
Local likelihood estimation for covariance functions
with spatially-varying parameters: the convoSPAT

package for R

Mark D. Risser a and Catherine A. Calder a ∗

February 22, 2015

a Department of Statistics, The Ohio State University, OH 43210, USA
∗ Correspondance: Department of Statistics, 1958 Neil Avenue, Columbus, OH 43210. Email: calder@stat.osu.edu

Abstract

In spite of the interest in and appeal of convolution-based approaches for nonstationary

spatial modeling, off-the-shelf software for model fitting does not as of yet exist. Convolution-

based models are highly flexible yet notoriously difficult to fit, even with relatively small

data sets. The general lack of pre-packaged options for model fitting makes it difficult

to compare new methodology in nonstationary modeling with other existing nonstationary

methods, and as a result most new models are simply compared to stationary models.

Using a convolution-based approach, we present a new nonstationary covariance function for

spatial Gaussian process models that allows for efficient computing in two ways: first, by

representing the spatially-varying parameters via a discrete mixture or “mixture component”

model, and second, by estimating the mixture component parameters through a local likelihood

approach. In order to make computation for a convolution-based nonstationary spatial model

readily available, this paper also presents and describes the convoSPAT package for R. The

nonstationary model is fit to both a synthetic data set and a real data application involving

annual precipitation to demonstrate the capabilities of the package.

1

1 Introduction

The Gaussian process is extremely popular modeling approach in modern-day spatial and

environmental statistics, due largely to the fact that the second-order properties of the process

can be completely defined through the covariance function. A broad literature on covariance

function modeling exists, but traditional approaches are mostly based on assumptions of isotropy

or stationarity, in which the covariance between the spatial process at two locations is a function

of only the separation distance or separation vector, respectively. This modeling assumption is

made mostly for convenience, and is almost never a realistic assumption in practice. As a result,

a wide variety nonstationary covariance function models for Gaussian process models have been

developed (e.g., Sampson and Guttorp, 1992, Higdon, 1998, Damian et al., 2001, Fuentes, 2001,

Schmidt and O’Hagan, 2003, Paciorek and Schervish, 2006, Calder, 2008, Schmidt et al., 2011,

Reich et al., 2011, and Vianna Neto et al., 2014), in which the spatial dependence structure is

allowed to vary over the spatial region of interest. However, while these nonstationary approaches

more appropriately model the covariance in the spatial process, most are also highly complex and

require intricate model-fitting algorithms, making it very difficult to replicate their results in a

general setting. Therefore, when new nonstationary methods are developed, their performance is

usually compared to stationary models, for which a wide variety of software is available. In order

to more accurately evaluate new nonstationary methods, pre-packaged and efficient options for

fitting existing nonstationary models must be made available.

To address this need, we present a simplified version of the nonstationary spatial Gaussian

process model introduced by Paciorek and Schervish (2006) in which the locally-varying geometric

anisotropies are modeled using a “mixture component” approach, similar to the discrete mixture

kernel convolution approach in Higdon (1998), while also allowing the underlying correlation

structure to be specified by the modeler. The model can be extended to allow other properties to

vary over space as well, such as the process variance and nugget effect. An additional degree of

efficiency is gained by using local likelihood techniques to estimate the spatially-varying features

of the spatial process; then, the locally estimated features are smoothed over space, similar to the

2

approach of Fuentes (2002).

This paper also presents and describes the convoSPAT package for R for conducting a

full analysis of spatial data using a nonstationary spatial Gaussian process model. The primary

contribution of the package is to offer efficient model-fitting for nonstationary, point-referenced

spatial data, even when the size of the data is relatively large (on the order of n = 1000 to 1500).

The package is able to handle both a single realization of the spatial process as well as replicates.

Finally, the paper demonstrates how the package can be used, and provides an analysis of both

simulated and real data sets.

2 A convolution-based nonstationary covariance function

Process convolutions or moving average models are popular constructive methods for specifying

a nonstationary process model. In general, a spatial stochastic process Y (·) on G ⊂ Rd can be

defined by the kernel convolution

Y (s) =

∫
Rd

Ks(u)dW (u), (1)

where W (·) is a d-dimensional stochastic process and Ks(·) is a (possibly parametric) spatially-

varying kernel function centered at s ∈ G. Higdon (2002) summarizes the extremely flexible class

of spatial process models defined by (1): see, for example, Barry and Ver Hoef (1996), Ver Hoef

et al. (2004), Ickstadt and Wolpert (1998), Higdon (1998), Ver Hoef et al. (2004), and Hoef and

Barry (1998).

The kernel convolution (1) defines a mean-zero nonstationary spatial Gaussian process (GP) if

W (·) is chosen to be d-dimensional Brownian motion. An additional benefit of using (1) is that

in this case the kernel functions completely specify the second-order properties of the GP through

the covariance function

Cov(Y (s), Y (s′)) = E
[
Y (s)Y (s′)

]
=

∫
G

Ks(u)Ks′(u)du, (2)

3

where s, s′ ∈ G. The popularity of this approach is due largely to the fact that it is much easier to

specify kernel functions than a covariance function directly, since the kernel functions only require

∫
Rd

Ks(u)du <∞

and ∫
Rd

K2
s (u)du <∞.

A famous result (Thiébaux, 1976; Thiébaux and Pedder, 1987) uses a parametric class of kernel

functions in (2) to give a closed-form covariance function; this result was later extended (Paciorek,

2003; Paciorek and Schervish, 2006; Stein, 2005) to show that

CNS(s, s′;θ) = σ(s)σ(s′)
|Σ(s)|1/4 |Σ(s′)|1/4∣∣∣Σ(s)+Σ(s′)

2

∣∣∣1/2 g
(√

Q(s, s′)
)
, (3)

is a valid, nonstationary, parametric covariance function for Rd, d ≥ 1, when g(·) is chosen to be

a valid correlation function forRd, d ≥ 1. In (3), θ is a generic parameter vector, σ(·) represents a

spatially-varying standard deviation, Σ(·) is a d × d matrix that represents spatially-varying local

anisotropy (controlling both the range and direction of dependence), and

Q(s, s′) = (s− s′)
T

(
Σ(s) + Σ(s′)

2

)−1
(s− s′) (4)

is a scaled distance. Furthermore, choosing g(·) to be the Matérn correlation function also allows

for the introduction of ν(·), a spatially-varying smoothness (Stein, 2005). While using (3) no

longer requires the notion of kernel convolution, we refer to Σ(·) as the kernel matrix, since it

was originally defined as the covariance matrix of a Gaussian kernel function (Thiébaux, 1976;

Thiébaux and Pedder, 1987). The covariance function (3) is extremely flexible, and has been used

in various forms throughout the literature, e.g., Paciorek and Schervish (2006), Anderes and Stein

(2011), Kleiber and Nychka (2012), Katzfuss (2013), and Risser and Calder (2014).

4

3 A nonstationary spatial Gaussian process model

The Gaussian process model defined by the covariance function (3) can be expanded to include a

non-zero mean and measurement error for a full spatial model as follows. Define {Z(s), s ∈ G},

G ⊂ Rd, to be the mean-corrected observed value of Y (s), a latent nonstationary spatial process.

Then, we can model

Z(s) = x(s)Tβ + Y (s) + ε(s) (5)

where E[Z(s)] = x(s)Tβ, x(s) is a p-vector of observable covariates for location s, β ∈ Rp

are mean coefficients (note, however, that a linear mean function need not be assumed), the

ε(s) are conditionally independent N (0, τ 2(s)) (given τ 2(·)), and, conditional on parameters,

Y (·) ∼ GP(0, CNS); ε(·) and Y (·) are independent. (Note: Nq(a,B) denotes the q-

variate Gaussian distribution with mean vector a and covariance B.) Furthermore, suppose

we have observations which are a partial realization of this random process, taken at a fixed,

finite set of n spatial locations {s1, ..., sn} ∈ G, giving the random (observed) vector Z =

(Z(s1), ..., Z(sn))′, which, following (5), has a multivariate Gaussian distribution, conditional

on the unobserved latent process and all other model parameters. Integrating out the process Y

from (5), we obtain the marginal likelihood of the observed data Z given all parameters, which

is Nn(Xβ,D + Ω), where X =
(
x(s1)

T , . . . ,x(sn)T
)T , Ω has elements Ωij = CNS(si, sj;θ),

and D = diag
[
τ 2(s1), . . . , τ

2(sn)
]
. For a particular application, the practitioner can specify the

underlying correlation structure (through g(·)) as well as determine which of {Σ(·), σ(·), τ 2(·)}

(or ν(·), if the Matérn is used) should be fixed or allowed to vary spatially. However, some care

should be taken in choosing which quantities should be spatially-varying: for example, Anderes

and Stein (2011) note that the allowing both Σ(·) and ν(·) to vary over space leads to issues with

identifiability.

5

3.1 Discrete mixture representation

One way to reduce the computational demands of a spatial model which uses the covariance

function (3) is by characterizing the nonstationary behavior of a spatial process through the

discretized basis function approach of Higdon (1998). In the original paper, Higdon (1998)

estimated the Gaussian kernel function for a generic location to be a weighted average of “basis”

kernel functions, estimated locally over the spatial region of interest. However, since the use

of Gaussian kernel functions results in undesirable smoothness properties (see, e.g., Paciorek and

Schervish, 2006), we instead use a related “mixture component” approach, in which the parametric

quantities for an arbitrary spatial location are defined as a mixture of spatially-varying parameter

values associated with a fixed set of component locations. Specifically, in this new approach,

define mixture component locations {bk : k = 1, . . . , K} with corresponding parameters

{(Σk, σ
2
k, τ

2
k , νk) : k = 1, . . . , K} (which are the kernel matrix, variance, nugget variance, and

smoothness, respectively). Then, for φ ∈ {Σ, σ2, τ 2, ν}, the parameter set for an arbitrary location

s ∈ G is calculated as

φ(s) =
K∑
k=1

wk(s)φk, (6)

where

wk(s) ∝ exp

{
−||s− bk||2

2λw

}
(7)

such that
∑K

k=1wk(s) = 1. For example, the kernel matrix for s ∈ G is Σ(s) =
∑K

k=1wk(s)Σk.

In (7), λw acts as a tuning parameter, ensuring that the rate of decay in the weighting function is

appropriate for both the data set and scale of the spatial domain. Using this approach, the number

of parameters is now linear in K, the number of mixture component locations, instead of n, the

sample size. Furthermore, this specification still enables the modeler to choose which parameters

should be spatially-varying: the kernel matrices, the process variance, the nugget variance, and the

smoothness.

6

3.2 Prediction

Conditional on parameter estimates, the kriging predictor (i.e., the best linear unbiased predictor,

REF) and standard errors are calculated as follows. Again, taking θ to be a generic parameter

vector including all variance and covariance parameters, define Z∗ = (Z(s∗1), ..., Z(s∗m))′ to be a

vector of the process values at all prediction locations of interest. The Gaussian process model (5)

implies that

 Z

Z∗

∣∣∣∣∣ β, θ
 ∼ Nn+m


 Xβ

X∗β

 ,
 D + Ω ΩZZ∗

ΩZ∗Z D∗ + Ω∗


 ,

where Cov(Z∗) = D∗ + Ω∗ and Cov(Z,Z∗) = ΩZZ∗ . By the properties of the multivariate

Gaussian distribution,

Z∗|Z = z,β, θ ∼ Nm(µZ∗|z,ΣZ∗|z), (8)

where

µZ∗|z = X∗β + ΩZ∗Z(D + Ω)−1(z−Xβ), (9)

and

ΣZ∗|z = (D∗ + Ω∗)−ΩZ∗Z(D + Ω)−1ΩZZ∗ . (10)

Using the plug-in estimates β̂ and θ̂, the kriging predictor is then µ̂Z∗|z with corresponding kriging

prediction errors as the square root of the diagonal elements of Σ̂Z∗|z.

3.2.1 Out-of-sample evaluation criteria

Two cross-validation evaluation criteria can be used to assess the fit of the nonstationary spatial

model (5). First, the mean squared prediction error

MSPE =
1

m

m∑
j=1

(z∗j − ẑ∗j)2, (11)

7

where z∗j is the jth held-out observed value and ẑ∗j is the corresponding kriging predictor (from (9)).

The MSPE is a point-wise measure of model fit, and smaller MSPE indicates better predictions.

Second, the continuous rank probability score will be used (a proper scoring rule; see Gneiting

and Raftery, 2007). For the jth prediction, this is defined as

CRPSj ≡ CRPS(Fj, z
∗
j) =

∫ ∞
−∞

(
Fj(x)− 1{x ≥ z∗j }

)2
dx, (12)

where Fj(·) is the cumulative distribution function for the predictive distribution of z∗j given the

training data and 1{·} is the indicator function. In this case, given that the predictive CDF is

Gaussian (conditional on parameters; see (8)), a computational shortcut can be used for calculating

(12): when F is Gaussian with mean µ and variance σ2,

CRPS
(
F, z∗j

)
= σ

[
1√
π
− 2 · φ

(
z∗j − µ
σ

)
−
z∗j − µ
σ

(
2 · Φ

(
z∗j − µ
σ

)
− 1

)]
,

where φ and Φ denote the probability density and cumulative distribution functions, respectively,

of a standard Gaussian random variable. The reported metric will be the average over all holdout

locations, ĈRPS = m−1
∑m

j=1 ĈRPSj. CRPS measures the fit of the predictive density; smaller

CRPS indicates better model fit.

4 Computationally efficient inference

As discussed in Section 1, fast and efficient inference for a nonstationary process convolution

model has yet to be made readily available for general use. In spite of its popularity, (3) always

requires some kind of constraints and has suffered from a lack of widespread use due to the

complexity of the requisite model fitting and limited pre-packaged options. Focusing on the

spatially-varying local anisotropy matrices Σ(·), the covariance function (3) requires a kernel

matrix at every observation and prediction location of interest. Paciorek and Schervish (2006)

accomplish this by modeling Σ(·) as itself a (stationary) stochastic process, assigning Gaussian

8

process priors to the elements of the spectral decomposition of Σ(·); alternatively, Katzfuss (2013)

uses a basis function representation of Σ(·). Both of these models are highly parameterized and

require intricate Markov chain Monte Carlo methods for model fitting. Even the approach of Risser

and Calder (2014), which uses covariates and has a greatly reduced parameter space, requires a

good deal of computational complexity.

The model that we propose provides efficiency in two ways: first, from the model itself,

which uses a discrete mixture representation (see Section 3.1), and second, by fitting the mixture

components of the model locally, using the idea of local likelihood estimation (Tibshirani and

Hastie, 1987).

4.1 Local likelihood estimation

Using the discrete mixture representation of (6), a “full likelihood” approach to parameter

estimation could be taken, in either a Bayesian or maximum likelihood framework, although the

optimization in a maximum likelihood approach could become intractable for either moderately

large K or large n. However, since the primary goal of this new methodology is computational

speed, a further degree of efficiency can be gained by using local likelihood estimation (LLE), due

to Tibshirani and Hastie (1987).

Before discussing the local likelihood approach, we outline a restricted maximum likelihood

(REML; see Patterson and Thompson, 1971, Patterson and Thompson, 1974, and Kitanidis, 1983)

approach for separating estimation of the mean parameters β from the covariance parameters θ.

The full log-likelihood for β and θ in (5) is

LF (β, θ; Z) = −1

2
log |Ω + D| − 1

2
(Z−Xβ)T (Ω + D)−1(Z−Xβ); (13)

a standard maximum likelihood approach would set out to maximize LF (β, θ; Z) directly. REML,

on the other hand, uses a (log) likelihood based on n− p linearly independent linear combinations

of the data that have an expected value of zero for all possible β and θ. Regardless of which set of

9

linearly independent combinations is chosen, the “restricted” log-likelihood, which depends only

on θ, is

LR(θ; Z) = −1

2
log |Ω + D| − 1

2
log |XT (Ω + D)−1X| − 1

2
ZTPZ, (14)

where

P = (Ω + D)−1 − (Ω + D)−1X
(
XT (Ω + D)−1X

)−1
XT (Ω + D)−1. (15)

The REML estimate of θ is obtained by maximizing LR(θ; Z), and the estimate of β is the

generalized least squares estimate

β̂ =
(
XT (Ω̂ + D̂)−1X

)−1
XT (Ω̂ + D̂)−1Z, (16)

which is obtained by plugging in θ̂ to calculate Ω̂ and D̂. These parameter estimates can then be

plugged in to µ̂Z∗|z and Σ̂Z∗|z to obtain predictions and prediction standard errors.

In the LLE approach, instead of optimizating (14) directly we will set out to optimize

LRk (θNk
; ZNk

), where Nk ≡ Nk(r) is a neighborhood for each mixture component location bk

that depends on the radius r, such that

Nk =
{
si ∈ {s1, . . . , sn} : {||si − bk|| ≤ r}

}
and

ZNk
=
{
Z(s) : s ∈ Nk

}
.

Correspondingly, θNk
= (Σk, σ

2
k, τ

2
k , νk). The radius r defines the “span” (Tibshirani and Hastie,

1987) or window size for each mixture component. The restricted log-likelihood for neighborhood

Nk will be based on a stationary version of the spatial model (5), namely

Z̃(s) = x(s)T β̃ + Ỹ (s) + ε̃(s), (17)

10

where Ỹ (·) is a stationary, mean-zero spatial process with covariance function

CS(s− s′) = σ2g
(
||Σ−1/2(s− s′)||

)
,

the ε̃(·) are independent and identically distributed as N (0, τ 2), conditional on τ 2, and again

Ỹ (·) and ε̃(·) are independent. Again, in a REML framework, only the variance and covariance

parameters {Σk, σ
2
k, τ

2
k , νk} need to be estimated for each k = 1, . . . , K. No estimates will be

obtained for the local mean coefficient vector β̃, as all of the mean parameters will be estimated

globally.

One final note regarding the estimation of the kernel matrices: the kernel matrix for

mixture component location k will be obtained through estimating the parameters of its spectral

decomposition, namely λ1, λ2, and η, where

Σ =

 cos(η) − sin(η)

sin(η) cos(η)


 λ1 0

0 λ2


 cos(η) sin(η)

− sin(η) cos(η)

 . (18)

Here, λ1 and λ2 are eigenvalues and represent squared ranges (such that λ1 > 0 and λ2 > 0) and

η represents an angle of rotation, constrained to lie between 0 and π/2 for identifiability purposes

(Katzfuss, 2013).

Returning to the full dataset, the model (5) can be fit by plugging REML estimates

{Σ̂k, σ̂
2
k, τ̂

2
k , ν̂k : k = 1, . . . , K} into the covariance function (3) using the discrete basis

representation (6) to calculate the likelihood for the observed data. Variance quantities that are

not specified to be spatially-varying can then be estimated again using REML with the spatially-

varying components considered fixed. For example, if for a particular model only Σ(·) is allowed

to vary spatially and the smoothness is fixed, it remains to estimate the overall nugget τ 2 and

variance σ2. The restricted Gaussian likelihood for these parameters is then

LR(σ2, τ 2; Z,R) = −1

2
log
∣∣σ2R + τ 2In

∣∣− 1

2
log |XT (σ2R + τ 2In)−1X| − 1

2
ZTPZ,

11

where R is the correlation matrix, i.e., the matrix calculated using (3) without the σ(·) terms, and

P is defined as in (15). Once all of the covariance parameters have been estimated, the estimate of

β can be calculated as in (16).

Using this model requires both the number and placement of mixture component locations

{bk : k = 1, . . . , K}, selecting which of the spatial dependence parameters should be fixed or

allowed to vary spatially, the tuning parameter for the weighting function λw, and the fitting radius

r. Parameter estimates for this model are likely to be sensitive to the choice ofK and the placement

of mixture component locations. Furthermore, Tibshirani and Hastie (1987) discuss the importance

of choosing r, which specifies the “span size,” suggesting that the model should be fit using a

range of r values, and use a global criterion such as the maximized overall likelihood, cross-

validation, or Akaike’s Information Criterion to choose the final model. This strategy could either

be implemented on a trial-and-error basis or in an automated scheme. Of course, regardless of the

number and locations of the mixture component centroids, the radius r should be chosen such that

a sufficiently large enough number of data points are used to estimate a local stationary model.

While different in both motivation and nature, the model outlined above is related to the

local likelihood method described in Anderes and Stein (2011), which ties together locally

stationary models to estimate a globally nonstationary model. The model in Anderes and Stein

(2011) involves optimizing a sum of weighted increments of local log-likelihoods, where the

weights are estimated smoothly using a smoothing kernels. Alternatively, our approach estimates

spatially-varying parameters locally using only a subset of the data, then fixing the global

parameters according to (6). Both of these approaches avoid the lack-of-smoothness issues innate

to other similar segmentation approaches, such as Fuentes (2001) or the ad hoc nonstationary

kriging approach in Paciorek and Schervish (2006), which Anderes and Stein (2011) call “hard

thresholding” local likelihood estimates. Like Anderes and Stein (2011), our approach avoids the

problem of non-smooth local parameter estimates implicit to hard thresholding methods by using

the mixture component representation.

12

5 Using the convoSPAT package for R

5.1 Nonstationary model fitting

The primary components of the convoSPAT package are the NSconvo.fit and

NSconvo.pred functions which fit the nonstationary model (5) and provide predictions,

respectively. Much of the underlying coding of this package relies on base functions of the geoR

(Ribeiro Jr. and Diggle, 2001) package, and therefore uses similar data structures.

The NSconvo.fit function takes the following arguments (with defaults as given):

NSconvo.fit(geodata, coords = geodata$coords, data = geodata$data,
cov.model = "exponential", mean.model = data ˜ 1,
mc.locations = NULL, N.mc = NULL,
mc.kernels = NULL, fit.radius = NULL, lambda.w = NULL,
ns.nugget = FALSE, ns.variance = FALSE,
local.pars.LB = NULL, local.pars.UB = NULL,
global.pars.LB = NULL, global.pars.UB = NULL,
local.ini.pars = NULL, global.ini.pars = NULL)

Required inputs are a geodata object (or, equivalently, separate specification of the coords

with locations and data with the variable of interest), the number of mixture component locations

(N.mc), and the fit radius (previously denoted r). The user may specify a covariance model

from the geoR options cauchy, matern, circular, cubic, gaussian, exponential,

spherical, or wave, as well as a mean model through the usual formula notation (a constant

mean is the default). For most applications, the user will want to specify the mixture component

locations: the default is to create an evenly spaced grid over the spatial domain of interest, which

may not be appropriate if the spatial domain is non-rectangular. The tuning parameter for the

weighting function λw is defined by lambda.w. The default for λw is fixed to be the square

of one-half of the minimum distance between mixture component locations, or (0.5 min{||bk −

bk′||})2, but may also be specified by the user. The user may also specify if either the nugget

variance or process variance is to be spatially-varying by setting either ns.nugget = TRUE

or ns.variance = TRUE (or both). If the mixture component kernels themselves are pre-

specified (e.g., based on expert opinion), these may also be passed into the function, which will

13

greatly reduce computational time.

Note that if the data and coordinates are not specified as a geodata object, the data argument

for this function can accommodate replicates. This might be of interest for applications similar to

the ones in Sampson and Guttorp (1992), in which the replicates represent repeated observations

over time that have been temporally detrended. In this case, the model will assume a constant

spatial dependence structure as well as a constant mean function over the replicates.

The optimization method used within optim() for this package is "L-BFGS-B", which

allows for the specification of upper and lower bounds for each parameter with respect to

the optimization search. The upper and lower bounds may be passed to the function via

local.pars.LB, local.pars.UB, global.pars.LB, and global.pars.UB. The

local limits require vectors of length five, with bounds for the local parameters λ1, λ2, τ 2, σ2, and

ν, while the global limits require vectors of length three, with bounds for the global parameters τ 2,

σ2, and ν. Default values for these limits are as follows: for both the global and local parameter

estimation, the lower bounds for λ1, λ2, σ2, τ 2, and ν are fixed at 1e-5; the upper bound for the

smoothness ν will be fixed to 100. The upper bounds for the variance and kernel parameters, on

the other hand, will be specific to the application: for the nugget variance (τ 2) and process variance

(σ2), the upper bound will be 4σ̂2
OLS (where σ̂2

OLS is the error variance estimate from a standard

ordinary least squares procedure); the upper bound for λ1 and λ2 will be half of the maximum

interpoint distance between observation locations in the data set. The bounds for η are fixed at 0

and π/2.

The final options in the NSconvo.fit function involve local.ini.pars and

global.ini.pars, which specify the initial values used for the local and global calls of

optim(), respectively. As with the limits, local.ini.pars is a vector of length five, with

initial values for the local parameters λ1, λ2, τ 2, σ2, and ν, while global.ini.pars is a vector

of length three, with initial values for the global parameters τ 2, σ2, and ν. The default for these

inputs are as follows: λ1,init = λ2,init = c/10, where c is the maximum interpoint distance between

observation locations, τ 2init = 0.1σ̂2
OLS , σ2

init = 0.9σ̂2
OLS , and νinit = 1.

14

When the NSconvo.fit function is called, the progress of the model fitting will be printed in

real time. As the function fits the locally stationary models for each mixture component location,

a line of text will print with information counting the mixture component location and number

of observations that are currently being used for estimation. After the local models have been fit

for each mixture component location, a line of text will print notifying the user that the variance

parameters are being estimated globally.

A function which may be helpful before running NSconvo.fit is the mc.N function, which

returns the number of observations which will be used to fit each local model for a particular set of

mixture component locations and fit radius. The inputs to the function are

mc.N(coords, mc.locations, fit.radius)

where coords are the observation locations for the full data set, mc.locations are the mixture

component locations, and fit.radius is the fitting radius. Using this function can help the user

ensure that enough locations will fall within each local fitting radius.

After the model fitting has completed, the resulting NSconvo.fit object can be passed

to the summary.NS function to quickly summarize the fitted model. Among other things, a

NSconvo.fit object includes:

mc.kernels, which contains the estimated kernel matrices for the mixture component
locations,

mc.locations, which contains the mixture component locations,

MLEs.save, which includes a data frame of the locally-estimated stationary model
parameters for each mixture component location,

kernel.ellipses, which includes the estimated kernel ellipse for each location in
coords,

beta.GLS, the generalized least squares estimate of β,

beta.cov, the estimated covariance matrix of β̂,

tausq.est, the estimate of the nugget variance – either a constant (if estimated globally)
or a vector with the estimated nugget variance for each location in coords,

sigmasq.est, the estimate of the process variance – either a constant (if estimated
globally) or a vector with the estimated process variance for each location in coords,

15

kappa.MLE, the global estimate of the smoothness (for cauchy or matern),

Cov.mat and Cov.mat.inv, the estimated covariance matrix for the data and its inverse
(respectively), and

Xmat, the design matrix for the mean model.

The NSconvo.fit object can also be passed to the NSconvo.pred function, which

calculates predictions and prediction standard errors (from (9) and (10)). The NSconvo.pred

function takes the following arguments:

NSconvo.pred(NSconvo.fit.obj, pred.coords, pred.covariates = NULL)

The NSconvo.fit.obj object is the output of NSconvo.fit, pred.coords is a list of

the prediction locations of interest, and pred.covariates is a matrix of covariates for the

prediction locations (the intercept is added automatically). Calculating the predictions when the

dimension of pred.coords is large is computationally expensive, and a progress meter prints

while the machine is working. A NSconvo.pred object includes:

pred.means, which contains the kriging predictor for each prediction location, and

pred.SDs, which contains the corresponding prediction standard error.

The predictions and standard errors can be plotted manually or by using the plot.preds

function (described in Section 5.3).

5.2 Anisotropic model fitting

For the sake of comparison, the functions Aniso.fit and Aniso.pred are also given, which

fit the stationary (anisotropic) model (17) to the full dataset. This function relies heavily on the

package geoR, specifically utilizing the likfit function.

The Aniso.fit function takes the following arguments (with defaults as given):

Aniso.fit(geodata, coords = geodata$coords, data = geodata$data,
cov.model = "exponential", mean.model = data ˜ 1,
iso.model = FALSE)

16

The inputs to this function are identical to the inputs to the nonstationary model fitting function.

One new option is available, namely iso.model, used to indicate if the stationary model should

be isotropic (TRUE) or anisotropic (FALSE). However, because the likfit object is required for

the predictions, the structure of the output is slightly different than the corresponding function for

the nonstationary model. Among other things, an Aniso.fit object includes:

MLEs.save, which includes the globally-estimated stationary model parameters,

beta.GLS, the generalized least squares estimate of β,

aniso.pars, the global estimate of the anisotropy parameters λ1, λ2, and η, which define
the anisotropy matrix by (18),

aniso.mat, which gives the global estimate of Σ from (18) in matrix form,

tausq.est, the global estimate of the nugget variance,

sigmasq.est, the global estimate of the process variance,

kappa.MLE, the global estimate of the smoothness (for cauchy or matern), and

likfit.obj, a likfit() object (to be used in the predict function).

Once the anisotropic model has been fit and the output stored, the fitted model object can

be passed to the Aniso.pred function, which (similar to the nonstationary predict function)

calculates predictions and prediction standard errors as in (9) and (10). Since this function uses

geoR to do the heavy lifting in calculating the predictions, the arguments are slightly different:

Aniso.pred(Aniso.fit.obj, pred.coords, mean.model.d = ˜ 1,
mean.model.l = ˜ 1)

The Aniso.fit.obj object is the output of Aniso.fit and pred.coords is a list of

the prediction locations of interest. Following geoR syntax, mean.model.d is a formula

object which gives the mean formula with variables corresponding to the observed data,

while mean.model.l is a formula object which gives the mean formula for the variables

corresponding to the prediction locations. Similar to the nonstationary predict function, an

Aniso.pred object includes:

pred.means, which contains the kriging predictor for each prediction location, and

17

pred.SDs, which contains the corresponding prediction standard error.

5.3 Evaluation criteria and plotting functions

This package includes a function to quickly calculate the evaluation criteria, as well as functions

to plot visualizations of the various components of the nonstationary model.

First, the evaluate.CV function calculates the MSPE, from (11), and the CRPS, from (12).

The function inputs are simply

evaluate.CV(holdout.data, pred.mean, pred.SDs)

where holdout.data is the true held-out data and pred.mean and pred.SDs are output

from one of the fit functions. Note that the user must perform the subsetting of the data. The

output of evaluate.CV is simply the MSPE and CRPS, averaged over all hold-out locations.

Next, four plotting functions are provided to help visualize the output of either the stationary or

nonstationary model. The first is plot.mc, which plots the estimated mixture component kernel

ellipses for each mixture component location, while having the option to also show the fitting

region for each mixture component location and the corresponding stationary anisotropy ellipse.

The function is

plot.mc(mc.locations, mc.kernels, fit.radius, aniso.mat = NULL)

where mc.locations contains the mixture component locations, mc.kernels contains the

locally estimated mixture component ellipses for each mixture component location, fit.radius

is the fit radius, and an optional input is aniso.mat, which contains the stationary anisotropy

ellipse. A similar plot can be made for the estimated ellipses corresponding to the observed

locations, in order to more clearly show how the ellipses change smoothly over the spatial domain.

This plot can be made by calling

plot.ellipses(locations, kernels, length)

where locations are the observed locations, kernels are the estimated kernel matrix for

18

each location (obtained from the NSconvo.fit object), and length indicates how densely the

kernel matrices should be plotted.

A simple function which plots the predictions and prediction standard errors is available in

plot.preds(locations, predmeans, predSDs, main1 = "Predictions",
main2 = "Prediction standard errors",
grid.locations = TRUE)

which uses the image.plot and quilt.plot functions from the fields package (Nychka

et al., 2014). Again, locations is a list of the prediction locations, predmeans and predSDs

contain the corresponding prediction means and standard deviations, main1 and main2 are

optional plot titles, and grid.locations indicates if the prediction locations are on a grid

(TRUE) or not (FALSE).

Finally, a function is provided to plot the estimated correlation between a specified reference

location and the entire spatial domain of interest, using

plot.correlation(model.fit.obj, ref.loc, all.pred.locs,
NS.model = TRUE, grid = TRUE)

Here, model.fit.obj is an object from either NSconvo.fit or Aniso.fit, ref.loc

is the reference location of interest, all.pred.locs is a list of all locations for which the

correlation will be calculated, and NS.model is a logical input indicating if model.fit.obj

is from NSconvo.fit (TRUE) or Aniso.fit (FALSE). The grid input specifies if the

all.pred.locs locations lie on a rectangular grid (TRUE) or not (FALSE).

5.4 Other functions

Two additional functions are also provided to simulate data from the nonstationary model (5), and

are used to create the simulated data set in Section 6. First is f.mc.kernels, which calculates

the true mixture component kernel matrices through a generalized linear model framework for each

of the elements of the kernel matrices’ spectral decomposition as given in (18). The function, with

default settings, is

19

f.mc.kernels(lat.min = 0, lat.max = 5, lon.min = 0, lon.max = 5,
N.mc = 3ˆ2, lam1.coef = c(-1.3, 0.5, -0.6),
lam2.coef = c(-1.4, -0.1, 0.2),
logit.eta.coef = c(0, -0.15, 0.15))

The inputs lat.mon, lat.max, lon.min, and lon.max define a rectangular spatial domain,

N.mc is the number of mixture component locations, and lam1.coef, lam2.coef, and

logit.eta.coef define regression coefficients for the spatially-varying parameters λ1, λ2,

and η. For example, taking lam1.coef ≡ βλ1 = (βλ10 , β
λ1
1 , β

λ1
2)T , the first eigenvector for

an arbitrary location s = (s1, s2) is

λ1(s) = exp{βλ10 + βλ11 s1 + βλ12 s2}.

The other eigenvalue is calculated similarly. The angle of rotation, on the other hand, is calculated

through the scaled inverse logit transformation

η(s) =
π

2
· logit−1

(
βη0 + βη1s1 + βη2s2

)
,

where logit.eta.coef ≡ βη = (βη0 , β
η
1 , β

η
2)T . The default coefficients are those used to

generate the simulated data set in Section 6, and were obtained by trial and error. The output of

this function includes

mc.locations, which contains the mixture component locations, and

mc.kernels, which contains the mixture component kernels for each mixture component
location.

The true mixture component kernel matrices generated in f.mc.kernels can be used to

simulate a data set using the function

NSconvo.sim(grid = TRUE, lat.min = 0, lat.max = 5, lon.min = 0,
lon.max = 5, N.obs = 20ˆ2, sim.locations = NULL,
mc.kernels.obj = NULL,
mc.kernels = NULL, mc.locations = NULL,
tausq = 0.1, sigmasq = 1, beta.coefs = 4, kappa = NULL,
covariates = rep(1,N.obs), cov.model = "exponential")

20

In this function, grid is a logical input specifying if the simulated data should lie on a grid (TRUE)

or not (FALSE), lat.mon, lat.max, lon.min, and lon.max define the rectangular spatial

domain, N.obs specifies the number of observed locations, mc.kernels.obj is an object from

f.mc.kernels, tausq, sigmasq, beta.coefs, and kappa specify the true parameter

values, covariates specifies the design matrix for the mean function, and cov.model

specifies the covariance model. The output of this function is

sim.locations, which contains the simulated data locations,

mc.locations, which contains the mixture component locations,

mc.kernels, which contains the mixture component kernels for each mixture component
location,

kernel.ellipses, which contains the kernel matrices for each simulated data location,

Cov.mat, which contains the true covariance matrix of the simulated data, and

sim.data, which contains the simulated data.

6 Example: simulated data

As a simple illustration, the nonstationary model (5) will be fit to an artificial data set simulated

from the model. The data lie on a 25 × 25 grid (so that n = 252 = 625), and there are K = 9

mixture component locations with corresponding mixture component ellipses as given in Figure

1. Only the kernel matrices are allowed to vary spatially, an exponential correlation structure is

used, and the mean structure contains the main effects of both longitude and latitude. The true

parameter values are τ 2 = 0.1, σ2 = 1, β0 = 4, β1 = −0.5 (longitude coefficient), β2 = 0.5

(latitude coefficient), and the fitting radius is set to r = 2.3 units. After much trial and error, the

tuning parameter was fixed at λw = 2. A total of m = 60 of the simulated data points are used as

a holdout sample. Figure 1 also provides the simulated data along with the holdout locations.

The simulated dataset can be loaded by running

> install.packages("convoSPAT")
> library(convoSPAT)

21

+ + +

+ + +

+ + +

-1 0 1 2 3 4 5 6

0
1

2
3

4
5

Mixture component locations/ellipses, observed (+)
 and holdout (o) locations

La
tit
ud
e

++++ ++++++++ +++++++++++
+++++++++++++++ ++++++++
++ +++ ++++++++ ++++++++

+ ++++++++ ++++++++++++++
++++++ ++++++++ ++++ ++++
+++ +++++++++++++++++++++
+++++++++++++++++++++ +++
++++++++++++++ ++++++++++
+++++++++++++++++++++++++
++++ ++++++++++++++++++++
++++++++++++++++ ++++++++
++++++++++++++++++ ++++++
+++++++++ ++++++ + +++++
+ ++++ ++++++++++ ++++++

++++ ++ + + +++++++++++++
+++++++++++++++++++++++ +
+++++++++ +++++++++++++

++++ ++++++++++ +++++++++
++++++++++++++++++ ++++++
++ ++++++++++++++++ +++++
+++ ++ ++ ++++++ + +++
++++++ +++++ +++++++++ +

+++++++++++++++++++++ ++
+++ ++++++++++++++++++ ++
++ +++++++ ++ +++++++++ +

o

o

o

o

o

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o
o

o

o

o o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

-1 0 1 2 3 4 5 6

0
1

2
3

4
5

Simulated data

La
tit
ud
e

0

2

4

6

8

Figure 1: Left: true mixture component ellipses with observation locations (red) and holdout
locations (green). Right: simulated data.

> load("simdata.RData")

The simdata object includes sim.locations, the simulated data locations,

mc.locations, the mixture component locations, mc.kernels, the true mixture component

kernel matrices, sim.data, the simulated data, and holdout.index, a vector of the 60

randomly sampled hold-out location indices. Figure 1 can be created with

> # Look at locations, ellipses, and data
> par(mfrow=c(1,2))
> plot(simdata$mc.locations, pch="+", asp=1, xlab="Longitude",
+ ylab="Latitude", xlim=c(-1,6), cex=2, col=4,
+ main="Mixture component locations/ellipses, observed (+) \n and
+ holdout (o) locations")
> points(simdata$sim.locations[-holdout.index,], col=2, pch="+", cex = 0.5)
> points(simdata$sim.locations[holdout.index,], col=3, pch="o", cex = 0.5)
> for(i in 1:N.mc){
+ lines(ellipse(simdata$mc.kernels[,,i],
+ centre=simdata$mc.locations[i,], level=0.5))
+ }
> quilt.plot(simdata$sim.locations, simdata$sim.data, xlab="Longitude",
+ ylab="Latitude", main="Simulated data", asp=1, xlim=c(-1,6))

Note that a replicated data set has also been included in the package, which contains ten replicates

simulated using the same parameter values as the non-replicated data set (in fact, the first replicate

of simulated data is identical to the data in the non-replicated data set). This can be loaded by

22

True value OLS Stationary model Nonstationary model
β0 4 4.440 4.060 3.905
β1 -0.5 -0.772 -0.698 -0.678
β2 0.5 0.679 0.736 0.770
τ 2 0.1 – 0.090 0.107
σ2 1 – 1.028 0.958

CRPS – – 0.502 0.469
MSPE – – 0.553 0.524

Computational time – – 0.44 minutes 6.92 minutes

Table 1: Parameter estimates from the simulated data, comparing the stationary and nonstationary
models. [List details about the computing machine.]

running

> load("simdatareps.RData")

Other than the replicated data, the simdatareps data set contains all of the same objects as

simdata.

The nonstationary model can be fitted to the non-hold-out data by

> NSfit.model <- NSconvo.fit(
+ coords = simdata$sim.locations[-simdata$holdout.index,],
+ data = simdata$sim.data[-simdata$holdout.index],
+ cov.model = "exponential",
+ fit.radius = 2.3, lambda.w = 2,
+ mc.locations = simdata$mc.locations,
+ mean.model = simdata$sim.data[-simdata$holdout.index]
+ ˜ simdata$sim.locations[-simdata$holdout.index,1]
+ + simdata$sim.locations[-simdata$holdout.index,2])

Similarly, the anisotropic model can be fit to the non-hold-out data by

> anisofit.model <- Aniso.fit(
+ coords = simdata$sim.locations[-simdata$holdout.index,],
+ data = simdata$sim.data[-simdata$holdout.index],
+ cov.model = "exponential",
+ mean.model = simdata$sim.data[-simdata$holdout.index]
+ ˜ simdata$sim.locations[-simdata$holdout.index,1]
+ + simdata$sim.locations[-simdata$holdout.index,2])

A summary of the results from each fitted model is provided in Table 1.

23

Predictions for the hold-out locations under each model can be calculated by calling

> pred.NS <- NSconvo.pred(
+ NSconvo.fit.obj = NSfit.model,
+ pred.coords = simdata$sim.locations[simdata$holdout.index,],
+ pred.covariates = simdata$sim.locations[simdata$holdout.index,])
> pred.S <- Aniso.pred(
+ Aniso.fit.obj = anisofit.model,
+ pred.coords = simdata$sim.locations[simdata$holdout.index,],
+ mean.model.d = simdata$sim.data[-simdata$holdout.index]
+ ˜ simdata$sim.locations[-simdata$holdout.index,1]
+ + simdata$sim.locations[-simdata$holdout.index,2],
+ mean.model.l = simdata$sim.data[simdata$holdout.index]
+ ˜ simdata$sim.locations[simdata$holdout.index,1]
+ + simdata$sim.locations[simdata$holdout.index,2])

after which the evaluation criteria can be calculated by

> evaluate.CV(holdout.data = simdata$sim.data[simdata$holdout.index],
+ pred.mean = pred.NS$pred.means, pred.SDs = pred.NS$pred.SDs)

> evaluate.CV(holdout.data = simdata$sim.data[simdata$holdout.index],
+ pred.mean = pred.S$pred.means, pred.SDs = pred.S$pred.SDs)

Calculating predictions on a finer resolution can be done as follows:

> grid.spacing <- 0.05
> grid.x <- seq(from = lon.min, to = lon.max, by = grid.spacing)
> grid.y <- seq(from = lat.min, to = lat.max, by = grid.spacing)
> grid.locations <- expand.grid(grid.x, grid.y)
> pred.locs <- matrix(c(grid.locations[,1], grid.locations[,2]),
+ ncol=2, byrow=F)
>
> pred.NS.all <- NSconvo.pred(
+ NSconvo.fit.obj = NSfit.model,
+ pred.coords = pred.locs,
+ pred.covariates = pred.locs)
> pred.S.all <- Aniso.pred(
+ Aniso.fit.obj = anisofit.model,
+ pred.coords = pred.locs,
+ mean.model.d = simdata$sim.data[-simdata$holdout.index]
+ ˜ simdata$sim.locations[-simdata$holdout.index,1]
+ + simdata$sim.locations[-simdata$holdout.index,2],
+ mean.model.l = ˜ pred.locs[,1] + pred.locs[,2])

“Filled-in” prediction maps with corresponding errors can be created by calling

24

0 1 2 3 4 5

0
1

2
3

4
5

(a)

0

2

4

6

8

0 1 2 3 4 5

0
1

2
3

4
5

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5

0
1

2
3

4
5

(c)

0

2

4

6

8

0 1 2 3 4 5

0
1

2
3

4
5

(d)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Figure 2: Predictions and prediction errors from the stationary model (a. and b.) and the
nonstationary model (c. and d.).

> plot.preds(locations = pred.locs, predmeans = pred.aniso$pred.means,
+ predSDs = pred.aniso$pred.SDs)
> plot.preds(locations = pred.locs, predmeans = pred.NS$pred.means,
+ predSDs = pred.NS$pred.SDs)

and these plots are provided in Figure 2.

To visualize the locally-estimated anisotropy, the mixture component kernel matrices can be

plotted along with the stationary anisotropy ellipse using

> plot.mc(NSfit.model$mc.locations, NSfit.model$mc.kernels,
+ fit.radius = 2.3, aniso.mat = anisofit.model$aniso.mat)

However, for the simulated data, since we know what the true ellipses are, we can overlay the truth

on top of what is estimated. This is given in Figure 3, which plots the mixture component locations

25

+ + +

+ + +

+ + +

-1 0 1 2 3 4 5 6

0
1

2
3

4
5

Red = true, black = NS estimate,
 dashed = NS est. region, blue = Stationary

La
tit
ud
e

Figure 3: True mixture component ellipses (red) with fit radius (gray), nonstationary ellipses
(black), and the stationary ellipse (blue).

along with the true anisotropy ellipse (red), estimation region (dashed circle), estimated anisotropy

ellipse (solid black), and the stationary ellipse (blue).

As an additional visualization of the estimated nonstationarity, estimated correlation plots for

a particular reference point can be obtained by

> par(mfrow=c(1,2))
> plot.correlation(model.fit.obj = NSfit.model,
+ ref.loc = c(1.5, 3.5),
+ all.pred.locs = pred.locs,
+ NS.model = TRUE, grid = TRUE)
> plot.correlation(model.fit.obj = anisofit.model,
+ ref.loc = c(1.5, 3.5),
+ all.pred.locs = pred.locs,
+ NS.model = FALSE, grid = TRUE)

and are given in Figure 4, for both the nonstationary and stationary models, highlighting the

non-elliptical nature of the estimated correlation patterns under the nonstationary model. For

comparison, the true correlation has also been plotted in Figure 4.

Note that the nonstationary model outperforms the stationary model in terms of both CRPS and

MSPE.

26

0 1 2 3 4 5

0
1

2
3

4
5

La
tit
ud
e

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0
1

2
3

4
5

La
tit
ud
e

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0
1

2
3

4
5

La
tit
ud
e

0.2

0.4

0.6

0.8

1.0

Figure 4: Estimated correlations for a reference point, showing the nonstationary (left) and
stationary (center) models, as well as the true correlation (right).

7 Real data example: Annual precipitation

The nonstationary model is also applied to a moderately large, real data set,

consisting of the total annual precipitation in the western United States for 1997.

The data is available online from the National Center for Atmospheric Research

(http://www.image.ucar.edu/GSP/Data/US.monthly.met) as part of a larger

data set that includes measurements for the entire United States. For the purposes of this analysis,

a subset of the data that includes the western United States was chosen (see Figure 5) because

precipitation is more smooth and densely observed over the central and eastern United States.

While the data appears to be gridded, it is in fact point-level data – the gridded appearance is

due to the plotting. This subset is included in the package as an RData file and consists of 1446

observations.

A total of six spatial models were fit to this dataset, the details of which are summarized in

Table 2: two stationary models and four nonstationary models. All six models had the same mean

structure, which included the main effects of longitude and latitude as well as an intercept. Fifteen

percent of the observations (m = 216) were held out as a test data set in order to evaluate each

model, leaving n = 1230 observations as a training data set. The two stationary models were fit

using the Aniso.fit function, using both options of iso.model, and the nonstationary models

were fit using the NSconvo.fit function. For each of the nonstationary models, the model was

fit multiple times using different sets of mixture component locations and fit radii. The specific

27

-125 -120 -115 -110 -105

30
35

40
45

50

2

3

4

5

6

Figure 5: Annual precipitation for 1997 (log mm), with the estimation region inside the dashed
line. Note that the data is in fact point-level data, in spite of its gridded appearance.

models summarized in Table 2 were chosen based on the evaluation criteria; the number of mixture

component locations and fit radii are summarized in Table 3.

Parameter estimates for each of the models are summarized in Table 3. Note that the mean

parameters are very sensitive to which of the variance/covariance parameters are allowed to be

spatially-varying, as is the smoothness parameter.

Table 2 also provides the values of the evaluation criteria for each model. While the gains

are small, the nonstationary models all outperform the stationary models in terms of both MSPE

and CRPS; of the nonstationary models, NS3 provides the best performance. As a result, the

nonstationary model NS3 was chosen as the preferred model for the following visual summaries;

the stationary model S1 is used for comparison.

As an initial summary of the nonstationary model, consider the locally-estimated anisotropy

ellipses for each of the mixture component locations, shown in Figure 6. Also shown is the

ellipse corresponding to the isotropic model. Next, consider the predictions and prediction standard

errors for the stationary model S1 and the nonstationary model NS3, shown in Figure 7. Figure

28

Label Covariance model details CRPS MSPE Comp. time (min)
S1 Isotropic, constant nugget and variance 0.1483 0.0758 3.76
S2 Anisotropic, constant nugget and variance 0.1546 0.0752 10.60

NS1 SV anisotropy, constant nugget and variance 0.1303 0.0719 69.26
NS2 SV anisotropy and variance, constant nugget 0.1365 0.0704 60.26
NS3 SV anisotropy and nugget, constant variance 0.1232 0.0719 49.54
NS4 SV anisotropy, variance, and nugget 0.1275 0.0711 40.95

Table 2: A brief summary of the different models fit to the precipitation data, along with evaluation
criteria for the holdout set and computational time. Note: “SV” indicates “spatially-varying.” [Add
computational details.]

Parameter S1 S2 NS1 NS2 NS3 NS4
β0 (int.) -3.080 -2.857 -0.333 1.451 -0.168 1.503
β1 (long.) -0.054 -0.051 -0.031 -0.020 -0.029 -0.020
β2 (lat.) 0.021 0.023 0.019 0.002 0.019 0.002
λ1 2.95 2.56 SV SV SV SV
λ2 2.95 3.49 SV SV SV SV
η 0.00 1.359 SV SV SV SV
τ 2 0.0129 0.0127 0.0276 0.0196 SV SV
σ2 0.491 0.431 0.2238 SV 0.206 SV
ν 0.5 0.5 0.617 0.589 0.405 0.466
K – – 15 15 15 15
λw – – 3.5 3.5 3.5 3.5
r – – 4.95 4.95 4.95 4.95

Table 3: Parameter estimates for the five spatial models fit to the precipitation data set, indicating
which parameters are spatially-varying (SV). Also given are the number of mixture component
locations (K), the tuning parameter for the weight function (λw), and the fitting radius (r).

8 contains estimates of the spatially-varying nugget variance (τ 2) and process variance (σ2) over

the spatial region of interest. Finally, correlation plots for three reference points are given in

Figure 9, comparing the stationary and nonstationary model. Again, we are able to notice that the

nonstationary model is able to capture different spatial dependence patterns over space, unlike the

stationary model.

29

-130 -120 -110 -100

35
40

45
50

Estimated ellipses for NS (red)
 and S (blue) models

Longitude

La
tit
ud
e

Figure 6: Estimated mixture component ellipses for the nonstationary model (red), the isotropic
model (blue), and the estimation region (dashed black).

8 Discussion

In this paper, we have presented a new nonstationary spatial Gaussian process model that is

highly flexible yet computationally feasible, as shown through its implementation in the new

convoSPAT package for R. The model allows for visualization of the estimated nonstationarity,

for both the spatially-varying parameters and the estimated spatial correlation.

The tradeoff for the computational tractability of this model is that the uncertainty in the

locally-estimated parameters is not accounted for in global estimation.

30

-125 -115 -105

30
35

40
45

(a)

2

3

4

5

-125 -115 -105

30
35

40
45

(b)

0.2

0.3

0.4

0.5

-125 -115 -105

30
35

40
45

(c)

2

3

4

5

-125 -115 -105

30
35

40
45

(d)

0.1

0.2

0.3

0.4

0.5

Figure 7: Predictions and prediction standard errors for the stationary model S1 (plots (a) and (b))
and the nonstationary model NS4 (plots (c) and (d)).

31

-125 -120 -115 -110 -105

30
35

40
45

0.1

0.2

0.3

0.4

0.5

-125 -120 -115 -110 -105
30

35
40

45

0.01

0.02

0.03

0.04

Figure 8: Plots of the estimated spatially-varying process variance σ2 (left) and nugget variance
τ 2 (right) for model NS4.

-125 -120 -115 -110 -105

30
35

40
45

0.2

0.4

0.6

0.8

-125 -120 -115 -110 -105

30
35

40
45

0.2

0.4

0.6

0.8

-125 -120 -115 -110 -105

30
35

40
45

0.0

0.2

0.4

0.6

0.8

-125 -120 -115 -110 -105

30
35

40
45

0.2

0.4

0.6

0.8

-125 -120 -115 -110 -105

30
35

40
45

0.2

0.4

0.6

0.8

-125 -120 -115 -110 -105

30
35

40
45

0.2

0.4

0.6

0.8

Figure 9: Correlation plots for three reference points, comparing the nonstationary model NS4
(top) and stationary model S1 (bottom).

32

References
Anderes, E. B. and Stein, M. L. (2011). Local likelihood estimation for nonstationary random

fields. Journal of Multivariate Analysis, 102(3):506 – 520.

Barry, R. P. and Ver Hoef, J. M. (1996). Blackbox kriging: Spatial prediction without specifying
variogram models. Journal of Agricultural, Biological, and Environmental Statistics, 1(3):297–
322.

Calder, C. A. (2008). A dynamic process convolution approach to modeling ambient particulate
matter concentrations. Environmetrics, 19(1):39–48.

Damian, D., Sampson, P. D., and Guttorp, P. (2001). Bayesian estimation of semi-parametric
non-stationary spatial covariance structures. Environmetrics, 12(2):161–178.

Fuentes, M. (2001). A high frequency kriging approach for non-stationary environmental
processes. Environmetrics, 12(5):469–483.

Fuentes, M. (2002). Spectral methods for nonstationary spatial processes. Biometrika, 89(1):197–
210.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378.

Higdon, D. (1998). A process-convolution approach to modelling temperatures in the North
Atlantic Ocean. Environmental and Ecological Statistics, 5(2):173–190.

Higdon, D. (2002). Space and space-time modeling using process convolutions. In Anderson,
C., Barnett, V., Chatwin, P., and El-Shaarawi, A., editors, Quantitative Methods for Current
Environmental Issues, pages 37–56. Springer London.

Hoef, J. M. V. and Barry, R. P. (1998). Constructing and fitting models for cokriging and
multivariable spatial prediction. Journal of Statistical Planning and Inference, 69(2):275 – 294.

Ickstadt, K. and Wolpert, R. L. (1998). Spatial regression for marked point processes. Bayesian
Statistics, 6.

Katzfuss, M. (2013). Bayesian nonstationary spatial modeling for very large datasets.
Environmetrics, 24(3):189–200.

Kitanidis, P. K. (1983). Statistical estimation of polynomial generalized covariance functions and
hydrologic applications. Water Resources Research, 19(4):909–921.

Kleiber, W. and Nychka, D. (2012). Nonstationary modeling for multivariate spatial processes.
Journal of Multivariate Analysis, 112(0):76 – 91.

Nychka, D., Furrer, R., and Sain, S. (2014). fields: Tools for spatial data. R package version 7.1.

Paciorek, C. J. (2003). Nonstationary Gaussian processes for regression and spatial modelling.
PhD thesis, Carnegie Mellon University.

33

Paciorek, C. J. and Schervish, M. J. (2006). Spatial modeling using a new class of nonstationary
covariance functions. Environmetrics, 17:483–506.

Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information when block sizes
are unequal. Biometrika, 58(3):545–554.

Patterson, H. D. and Thompson, R. (1974). Maximum likelihood estimation of components of
variance. Proc. Eighth International Biochem. Conf.

Reich, B. J., Eidsvik, J., Guindani, M., Nail, A. J., and Schmidt, A. M. (2011). A class of covariate-
dependent spatiotemporal covariance functions for the analysis of daily ozone concentration.
The Annals of Applied Statistics, 5(4):2425–2447.

Ribeiro Jr., P. J. and Diggle, P. J. (2001). geoR: a package for geostatistical analysis. R-NEWS,
1(2):14–18. ISSN 1609-3631.

Risser, M. and Calder, C. (2014). Regression-based covariance functions for nonstationary spatial
modeling. Accessed at http://arxiv.org/abs/1410.1494.

Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial
covariance structure. Journal of the American Statistical Association, 87(417):108–119.

Schmidt, A. M., Guttorp, P., and O’Hagan, A. (2011). Considering covariates in the covariance
structure of spatial processes. Environmetrics, 22(4):487–500.

Schmidt, A. M. and O’Hagan, A. (2003). Bayesian inference for non-stationary spatial covariance
structure via spatial deformations. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 65(3):743–758.

Stein, M. L. (2005). Nonstationary spatial covariance functions. Unpublished technical report.

Thiébaux, H. J. (1976). Anisotropic correlation functions for objective analysis. Monthly Weather
Review, 104:994–1002.

Thiébaux, H. J. and Pedder, M. A. (1987). Spatial Objective Analysis: with applications in
atmospheric science. Academic Press.

Tibshirani, R. and Hastie, T. (1987). Local likelihood estimation. Journal of the American
Statistical Association, 82(398):pp. 559–567.

Ver Hoef, J. M., Cressie, N., and Barry, R. P. (2004). Flexible spatial models for kriging and
cokriging using moving averages and the fast fourier transform (fft). Journal of Computational
and Graphical Statistics, 13(2):265–282.

Vianna Neto, J. H., Schmidt, A. M., and Guttorp, P. (2014). Accounting for spatially varying
directional effects in spatial covariance structures. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 63(1):103–122.

34

	Introduction
	A convolution-based nonstationary covariance function
	A nonstationary spatial Gaussian process model
	Discrete mixture representation
	Prediction
	Out-of-sample evaluation criteria

	Computationally efficient inference
	Local likelihood estimation

	Using the convoSPAT package for R
	Nonstationary model fitting
	Anisotropic model fitting
	Evaluation criteria and plotting functions
	Other functions

	Example: simulated data
	Real data example: Annual precipitation
	Discussion

