750  1.12   0.578
# # ... with 5,017 more rows, and 22 more variables: L1.PU <dbl>, F1.CON <dbl>, CON <dbl>,
# #   L1.CON <dbl>, F1.WRT <dbl>, WRT <dbl>, L1.WRT <dbl>, F1.TRA <dbl>, TRA <dbl>, L1.TRA <dbl>,
# #   F1.FIRE <dbl>, FIRE <dbl>, L1.FIRE <dbl>, F1.GOV <dbl>, GOV <dbl>, L1.GOV <dbl>, F1.OTH <dbl>,
# #   OTH <dbl>, L1.OTH <dbl>, F1.SUM <dbl>, SUM <dbl>, L1.SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

If the time-variable passed does not exactly identify the data (i.e. because of gaps or repeated values in each group), all 3 functions will issue appropriate error messages. flag, fdiff and fgrowth support unbalanced panels with different start and end periods and duration of coverage for each individual, but not irregular panels. A workaround for such panels exists with the function seqid which generates a new panel-id identifying consecutive time-sequences at the sub-individual level, see ?seqid.

It is also possible to omit the time-variable if one is certain that the data is sorted:

GGDC10S %>%
  fselect(Variable, Country,AGR:SUM) %>% 
    fgroup_by(Variable, Country) %>% flag
# # A tibble: 5,027 x 13
#    Variable Country   AGR   MIN    MAN     PU    CON   WRT   TRA  FIRE   GOV   OTH   SUM
#  * <chr>    <chr>   <dbl> <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#  1 VA       BWA      NA   NA    NA     NA     NA     NA    NA    NA    NA    NA     NA  
#  2 VA       BWA      NA   NA    NA     NA     NA     NA    NA    NA    NA    NA     NA  
#  3 VA       BWA      NA   NA    NA     NA     NA     NA    NA    NA    NA    NA     NA  
#  4 VA       BWA      NA   NA    NA     NA     NA     NA    NA    NA    NA    NA     NA  
#  5 VA       BWA      NA   NA    NA     NA     NA     NA    NA    NA    NA    NA     NA  
#  6 VA       BWA      16.3  3.49  0.737  0.104  0.660  6.24  1.66  1.12  4.82  2.34  37.5
#  7 VA       BWA      15.7  2.50  1.02   0.135  1.35   7.06  1.94  1.25  5.70  2.68  39.3
#  8 VA       BWA      17.7  1.97  0.804  0.203  1.35   8.27  2.15  1.36  6.37  2.99  43.1
#  9 VA       BWA      19.1  2.30  0.938  0.203  0.897  4.31  1.72  1.54  7.04  3.31  41.4
# 10 VA       BWA      21.1  1.84  0.750  0.203  1.22   5.17  2.44  1.03  5.03  2.36  41.1
# # ... with 5,017 more rows
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

fdiff computes sequences of lagged-leaded and iterated differences as well as quasi-differences and log-differences on time series and panel data. The code below computes the 1 and 10 year first and second differences of each variable in the data:

GGDC10S %>%
  fselect(-Region, -Regioncode) %>% 
    fgroup_by(Variable, Country) %>% fdiff(c(1, 10), 1:2, Year)
# # A tibble: 5,027 x 47
#    Country Variable  Year D1.AGR D2.AGR L10D1.AGR L10D2.AGR D1.MIN D2.MIN L10D1.MIN L10D2.MIN D1.MAN
#  * <chr>   <chr>    <dbl>  <dbl>  <dbl>     <dbl>     <dbl>  <dbl>  <dbl>     <dbl>     <dbl>  <dbl>
#  1 BWA     VA        1960 NA     NA            NA        NA NA     NA            NA        NA NA    
#  2 BWA     VA        1961 NA     NA            NA        NA NA     NA            NA        NA NA    
#  3 BWA     VA        1962 NA     NA            NA        NA NA     NA            NA        NA NA    
#  4 BWA     VA        1963 NA     NA            NA        NA NA     NA            NA        NA NA    
#  5 BWA     VA        1964 NA     NA            NA        NA NA     NA            NA        NA NA    
#  6 BWA     VA        1965 -0.575 NA            NA        NA -0.998 NA            NA        NA  0.282
#  7 BWA     VA        1966  1.95   2.53         NA        NA -0.525  0.473        NA        NA -0.214
#  8 BWA     VA        1967  1.47  -0.488        NA        NA  0.328  0.854        NA        NA  0.134
#  9 BWA     VA        1968  1.95   0.488        NA        NA -0.460 -0.788        NA        NA -0.188
# 10 BWA     VA        1969  0.763 -1.19         NA        NA  3.41   3.87         NA        NA  1.39 
# # ... with 5,017 more rows, and 35 more variables: D2.MAN <dbl>, L10D1.MAN <dbl>, L10D2.MAN <dbl>,
# #   D1.PU <dbl>, D2.PU <dbl>, L10D1.PU <dbl>, L10D2.PU <dbl>, D1.CON <dbl>, D2.CON <dbl>,
# #   L10D1.CON <dbl>, L10D2.CON <dbl>, D1.WRT <dbl>, D2.WRT <dbl>, L10D1.WRT <dbl>, L10D2.WRT <dbl>,
# #   D1.TRA <dbl>, D2.TRA <dbl>, L10D1.TRA <dbl>, L10D2.TRA <dbl>, D1.FIRE <dbl>, D2.FIRE <dbl>,
# #   L10D1.FIRE <dbl>, L10D2.FIRE <dbl>, D1.GOV <dbl>, D2.GOV <dbl>, L10D1.GOV <dbl>,
# #   L10D2.GOV <dbl>, D1.OTH <dbl>, D2.OTH <dbl>, L10D1.OTH <dbl>, L10D2.OTH <dbl>, D1.SUM <dbl>,
# #   D2.SUM <dbl>, L10D1.SUM <dbl>, L10D2.SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

Log-differences of the form \(log(x_t) - log(x_{t-s})\) are also easily computed.

GGDC10S %>%
  fselect(-Region, -Regioncode) %>% 
    fgroup_by(Variable, Country) %>% fdiff(c(1, 10), 1, Year, log = TRUE)
# # A tibble: 5,027 x 25
#    Country Variable  Year Dlog1.AGR L10Dlog1.AGR Dlog1.MIN L10Dlog1.MIN Dlog1.MAN L10Dlog1.MAN
#  * <chr>   <chr>    <dbl>     <dbl>        <dbl>     <dbl>        <dbl>     <dbl>        <dbl>
#  1 BWA     VA        1960   NA                NA    NA               NA    NA               NA
#  2 BWA     VA        1961   NA                NA    NA               NA    NA               NA
#  3 BWA     VA        1962   NA                NA    NA               NA    NA               NA
#  4 BWA     VA        1963   NA                NA    NA               NA    NA               NA
#  5 BWA     VA        1964   NA                NA    NA               NA    NA               NA
#  6 BWA     VA        1965   -0.0359           NA    -0.336           NA     0.324           NA
#  7 BWA     VA        1966    0.117            NA    -0.236           NA    -0.236           NA
#  8 BWA     VA        1967    0.0796           NA     0.154           NA     0.154           NA
#  9 BWA     VA        1968    0.0972           NA    -0.223           NA    -0.223           NA
# 10 BWA     VA        1969    0.0355           NA     1.05            NA     1.05            NA
# # ... with 5,017 more rows, and 16 more variables: Dlog1.PU <dbl>, L10Dlog1.PU <dbl>,
# #   Dlog1.CON <dbl>, L10Dlog1.CON <dbl>, Dlog1.WRT <dbl>, L10Dlog1.WRT <dbl>, Dlog1.TRA <dbl>,
# #   L10Dlog1.TRA <dbl>, Dlog1.FIRE <dbl>, L10Dlog1.FIRE <dbl>, Dlog1.GOV <dbl>, L10Dlog1.GOV <dbl>,
# #   Dlog1.OTH <dbl>, L10Dlog1.OTH <dbl>, Dlog1.SUM <dbl>, L10Dlog1.SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

Finally, it is also possible to compute quasi-differences and quasi-log-differences of the form \(x_t - \rho x_{t-s}\) or \(log(x_t) - \rho log(x_{t-s})\):

GGDC10S %>%
  fselect(-Region, -Regioncode) %>% 
    fgroup_by(Variable, Country) %>% fdiff(t = Year, rho = 0.95)
# # A tibble: 5,027 x 14
#    Country Variable  Year    AGR    MIN    MAN      PU     CON    WRT    TRA   FIRE    GOV    OTH
#  * <chr>   <chr>    <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#  1 BWA     VA        1960 NA     NA     NA     NA      NA      NA     NA     NA     NA     NA    
#  2 BWA     VA        1961 NA     NA     NA     NA      NA      NA     NA     NA     NA     NA    
#  3 BWA     VA        1962 NA     NA     NA     NA      NA      NA     NA     NA     NA     NA    
#  4 BWA     VA        1963 NA     NA     NA     NA      NA      NA     NA     NA     NA     NA    
#  5 BWA     VA        1964 NA     NA     NA     NA      NA      NA     NA     NA     NA     NA    
#  6 BWA     VA        1965  0.241 -0.824  0.318  0.0359  0.719   1.13   0.363  0.184  1.11   0.454
#  7 BWA     VA        1966  2.74  -0.401 -0.163  0.0743  0.0673  1.56   0.312  0.174  0.955  0.449
#  8 BWA     VA        1967  2.35   0.427  0.174  0.0101 -0.381  -3.55  -0.323  0.246  0.988  0.465
#  9 BWA     VA        1968  2.91  -0.345 -0.141  0.0101  0.365   1.08   0.804 -0.427 -1.66  -0.780
# 10 BWA     VA        1969  1.82   3.50   1.43   0.385   2.32    0.841  0.397  0.252  0.818  0.385
# # ... with 5,017 more rows, and 1 more variable: SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

The quasi-differencing feature was added to fdiff to facilitate the preparation of time series and panel data for least-squares estimations suffering from serial correlation following Cochrane & Orcutt (1949).

Finally, fgrowth computes growth rates in the same way. By default exact growth rates are computed in percentage terms using \((x_t-x_{t-s}) / x_{t-s} \times 100\) (the default argument is scale = 100). The user can also request growth rates obtained by log-differencing using \(log(x_t/ x_{t-s}) \times 100\).

# Exact growth rates, computed as: (x/lag(x) - 1) * 100
GGDC10S %>%
  fselect(-Region, -Regioncode) %>% 
    fgroup_by(Variable, Country) %>% fgrowth(c(1, 10), 1, Year)
# # A tibble: 5,027 x 25
#    Country Variable  Year G1.AGR L10G1.AGR G1.MIN L10G1.MIN G1.MAN L10G1.MAN G1.PU L10G1.PU G1.CON
#  * <chr>   <chr>    <dbl>  <dbl>     <dbl>  <dbl>     <dbl>  <dbl>     <dbl> <dbl>    <dbl>  <dbl>
#  1 BWA     VA        1960  NA           NA   NA          NA   NA          NA  NA         NA   NA  
#  2 BWA     VA        1961  NA           NA   NA          NA   NA          NA  NA         NA   NA  
#  3 BWA     VA        1962  NA           NA   NA          NA   NA          NA  NA         NA   NA  
#  4 BWA     VA        1963  NA           NA   NA          NA   NA          NA  NA         NA   NA  
#  5 BWA     VA        1964  NA           NA   NA          NA   NA          NA  NA         NA   NA  
#  6 BWA     VA        1965  -3.52        NA  -28.6        NA   38.2        NA  29.4       NA  104. 
#  7 BWA     VA        1966  12.4         NA  -21.1        NA  -21.1        NA  50.0       NA    0  
#  8 BWA     VA        1967   8.29        NA   16.7        NA   16.7        NA   0         NA  -33.3
#  9 BWA     VA        1968  10.2         NA  -20          NA  -20          NA   0         NA   35.7
# 10 BWA     VA        1969   3.61        NA  185.         NA  185.         NA 185.        NA  185. 
# # ... with 5,017 more rows, and 13 more variables: L10G1.CON <dbl>, G1.WRT <dbl>, L10G1.WRT <dbl>,
# #   G1.TRA <dbl>, L10G1.TRA <dbl>, G1.FIRE <dbl>, L10G1.FIRE <dbl>, G1.GOV <dbl>, L10G1.GOV <dbl>,
# #   G1.OTH <dbl>, L10G1.OTH <dbl>, G1.SUM <dbl>, L10G1.SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

# Log-difference growth rates, computed as: log(x / lag(x)) * 100
GGDC10S %>%
  fselect(-Region, -Regioncode) %>% 
    fgroup_by(Variable, Country) %>% fgrowth(c(1, 10), 1, Year, logdiff = TRUE)
# # A tibble: 5,027 x 25
#    Country Variable  Year Dlog1.AGR L10Dlog1.AGR Dlog1.MIN L10Dlog1.MIN Dlog1.MAN L10Dlog1.MAN
#  * <chr>   <chr>    <dbl>     <dbl>        <dbl>     <dbl>        <dbl>     <dbl>        <dbl>
#  1 BWA     VA        1960     NA              NA      NA             NA      NA             NA
#  2 BWA     VA        1961     NA              NA      NA             NA      NA             NA
#  3 BWA     VA        1962     NA              NA      NA             NA      NA             NA
#  4 BWA     VA        1963     NA              NA      NA             NA      NA             NA
#  5 BWA     VA        1964     NA              NA      NA             NA      NA             NA
#  6 BWA     VA        1965     -3.59           NA     -33.6           NA      32.4           NA
#  7 BWA     VA        1966     11.7            NA     -23.6           NA     -23.6           NA
#  8 BWA     VA        1967      7.96           NA      15.4           NA      15.4           NA
#  9 BWA     VA        1968      9.72           NA     -22.3           NA     -22.3           NA
# 10 BWA     VA        1969      3.55           NA     105.            NA     105.            NA
# # ... with 5,017 more rows, and 16 more variables: Dlog1.PU <dbl>, L10Dlog1.PU <dbl>,
# #   Dlog1.CON <dbl>, L10Dlog1.CON <dbl>, Dlog1.WRT <dbl>, L10Dlog1.WRT <dbl>, Dlog1.TRA <dbl>,
# #   L10Dlog1.TRA <dbl>, Dlog1.FIRE <dbl>, L10Dlog1.FIRE <dbl>, Dlog1.GOV <dbl>, L10Dlog1.GOV <dbl>,
# #   Dlog1.OTH <dbl>, L10Dlog1.OTH <dbl>, Dlog1.SUM <dbl>, L10Dlog1.SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

fdiff and fgrowth can also perform leaded (forward) differences and growth rates (i.e. ... %>% fgrowth(-c(1, 10), 1:2, Year) would compute one and 10-year leaded first and second differences). Again it is possible to perform sequential operations:

# This computes the 1 and 10-year growth rates, for the current period and lagged by one period
GGDC10S %>%
  fselect(-Region, -Regioncode) %>% 
    fgroup_by(Variable, Country) %>% fgrowth(c(1, 10), 1, Year) %>% flag(0:1, Year)
# # A tibble: 5,027 x 47
#    Country Variable  Year G1.AGR L1.G1.AGR L10G1.AGR L1.L10G1.AGR G1.MIN L1.G1.MIN L10G1.MIN
#  * <chr>   <chr>    <dbl>  <dbl>     <dbl>     <dbl>        <dbl>  <dbl>     <dbl>     <dbl>
#  1 BWA     VA        1960  NA        NA           NA           NA   NA        NA          NA
#  2 BWA     VA        1961  NA        NA           NA           NA   NA        NA          NA
#  3 BWA     VA        1962  NA        NA           NA           NA   NA        NA          NA
#  4 BWA     VA        1963  NA        NA           NA           NA   NA        NA          NA
#  5 BWA     VA        1964  NA        NA           NA           NA   NA        NA          NA
#  6 BWA     VA        1965  -3.52     NA           NA           NA  -28.6      NA          NA
#  7 BWA     VA        1966  12.4      -3.52        NA           NA  -21.1     -28.6        NA
#  8 BWA     VA        1967   8.29     12.4         NA           NA   16.7     -21.1        NA
#  9 BWA     VA        1968  10.2       8.29        NA           NA  -20        16.7        NA
# 10 BWA     VA        1969   3.61     10.2         NA           NA  185.      -20          NA
# # ... with 5,017 more rows, and 37 more variables: L1.L10G1.MIN <dbl>, G1.MAN <dbl>,
# #   L1.G1.MAN <dbl>, L10G1.MAN <dbl>, L1.L10G1.MAN <dbl>, G1.PU <dbl>, L1.G1.PU <dbl>,
# #   L10G1.PU <dbl>, L1.L10G1.PU <dbl>, G1.CON <dbl>, L1.G1.CON <dbl>, L10G1.CON <dbl>,
# #   L1.L10G1.CON <dbl>, G1.WRT <dbl>, L1.G1.WRT <dbl>, L10G1.WRT <dbl>, L1.L10G1.WRT <dbl>,
# #   G1.TRA <dbl>, L1.G1.TRA <dbl>, L10G1.TRA <dbl>, L1.L10G1.TRA <dbl>, G1.FIRE <dbl>,
# #   L1.G1.FIRE <dbl>, L10G1.FIRE <dbl>, L1.L10G1.FIRE <dbl>, G1.GOV <dbl>, L1.G1.GOV <dbl>,
# #   L10G1.GOV <dbl>, L1.L10G1.GOV <dbl>, G1.OTH <dbl>, L1.G1.OTH <dbl>, L10G1.OTH <dbl>,
# #   L1.L10G1.OTH <dbl>, G1.SUM <dbl>, L1.G1.SUM <dbl>, L10G1.SUM <dbl>, L1.L10G1.SUM <dbl>
# 
# Grouped by:  Variable, Country  [85 | 59 (7.7)]

3. Benchmarks

This section seeks to demonstrate that the functionality introduced in the preceding 2 sections indeed produces code that evaluates substantially faster than native dplyr.

To do this properly, the different components of a typical piped call (selecting / subsetting, ordering, grouping, and performing some computation) are bechmarked separately on 2 different data sizes.

All benchmarks are run on a Windows 8.1 laptop with a 2x 2.2 GHZ Intel i5 processor, 8GB DDR3 RAM and a Samsung 850 EVO SSD hard drive.

3.1 Data

Bechmarks are run on the original GGDC10S data used throughout this vignette and a larger dataset with approx. 1 million observations, obtained by replicating and row-binding GGDC10S 200 times while maintaining unique groups.

# This shows the groups in GGDC10S
GRP(GGDC10S, ~ Variable + Country)
# collapse grouping object of length 5027 with 85 ordered groups
# 
# Call: GRP.default(X = GGDC10S, by = ~Variable + Country), X is unordered
# 
# Distribution of group sizes: 
#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#    4.00   53.00   62.00   59.14   63.00   65.00 
# 
# Groups with sizes: 
# EMP.ARG EMP.BOL EMP.BRA EMP.BWA EMP.CHL EMP.CHN 
#      62      61      62      52      63      62 
#   ---
# VA.TWN VA.TZA VA.USA VA.VEN VA.ZAF VA.ZMB 
#     63     52     65     63     52     52

# This replicates the data 200 times 
data <- replicate(200, GGDC10S, simplify = FALSE) 
# This function adds a number i to the country and variable columns of each dataset
uniquify <- function(x, i) ftransform(x, lapply(unclass(x)[c(1,4)], paste0, i))
# Making datasets unique and row-binding them
data <- unlist2d(Map(uniquify, data, as.list(1:200)), idcols = FALSE)
fdim(data)
# [1] 1005400      16

# This shows the groups in the replicated data
GRP(data, ~ Variable + Country)
# collapse grouping object of length 1005400 with 17000 ordered groups
# 
# Call: GRP.default(X = data, by = ~Variable + Country), X is unordered
# 
# Distribution of group sizes: 
#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#    4.00   53.00   62.00   59.14   63.00   65.00 
# 
# Groups with sizes: 
# EMP1.ARG1 EMP1.BOL1 EMP1.BRA1 EMP1.BWA1 EMP1.CHL1 EMP1.CHN1 
#        62        61        62        52        63        62 
#   ---
# VA99.TWN99 VA99.TZA99 VA99.USA99 VA99.VEN99 VA99.ZAF99 VA99.ZMB99 
#         63         52         65         63         52         52

gc()
#            used  (Mb) gc trigger  (Mb) max used  (Mb)
# Ncells  1940236 103.7    3717688 198.6  3717688 198.6
# Vcells 19908690 151.9   28370344 216.5 23082844 176.2

3.1 Selecting, Subsetting, Ordering and Grouping

## Selecting columns
# Small
microbenchmark(dplyr = select(GGDC10S, Country, Variable, AGR:SUM),
               collapse = fselect(GGDC10S, Country, Variable, AGR:SUM))
# Unit: microseconds
#      expr      min       lq       mean    median        uq      max neval cld
#     dplyr 3061.707 3229.942 3340.91978 3326.7780 3465.7845 4142.519   100   b
#  collapse   11.603   15.619   25.36942   23.8745   35.0305   56.227   100  a

# Large
microbenchmark(dplyr = select(data, Country, Variable, AGR:SUM),
               collapse = fselect(data, Country, Variable, AGR:SUM))
# Unit: microseconds
#      expr      min       lq      mean   median        uq     max neval cld
#     dplyr 2771.646 2847.285 3072.8900 3107.224 3194.9120 4258.99   100   b
#  collapse   12.495   16.288   26.0611   28.783   34.3615   60.69   100  a

## Subsetting columns 
# Small
microbenchmark(dplyr = filter(GGDC10S, Variable == "VA"),
               collapse = fsubset(GGDC10S, Variable == "VA"))
# Unit: microseconds
#      expr      min       lq     mean    median        uq      max neval cld
#     dplyr 2046.047 2199.110 2389.479 2373.5925 2531.3415 2953.268   100   b
#  collapse  173.144  197.688  241.938  218.8845  292.0695  382.881   100  a

# Large
microbenchmark(dplyr = filter(data, Variable == "VA"),
               collapse = fsubset(data, Variable == "VA"))
# Unit: milliseconds
#      expr       min        lq      mean    median        uq      max neval cld
#     dplyr 16.687886 16.824215 19.049358 17.017886 17.842553 47.73067   100   b
#  collapse  6.478627  7.755342  8.712829  7.850393  8.254694 46.17416   100  a

## Ordering rows
# Small
microbenchmark(dplyr = arrange(GGDC10S, desc(Country), Variable, Year),
               collapse = roworder(GGDC10S, -Country, Variable, Year))
# Unit: microseconds
#      expr      min        lq      mean    median       uq       max neval cld
#     dplyr 7402.806 7586.8840 8268.6522 8225.6870 8571.530 12362.405   100   b
#  collapse  563.165  637.6885  742.6505  701.0555  845.194  1074.565   100  a

# Large
microbenchmark(dplyr = arrange(data, desc(Country), Variable, Year),
               collapse = roworder(data, -Country, Variable, Year), times = 2)
# Unit: milliseconds
#      expr       min        lq      mean    median        uq       max neval cld
#     dplyr 2385.8920 2385.8920 2400.7634 2400.7634 2415.6348 2415.6348     2   b
#  collapse  178.9655  178.9655  191.7726  191.7726  204.5797  204.5797     2  a


## Grouping 
# Small
microbenchmark(dplyr = group_by(GGDC10S, Country, Variable),
               collapse = fgroup_by(GGDC10S, Country, Variable))
# Unit: microseconds
#      expr      min        lq     mean   median       uq      max neval cld
#     dplyr 2951.930 3089.3745 3234.075 3220.126 3343.959 3789.091   100   b
#  collapse  354.322  372.1715  400.887  396.492  416.349  502.475   100  a

# Large
microbenchmark(dplyr = group_by(data, Country, Variable),
               collapse = fgroup_by(data, Country, Variable), times = 10)
# Unit: milliseconds
#      expr      min       lq     mean   median       uq       max neval cld
#     dplyr 68.24201 69.36343 75.40416 73.60413 76.35837 101.41563    10   b
#  collapse 64.51629 64.94290 67.42560 66.49741 69.54639  72.26315    10  a

## Computing a new column 
# Small
microbenchmark(dplyr = mutate(GGDC10S, NEW = AGR+1),
               collapse = ftransform(GGDC10S, NEW = AGR+1))
# Unit: microseconds
#      expr      min       lq       mean   median       uq      max neval cld
#     dplyr 3038.949 3177.285 3314.79642 3244.668 3424.283 4187.144   100   b
#  collapse   28.113   33.915   46.62425   40.609   59.351   91.481   100  a

# Large
microbenchmark(dplyr = mutate(data, NEW = AGR+1),
               collapse = ftransform(data, NEW = AGR+1))
# Unit: milliseconds
#      expr      min       lq     mean   median       uq      max neval cld
#     dplyr 3.908239 4.282418 6.051429 6.376659 6.592421 26.69856   100   b
#  collapse 1.265113 1.526390 3.426617 3.652093 3.759861 33.76178   100  a

## All combined with pipes 
# Small
microbenchmark(dplyr = filter(GGDC10S, Variable == "VA") %>% 
                       select(Country, Year, AGR:SUM) %>% 
                       arrange(desc(Country), Year) %>%
                       mutate(NEW = AGR+1) %>%
                       group_by(Country),
               collapse = fsubset(GGDC10S, Variable == "VA", Country, Year, AGR:SUM) %>% 
                       roworder(-Country, Year) %>%
                       ftransform(NEW = AGR+1) %>%
                       fgroup_by(Country))
# Unit: microseconds
#      expr       min        lq       mean    median         uq       max neval cld
#     dplyr 15968.534 16537.947 17243.7636 16887.136 17721.3960 22449.839   100   b
#  collapse   711.766   788.074   836.2107   835.822   863.9365  1039.311   100  a

# Large
microbenchmark(dplyr = filter(data, Variable == "VA") %>% 
                       select(Country, Year, AGR:SUM) %>% 
                       arrange(desc(Country), Year) %>%
                       mutate(NEW = AGR+1) %>%
                       group_by(Country),
               collapse = fsubset(data, Variable == "VA", Country, Year, AGR:SUM) %>% 
                       roworder(-Country, Year) %>%
                       ftransform(NEW = AGR+1) %>%
                       fgroup_by(Country), times = 10)
# Unit: milliseconds
#      expr       min        lq      mean    median        uq       max neval cld
#     dplyr 23.080387 23.429353 24.995460 23.817811 28.121649 28.246153    10   b
#  collapse  6.872664  7.004753  7.956109  8.225465  8.684431  9.260536    10  a

gc()
#            used  (Mb) gc trigger  (Mb) max used  (Mb)
# Ncells  1946045 104.0    3717688 198.6  3717688 198.6
# Vcells 21425190 163.5   57610832 439.6 66845873 510.0

3.1 Aggregation

## Grouping the data
cgGGDC10S <- fgroup_by(GGDC10S, Variable, Country) %>% fselect(-Region, -Regioncode)
gGGDC10S <- group_by(GGDC10S, Variable, Country) %>% fselect(-Region, -Regioncode)
cgdata <- fgroup_by(data, Variable, Country) %>% fselect(-Region, -Regioncode)
gdata <- group_by(data, Variable, Country) %>% fselect(-Region, -Regioncode)
rm(data, GGDC10S) 
gc()
#            used  (Mb) gc trigger  (Mb) max used  (Mb)
# Ncells  1963051 104.9    3717688 198.6  3717688 198.6
# Vcells 20525803 156.6   57610832 439.6 66845873 510.0

## Conversion of Grouping object: This time would be required extra in all hybrid calls 
## i.e. when calling collapse functions on data grouped with dplyr::group_by
# Small
microbenchmark(GRP(gGGDC10S))
# Unit: microseconds
#           expr     min      lq     mean  median      uq     max neval
#  GRP(gGGDC10S) 166.897 169.128 174.2155 170.021 172.475 260.609   100

# Large
microbenchmark(GRP(gdata))
# Unit: milliseconds
#        expr      min       lq     mean   median      uq      max neval
#  GRP(gdata) 30.59297 32.09169 33.24536 32.70618 34.7076 37.20012   100


## Sum 
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, sum, na.rm = TRUE),
               collapse = fsum(cgGGDC10S))
# Unit: microseconds
#      expr      min       lq     mean   median        uq       max neval cld
#     dplyr 8332.340 8654.086 9140.232 8870.069 9343.3150 16933.768   100   b
#  collapse  240.082  266.187  295.635  301.441  309.2495   409.656   100  a

# Large
microbenchmark(dplyr = summarise_all(gdata, sum, na.rm = TRUE),
               collapse = fsum(cgdata), times = 10)
# Unit: milliseconds
#      expr       min       lq      mean    median        uq       max neval cld
#     dplyr 554.04039 558.6305 572.88754 572.61591 577.02841 616.51064    10   b
#  collapse  39.87983  40.1632  42.23696  42.53389  43.58458  44.49181    10  a

## Mean
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, mean.default, na.rm = TRUE),
               collapse = fmean(cgGGDC10S))
# Unit: microseconds
#      expr       min        lq      mean    median        uq      max neval cld
#     dplyr 11151.289 11524.352 12388.270 11807.719 12031.959 31118.65   100   b
#  collapse   260.609   274.442   304.975   316.167   323.753   405.64   100  a

# Large
microbenchmark(dplyr = summarise_all(gdata, mean.default, na.rm = TRUE),
               collapse = fmean(cgdata), times = 10)
# Unit: milliseconds
#      expr       min         lq       mean     median         uq        max neval cld
#     dplyr 1297.2944 1438.65988 1518.14667 1520.49527 1656.09684 1702.34151    10   b
#  collapse   43.1959   43.56049   44.67526   44.88919   45.46507   46.20808    10  a

## Median
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, median, na.rm = TRUE),
               collapse = fmedian(cgGGDC10S))
# Unit: microseconds
#      expr       min         lq       mean     median         uq       max neval cld
#     dplyr 49193.474 50737.4920 53360.0773 51968.2435 53670.2325 76091.065   100   b
#  collapse   491.319   505.1525   558.5509   557.5865   586.8155   759.514   100  a

# Large
microbenchmark(dplyr = summarise_all(gdata, median, na.rm = TRUE),
               collapse = fmedian(cgdata), times = 2)
# Unit: milliseconds
#      expr        min         lq       mean     median         uq        max neval cld
#     dplyr 9448.74285 9448.74285 9555.37111 9555.37111 9661.99936 9661.99936     2   b
#  collapse   87.67387   87.67387   88.16765   88.16765   88.66142   88.66142     2  a

## Standard Deviation
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, sd, na.rm = TRUE),
               collapse = fsd(cgGGDC10S))
# Unit: microseconds
#      expr       min         lq       mean    median         uq       max neval cld
#     dplyr 23062.091 23747.5280 25054.2217 24247.549 25451.3025 32090.132   100   b
#  collapse   428.844   440.0005   473.3309   485.518   489.0875   622.962   100  a

# Large
microbenchmark(dplyr = summarise_all(gdata, sd, na.rm = TRUE),
               collapse = fsd(cgdata), times = 2)
# Unit: milliseconds
#      expr        min         lq       mean     median        uq       max neval cld
#     dplyr 4005.86147 4005.86147 4090.09343 4090.09343 4174.3254 4174.3254     2   b
#  collapse   80.23403   80.23403   80.94357   80.94357   81.6531   81.6531     2  a

## Maximum
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, max, na.rm = TRUE),
               collapse = fmax(cgGGDC10S))
# Unit: microseconds
#      expr       min        lq       mean     median         uq       max neval cld
#     dplyr 10950.923 11278.469 11854.4592 11534.6155 12198.4095 20697.869   100   b
#  collapse   183.408   213.753   243.8971   245.4365   251.9075   600.204   100  a

# Large
microbenchmark(dplyr = summarise_all(gdata, max, na.rm = TRUE),
               collapse = fmax(cgdata), times = 10)
# Unit: milliseconds
#      expr        min         lq       mean     median        uq        max neval cld
#     dplyr 1043.28961 1053.34804 1081.87716 1061.95773 1087.9202 1238.50209    10   b
#  collapse   24.16298   24.23438   24.95289   24.97449   25.1657   27.24656    10  a

## First Value
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, first),
               collapse = ffirst(cgGGDC10S, na.rm = FALSE))
# Unit: microseconds
#      expr       min        lq       mean    median         uq       max neval cld
#     dplyr 10229.340 10669.118 11194.4586 10828.206 11343.1755 18912.431   100   b
#  collapse    59.797    79.209   105.7833    97.951   128.7425   193.672   100  a

# Large
microbenchmark(dplyr = summarise_all(gdata, first),
               collapse = ffirst(cgdata, na.rm = FALSE), times = 10)
# Unit: milliseconds
#      expr         min          lq      mean     median          uq         max neval cld
#     dplyr 1148.937016 1243.711587 1329.5020 1346.93653 1390.871643 1528.336071    10   b
#  collapse    4.257652    4.352256    4.4457    4.38684    4.513351    4.694974    10  a

## Number of Distinct Values
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, n_distinct, na.rm = TRUE),
               collapse = fNdistinct(cgGGDC10S))
# Unit: milliseconds
#      expr       min        lq      mean   median        uq        max neval cld
#     dplyr 65.389148 67.188865 71.079318 68.63940 71.151994 219.626696   100   b
#  collapse  1.246817  1.292334  1.370013  1.33272  1.417061   1.988927   100  a

# Large
microbenchmark(dplyr = summarise_all(gdata, n_distinct, na.rm = TRUE),
               collapse = fNdistinct(cgdata), times = 5)
# Unit: milliseconds
#      expr        min        lq       mean     median        uq        max neval cld
#     dplyr 12713.3442 13077.167 13102.5746 13167.2314 13199.612 13355.5185     5   b
#  collapse   305.4437   307.343   313.8839   308.1359   316.446   332.0508     5  a

gc()
#            used  (Mb) gc trigger  (Mb) max used  (Mb)
# Ncells  1965766 105.0    3717688 198.6  3717688 198.6
# Vcells 20532054 156.7   57610832 439.6 66845873 510.0

Below are some additional benchmarks for weighted aggregations and aggregations using the statistical mode, which cannot easily or efficiently be performed with dplyr.

## Weighted Mean
# Small
microbenchmark(fmean(cgGGDC10S, SUM)) 
# Unit: microseconds
#                   expr     min      lq     mean  median      uq     max neval
#  fmean(cgGGDC10S, SUM) 288.276 325.761 336.1944 344.727 347.627 432.415   100

# Large 
microbenchmark(fmean(cgdata, SUM), times = 10) 
# Unit: milliseconds
#                expr      min       lq     mean   median       uq      max neval
#  fmean(cgdata, SUM) 48.38978 49.62633 50.98619 50.54627 52.10435 55.63328    10

## Weighted Standard-Deviation
# Small
microbenchmark(fsd(cgGGDC10S, SUM)) 
# Unit: microseconds
#                 expr     min      lq     mean   median       uq     max neval
#  fsd(cgGGDC10S, SUM) 440.001 447.587 461.4876 460.9745 462.9825 585.031   100

# Large 
microbenchmark(fsd(cgdata, SUM), times = 10) 
# Unit: milliseconds
#              expr      min      lq     mean   median       uq      max neval
#  fsd(cgdata, SUM) 77.75602 78.2451 79.50143 79.19427 80.87663 81.94852    10

## Statistical Mode
# Small
microbenchmark(fmode(cgGGDC10S)) 
# Unit: milliseconds
#              expr      min       lq     mean   median       uq      max neval
#  fmode(cgGGDC10S) 2.094242 2.109414 2.186535 2.123247 2.215844 2.797529   100

# Large 
microbenchmark(fmode(cgdata), times = 10) 
# Unit: milliseconds
#           expr      min       lq     mean   median       uq      max neval
#  fmode(cgdata) 458.2787 464.5704 500.8933 493.9852 531.8195 569.1526    10

## Weighted Statistical Mode
# Small
microbenchmark(fmode(cgGGDC10S, SUM)) 
# Unit: milliseconds
#                   expr      min       lq     mean   median       uq      max neval
#  fmode(cgGGDC10S, SUM) 1.764465 1.785215 1.937573 1.849028 2.015925 3.221464   100

# Large 
microbenchmark(fmode(cgdata, SUM), times = 10) 
# Unit: milliseconds
#                expr      min       lq    mean   median      uq      max neval
#  fmode(cgdata, SUM) 424.7289 450.3931 463.624 459.4651 465.009 527.9559    10

gc()
#            used  (Mb) gc trigger  (Mb) max used  (Mb)
# Ncells  1965220 105.0    3717688 198.6  3717688 198.6
# Vcells 20528687 156.7   72302159 551.7 72302156 551.7

3.2 Transformation


## Replacing with group sum
# Small
microbenchmark(dplyr = mutate_all(gGGDC10S, sum, na.rm = TRUE),
               collapse = fsum(cgGGDC10S, TRA = "replace_fill"))
# Unit: microseconds
#      expr      min       lq      mean   median       uq       max neval cld
#     dplyr 8737.087 9149.867 9878.1031 9567.778 9981.896 22892.517   100   b
#  collapse  296.755  341.603  362.2688  356.775  373.287   514.524   100  a

# Large
microbenchmark(dplyr = mutate_all(gdata, sum, na.rm = TRUE),
               collapse = fsum(cgdata, TRA = "replace_fill"), times = 10)
# Unit: milliseconds
#      expr       min        lq     mean    median         uq       max neval cld
#     dplyr 865.10150 908.00154 990.0571 955.10077 1070.63078 1210.0101    10   b
#  collapse  52.86966  55.18569 108.0811  65.81353   83.25022  296.2899    10  a

## Dividing by group sum
# Small
microbenchmark(dplyr = mutate_all(gGGDC10S, function(x) x/sum(x, na.rm = TRUE)),
               collapse = fsum(cgGGDC10S, TRA = "/"))
# Unit: microseconds
#      expr      min       lq       mean    median        uq       max neval cld
#     dplyr 9015.546 9481.429 10103.7975 9736.9060 10344.695 22450.731   100   b
#  collapse  556.918  584.585   621.4183  612.6985   649.291   778.702   100  a

# Large
microbenchmark(dplyr = mutate_all(gdata, function(x) x/sum(x, na.rm = TRUE)),
               collapse = fsum(cgdata, TRA = "/"), times = 10)
# Unit: milliseconds
#      expr       min        lq      mean    median        uq       max neval cld
#     dplyr 1096.4123 1297.9954 1425.3915 1494.1336 1549.1326 1562.5218    10   b
#  collapse  102.6977  104.9513  119.0727  115.3647  136.1957  144.4036    10  a

## Centering
# Small
microbenchmark(dplyr = mutate_all(gGGDC10S, function(x) x-mean.default(x, na.rm = TRUE)),
               collapse = fwithin(cgGGDC10S))
# Unit: microseconds
#      expr       min         lq       mean    median        uq      max neval cld
#     dplyr 12090.640 12434.6970 13523.1362 12739.038 13131.960 46424.51   100   b
#  collapse   320.406   347.1815   371.0375   370.609   383.104   593.51   100  a

# Large
microbenchmark(dplyr = mutate_all(gdata, function(x) x-mean.default(x, na.rm = TRUE)),
               collapse = fwithin(cgdata), times = 10)
# Unit: milliseconds
#      expr       min         lq       mean    median        uq       max neval cld
#     dplyr 1958.9166 2646.70064 2589.65285 2668.9113 2728.9593 2767.7784    10   b
#  collapse   63.8188   74.85987   87.06073   80.4431   97.5895  129.7327    10  a

## Centering and Scaling (Standardizing)
# Small
microbenchmark(dplyr = mutate_all(gGGDC10S, function(x) (x-mean.default(x, na.rm = TRUE))/sd(x, na.rm = TRUE)),
               collapse = fscale(cgGGDC10S))
# Unit: microseconds
#      expr       min        lq       mean    median        uq       max neval cld
#     dplyr 29549.196 30809.177 34210.6659 31922.120 34752.223 60542.004   100   b
#  collapse   498.012   528.804   582.1931   553.124   596.634   896.958   100  a

# Large
microbenchmark(dplyr = mutate_all(gdata, function(x) (x-mean.default(x, na.rm = TRUE))/sd(x, na.rm = TRUE)),
               collapse = fscale(cgdata), times = 2)
# Unit: milliseconds
#      expr       min        lq      mean    median        uq       max neval cld
#     dplyr 6215.2593 6215.2593 6445.2813 6445.2813 6675.3033 6675.3033     2   b
#  collapse  103.7727  103.7727  107.9616  107.9616  112.1506  112.1506     2  a

## Lag
# Small
microbenchmark(dplyr_unordered = mutate_all(gGGDC10S, dplyr::lag),
               collapse_unordered = flag(cgGGDC10S),
               dplyr_ordered = mutate_all(gGGDC10S, dplyr::lag, order_by = "Year"),
               collapse_ordered = flag(cgGGDC10S, t = Year))
# Unit: microseconds
#                expr        min          lq        mean      median          uq        max neval cld
#     dplyr_unordered  43906.329  45347.4865  46894.3694  46259.1710  47563.7770  59132.307   100  b 
#  collapse_unordered    338.702    403.6315    435.3017    443.3475    469.4525    630.994   100 a  
#       dplyr_ordered 107641.683 112130.4900 114552.2151 114408.5860 116274.5715 136275.178   100   c
#    collapse_ordered    312.820    349.4125    373.1706    373.7330    387.5660    641.705   100 a

# Large
microbenchmark(dplyr_unordered = mutate_all(gdata, dplyr::lag),
               collapse_unordered = flag(cgdata),
               dplyr_ordered = mutate_all(gdata, dplyr::lag, order_by = "Year"),
               collapse_ordered = flag(cgdata, t = Year), times = 2)
# Unit: milliseconds
#                expr         min          lq        mean      median          uq         max neval
#     dplyr_unordered  8486.05989  8486.05989  8627.22839  8627.22839  8768.39690  8768.39690     2
#  collapse_unordered    28.62323    28.62323    34.22855    34.22855    39.83387    39.83387     2
#       dplyr_ordered 21386.81079 21386.81079 21700.49069 21700.49069 22014.17060 22014.17060     2
#    collapse_ordered    65.01832    65.01832    76.41236    76.41236    87.80641    87.80641     2
#  cld
#   b 
#  a  
#    c
#  a

## First-Difference (unordered)
# Small
microbenchmark(dplyr_unordered = mutate_all(gGGDC10S, function(x) x - dplyr::lag(x)),
               collapse_unordered = fdiff(cgGGDC10S))
# Unit: microseconds
#                expr       min        lq       mean     median        uq       max neval cld
#     dplyr_unordered 57758.310 59035.917 61826.3411 60604.7015 62783.730 99087.557   100   b
#  collapse_unordered   376.187   402.962   461.1171   473.4695   495.558   631.887   100  a

# Large
microbenchmark(dplyr_unordered = mutate_all(gdata, function(x) x - dplyr::lag(x)),
               collapse_unordered = fdiff(cgdata), times = 2)
# Unit: milliseconds
#                expr         min          lq        mean      median          uq         max neval
#     dplyr_unordered 11651.41704 11651.41704 11826.30738 11826.30738 12001.19773 12001.19773     2
#  collapse_unordered    29.34303    29.34303    46.95733    46.95733    64.57162    64.57162     2
#  cld
#    b
#   a

gc()
#            used  (Mb) gc trigger  (Mb) max used  (Mb)
# Ncells  1967585 105.1    4756390 254.1  4756390 254.1
# Vcells 21577603 164.7   72302159 551.7 72302159 551.7

Below again some benchmarks for transformations not easily of efficiently performed with dplyr, such as centering on the overall mean, mean-preserving scaling, weighted scaling and centering, sequences of lags / leads, (iterated) panel-differences and growth rates.

# Centering on overall mean
microbenchmark(fwithin(cgdata, mean = "overall.mean"), times = 10)
# Unit: milliseconds
#                                    expr      min       lq     mean   median       uq      max neval
#  fwithin(cgdata, mean = "overall.mean") 61.23413 66.18972 89.89963 96.50244 101.4866 117.7398    10

# Weighted Centering
microbenchmark(fwithin(cgdata, SUM), times = 10)
# Unit: milliseconds
#                  expr      min       lq     mean   median     uq      max neval
#  fwithin(cgdata, SUM) 66.09958 71.73078 87.59395 84.45821 106.51 111.4044    10
microbenchmark(fwithin(cgdata, SUM, mean = "overall.mean"), times = 10)
# Unit: milliseconds
#                                         expr      min       lq     mean   median       uq     max
#  fwithin(cgdata, SUM, mean = "overall.mean") 61.82943 65.92108 80.93767 83.51217 94.47782 100.267
#  neval
#     10

# Weighted Scaling and Standardizing
microbenchmark(fsd(cgdata, SUM, TRA = "/"), times = 10)
# Unit: milliseconds
#                         expr      min       lq    mean   median       uq      max neval
#  fsd(cgdata, SUM, TRA = "/") 132.0657 132.5013 159.288 160.8864 168.5987 204.8095    10
microbenchmark(fscale(cgdata, SUM), times = 10)
# Unit: milliseconds
#                 expr      min       lq     mean   median       uq      max neval
#  fscale(cgdata, SUM) 92.93291 96.53502 114.9687 112.6562 126.1337 158.3511    10

# Sequence of lags and leads
microbenchmark(flag(cgdata, -1:1), times = 10)
# Unit: milliseconds
#                expr      min       lq     mean   median       uq      max neval
#  flag(cgdata, -1:1) 46.03493 82.18324 117.1779 108.0114 141.2433 214.1945    10

# Iterated difference
microbenchmark(fdiff(cgdata, 1, 2), times = 10)
# Unit: milliseconds
#                 expr      min       lq     mean   median       uq      max neval
#  fdiff(cgdata, 1, 2) 59.08768 76.45476 97.38677 106.7711 114.4867 122.7601    10

# Growth Rate
microbenchmark(fgrowth(cgdata,1), times = 10)
# Unit: milliseconds
#                expr      min       lq     mean   median       uq      max neval
#  fgrowth(cgdata, 1) 65.57345 70.42996 100.6642 94.74601 97.94427 228.3125    10

References

Timmer, M. P., de Vries, G. J., & de Vries, K. (2015). “Patterns of Structural Change in Developing Countries.” . In J. Weiss, & M. Tribe (Eds.), Routledge Handbook of Industry and Development. (pp. 65-83). Routledge.

Cochrane, D. & Orcutt, G. H. (1949). “Application of Least Squares Regression to Relationships Containing Auto-Correlated Error Terms”. Journal of the American Statistical Association. 44 (245): 32–61.

Prais, S. J. & Winsten, C. B. (1954). “Trend Estimators and Serial Correlation”. Cowles Commission Discussion Paper No. 383. Chicago.


  1. Row-wise operations are not supported by TRA.↩︎