The creditmodel
package provides a highly efficient R tool suite for Credit Modeling Analysis and Visualization. Contains infrastructure functionalities such as data exploration and preparation, missing values treatment, outliers treatment, variable derivation, variable selection, dimensionality reduction, grid search for hyper parameters, data mining and visualization, model evaluation, strategy analysis etc. creditmodel can facilitate reliable predictive models (such as xgboost or scorecard) and data analysis on a standard laptop computer within minutes. This introductory vignette provides a brief glance at the training_model module of the package.
When I first wrote the creditmodel package, its primary purpose was to provide a tool to make the development of binary classification models (machine learning based models as well as credit scorecard) simpler and faster. Therefore, I wrote the package to automatically build model. However, as the package grew in functionality, this choice was increasingly problematic.
Importantly, the creditmodel package now provides a set of complementary tools with different missions.
Now, Let’s start with quick modeling.
B_model = training_model(dat = UCICreditCard,
model_name = "UCICreditCard",
target = "default.payment.next.month",
x_list = NULL,
occur_time = "apply_date",
obs_id = "ID",
dat_test = NULL,
preproc = TRUE,
miss_values = c(-1, -2),
missing_proc = TRUE,
outlier_proc = TRUE,
trans_log = TRUE,
feature_filter = list(filter = c("IV", "PSI", "COR", "XGB"),
cv_folds = 1,
iv_cp = 0.02,
psi_cp = 0.2,
cor_cp = 0.95,
xgb_cp = 0,
hopper = TRUE),
vars_plot = FALSE,
algorithm = list("LR","XGB"),
breaks_list = NULL,
LR.params = lr_params(
iter = 2,
method = 'random_search',
tree_control = list(p = 0.02,
cp = c(0.00001, 0.00000001),
xval = 5,
maxdepth = c(10, 15)),
bins_control = list(bins_num = 10,
bins_pct = c(0.02, 0.03, 0.05),
b_chi = c(0.01, 0.02, 0.03),
b_odds = 0.1,
b_psi = c(0.02, 0.06),
b_or = c(.05, 0.1, 0.15, 0.2),
mono = c(0.1, 0.2, 0.4, 0.5),
odds_psi = c(0.1, 0.15, 0.2),
kc = 1),
f_eval = 'ks',
lasso = TRUE,
step_wise = FALSE),
XGB.params = xgb_params(
iter = 3,
method = 'random_search',
params = list(
max_depth = c(3:6),
eta = c(0.01, 0.05, 0.1, 0.2),
gamma = c(0.01, 0.05, 0.1),
min_child_weight = c(1, 5, 10, 20, 30, 40, 50),
subsample = c(0.8, 0.7, 0.6, 0.5),
colsample_bytree = c(0.8, 0.7, 0.6, 0.5),
scale_pos_weight = c(1, 2, 3)),
f_eval = 'auc'),
parallel = FALSE,
cores_num = NULL,
save_pmml = FALSE,
plot_show = TRUE,
model_path = tempdir(),
seed = 46)
## -- Building ----------------------------------------------------------------------- UCICreditCard --
## -- Creating the model output file path -------------------------------------------------------------
## -- Seting model output file path:
## * model : C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/model
## * data : C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/data
## * variable : C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable
## * performance: C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/performance
## * predict : C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/predict
## -- Checking datasets and target --------------------------------------------------------------------
## -- Cleansing & Prepocessing data -------------------------------------------------------------------
## -- Checking data and target format...
## -- Cleansing data
## -- Replacing null or blank or miss_values with NA
## -- Deleting low variance variables
## -- Processing NAs & special value rate is more than 0.999
## -- Formating time variables
## -- Transfering character variables which are actually numerical to numeric
## -- Removing duplicated observations
## -- Merging categories which percent is less than 0.001 or obs number is less than 20
## -- Saving data_cleansing to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/data/data_cleansing.csv
## -- Logarithmic transformation
## -- Following variables are log transformed:
## * LIMIT_BAL -> LIMIT_BAL_log
## * PAY_0 -> PAY_0_log
## * PAY_2 -> PAY_2_log
## * PAY_AMT1 -> PAY_AMT1_log
## * PAY_AMT2 -> PAY_AMT2_log
## * PAY_AMT3 -> PAY_AMT3_log
## * PAY_AMT4 -> PAY_AMT4_log
## * PAY_AMT5 -> PAY_AMT5_log
## * PAY_AMT6 -> PAY_AMT6_log
## -- Spliting train & test ---------------------------------------------------------------------------
## -- train_test_split:
## * Total: 30000 (100%)
## * Train: 20874 (70%)
## * Test : 9126 (30%)
## -- Processing outliers using Kmeans and LOF
## * LIMIT_BAL_log 0% no_outlier
## * AGE 0% no_outlier
## * PAY_0_log 0% no_outlier
## * PAY_2_log 0% no_outlier
## * PAY_3 0% no_outlier
## * PAY_4 0% no_outlier
## * PAY_5 0% no_outlier
## * PAY_6 0% no_outlier
## * BILL_AMT1 0% no_outlier
## * BILL_AMT2 0% no_outlier
## * BILL_AMT3 0% no_outlier
## * BILL_AMT4 0% no_outlier
## * BILL_AMT5 0% no_outlier
## * BILL_AMT6 0% no_outlier
## * PAY_AMT1_log 0% no_outlier
## * PAY_AMT2_log 0% no_outlier
## * PAY_AMT3_log 0% no_outlier
## * PAY_AMT4_log 0% no_outlier
## * PAY_AMT5_log 0% no_outlier
## * PAY_AMT6_log 0% no_outlier
## -- Saving data_outlier_proc to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/data/data_outlier_proc.csv
## -- Processing NAs
## * MARRIAGE 0.1581% IM
## * PAY_0_log 27.963% IM
## * PAY_2_log 32.6579% IM
## * PAY_3 33.5154% IM
## * PAY_4 33.3573% IM
## * PAY_5 33.5968% IM
## * PAY_6 35.4939% IM
## * BILL_AMT1 0.1102% IM
## * BILL_AMT2 0.1246% IM
## * BILL_AMT3 0.1389% IM
## * BILL_AMT4 0.1533% IM
## * BILL_AMT5 0.1198% IM
## * BILL_AMT6 0.1533% IM
## -- Saving data_missing_proc to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/data/data_missing_proc.csv
## -- Filtering features ------------------------------------------------------------------------------
## -- Feature filtering by PSI
## -- Feature filtering by IV
## -- Selecting variables by XGboost
## -- Feature filtering by Correlation
## -- Saving feature_filter to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable/feature_filter.csv
## -- Saving feature_filter_table to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable/feature_filter_table.csv
## -- Training logistic regression model/scorecard ----------------------------------------------------
## -- Searching optimal binning & feature selection parameters ----------------------------------------
## [1] train_ks:0.4116 test_ks:0.3876 psi:0.001
## * tree_control:{ p:0.02, cp:0.00000001, xval:5, maxdepth:10 }
## * bins_control:{ bins_num:10, bins_pct:0.02, b_chi:0.02, b_odds:0.1, b_psi:0.02, b_or:0.05, mono:0.4, odds_psi:0.2, kc:1 }
## * thresholds:{ cor_p:0.8, iv_i:0.02, psi_i:0.1, cos_i:0.5 }
## [2] train_ks:0.4125 test_ks:0.389 psi:0.001
## * tree_control:{ p:0.02, cp:0.00000001, xval:5, maxdepth:10 }
## * bins_control:{ bins_num:10, bins_pct:0.02, b_chi:0.03, b_odds:0.1, b_psi:0.06, b_or:0.05, mono:0.2, odds_psi:0.15, kc:1 }
## * thresholds:{ cor_p:0.8, iv_i:0.02, psi_i:0.1, cos_i:0.5 }
## -- [best iter] -------------------------------------------------------------------------------------
## [2] train_ks:0.4125 test_ks:0.389 psi:0.001
## * tree_control:{ p:0.02, cp:0.00000001, xval:5, maxdepth:10 }
## * bins_control:{ bins_num:10, bins_pct:0.02, b_chi:0.03, b_odds:0.1, b_psi:0.06, b_or:0.05, mono:0.2, odds_psi:0.15, kc:1 }
## * thresholds:{ cor_p:0.8, iv_i:0.02, psi_i:0.1, cos_i:0.5 }
## -- Constrained optimal binning of varibles ---------------------------------------------------------
## -- Getting optimal binning breaks
## * PAY_0_log: -0.5,0.346573590279972,Inf
## * PAY_2_log: -0.5,0.346573590279972,Inf
## * PAY_3: -1,1,Inf
## * PAY_4: -1,0,Inf
## * PAY_5: -1,1,Inf
## * PAY_AMT1_log: 3.06778244554087,7.60115239706291,Inf
## -- Saving breaks_list.breaks_list to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable/LR/breaks_list.breaks_list.csv
## -- Filtering variables by IV & PSI -----------------------------------------------------------------
## -- Selecting variables by PSI & IV
## -- Calculating PSI
## --PAY_0_log
## * PSI: 0 --> Very stable
## --PAY_2_log
## * PSI: 0 --> Very stable
## --PAY_3
## * PSI: 0 --> Very stable
## --PAY_4
## * PSI: 0 --> Very stable
## --PAY_5
## * PSI: 0 --> Very stable
## --PAY_AMT1_log
## * PSI: 0 --> Very stable
## -- Calculating IV
## --PAY_0_log
## * IV: 0.692 --> Very Strong
## --PAY_2_log
## * IV: 0.538 --> Very Strong
## --PAY_3
## * IV: 0.405 --> Very Strong
## --PAY_4
## * IV: 0.352 --> Very Strong
## --PAY_5
## * IV: 0.314 --> Very Strong
## --PAY_AMT1_log
## * IV: 0.148 --> Strong
## -- Saving feature.IV_PSI to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable/LR/feature.IV_PSI.csv
## -- Saving feature.PSI to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable/LR/feature.PSI.csv
## -- Saving feature.IV to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable/LR/feature.IV.csv
## -- Saving LR.IV_PSI_features to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable/LR/LR.IV_PSI_features.csv
## -- Transforming WOE --------------------------------------------------------------------------------
## -- Transforming variables to woe
## -- Saving lr_train.dat.woe to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/data/LR/lr_train.dat.woe.csv
## -- Filtering variables by correlation --------------------------------------------------------------
## -- Processing bins table
## * PAY_0_log IV: 0.692 PSI: 0
## * PAY_2_log IV: 0.537 PSI: 0
## * PAY_3 IV: 0.406 PSI: 0
## * PAY_4 IV: 0.352 PSI: 0
## * PAY_5 IV: 0.314 PSI: 0
## * PAY_AMT1_log IV: 0.149 PSI: 0
## -- Filtering variables by LASSO --------------------------------------------------------------------
## Saving 8 x 5 in image
## -- Saving lr_premodel_features to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable/LR/lr_premodel_features.csv
## -- Start training lr model -------------------------------------------------------------------------
## -- Saving lr_model_features to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable/LR/lr_model_features.csv
## -- Saving UCICreditCard.lr_coef to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/performance/LR/UCICreditCard.lr_coef.csv
## -- Generating standard socrecard -------------------------------------------------------------------
## -- Using scorecard to predict the train and test
## -- Saving lr_train_score to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/predict/LR/lr_train_score.csv
## -- Saving lr_test_score to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/predict/LR/lr_test_score.csv
## -- Saving lr_train_prob to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/predict/LR/lr_train_prob.csv
## -- Saving lr_test_prob to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/predict/LR/lr_test_prob.csv
## -- Producing plots that characterize performance of scorecard
## Saving 12 x 5 in image
## -- Saving UCICreditCard.LR.performance_table to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/performance/LR/UCICreditCard.LR.performance_table.csv
## -- Saving LR.params to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/performance/LR/LR.params.csv
## -- Training XGboost Model --------------------------------------------------------------------------
## -- Searching optimal parameters of XGboost ---------------------------------------------------------
## [1] train_auc:0.788737 eval_auc:0.749381
## * params:{max_depth:6, eta:0.2, gamma:0.1, min_child_weight:5, subsample:0.7, colsample_bytree:0.8, scale_pos_weight:3}
## [2] train_auc:0.780476 eval_auc:0.753076
## * params:{max_depth:4, eta:0.2, gamma:0.01, min_child_weight:10, subsample:0.7, colsample_bytree:0.7, scale_pos_weight:1}
## [3] train_auc:0.782651 eval_auc:0.752638
## * params:{max_depth:5, eta:0.05, gamma:0.05, min_child_weight:30, subsample:0.7, colsample_bytree:0.8, scale_pos_weight:1}
## -- [best iter] -------------------------------------------------------------------------------------
## [2] train_auc:0.780476 eval_auc:0.753076
## * params:{max_depth:4, eta:0.2, gamma:0.01, min_child_weight:10, subsample:0.7, colsample_bytree:0.7, scale_pos_weight:1}
## -- Saving XGB.x_train to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/data/XGB/XGB.x_train.csv
## -- Saving XGB.x_test to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/data/XGB/XGB.x_test.csv
## -- Saving XGB.y_train to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/data/XGB/XGB.y_train.csv
## -- Saving XGB.y_test to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/data/XGB/XGB.y_test.csv
## [1] train-auc:0.715596 eval-auc:0.718209
## Multiple eval metrics are present. Will use eval_auc for early stopping.
## Will train until eval_auc hasn't improved in 100 rounds.
##
## [2] train-auc:0.754548 eval-auc:0.754535
## [3] train-auc:0.757073 eval-auc:0.755268
## [4] train-auc:0.753097 eval-auc:0.751120
## [5] train-auc:0.758976 eval-auc:0.756382
## [6] train-auc:0.762349 eval-auc:0.759194
## [7] train-auc:0.763509 eval-auc:0.760953
## [8] train-auc:0.763390 eval-auc:0.761215
## [9] train-auc:0.764421 eval-auc:0.762362
## [10] train-auc:0.764877 eval-auc:0.762378
## [11] train-auc:0.765499 eval-auc:0.762562
## [12] train-auc:0.765960 eval-auc:0.762283
## [13] train-auc:0.766507 eval-auc:0.762515
## [14] train-auc:0.766704 eval-auc:0.761505
## [15] train-auc:0.766326 eval-auc:0.761406
## [16] train-auc:0.766316 eval-auc:0.761204
## [17] train-auc:0.766672 eval-auc:0.761451
## [18] train-auc:0.767211 eval-auc:0.761915
## [19] train-auc:0.768284 eval-auc:0.761592
## [20] train-auc:0.769152 eval-auc:0.762339
## [21] train-auc:0.769669 eval-auc:0.761596
## [22] train-auc:0.769691 eval-auc:0.761598
## [23] train-auc:0.769759 eval-auc:0.761574
## [24] train-auc:0.769889 eval-auc:0.761968
## [25] train-auc:0.769989 eval-auc:0.761984
## [26] train-auc:0.770158 eval-auc:0.762326
## [27] train-auc:0.770972 eval-auc:0.763262
## [28] train-auc:0.771346 eval-auc:0.763250
## [29] train-auc:0.771547 eval-auc:0.763327
## [30] train-auc:0.771836 eval-auc:0.763535
## [31] train-auc:0.772221 eval-auc:0.762963
## [32] train-auc:0.772607 eval-auc:0.762921
## [33] train-auc:0.772655 eval-auc:0.762642
## [34] train-auc:0.773330 eval-auc:0.762931
## [35] train-auc:0.773600 eval-auc:0.763250
## [36] train-auc:0.773672 eval-auc:0.763170
## [37] train-auc:0.773743 eval-auc:0.763202
## [38] train-auc:0.774023 eval-auc:0.763320
## [39] train-auc:0.774116 eval-auc:0.763443
## [40] train-auc:0.774295 eval-auc:0.763224
## [41] train-auc:0.774701 eval-auc:0.762746
## [42] train-auc:0.774723 eval-auc:0.762709
## [43] train-auc:0.774837 eval-auc:0.762722
## [44] train-auc:0.774982 eval-auc:0.762679
## [45] train-auc:0.775083 eval-auc:0.762923
## [46] train-auc:0.775062 eval-auc:0.762952
## [47] train-auc:0.775190 eval-auc:0.763329
## [48] train-auc:0.775389 eval-auc:0.763336
## [49] train-auc:0.775888 eval-auc:0.763354
## [50] train-auc:0.776065 eval-auc:0.763456
## [51] train-auc:0.776179 eval-auc:0.763456
## [52] train-auc:0.776662 eval-auc:0.763180
## [53] train-auc:0.776869 eval-auc:0.763237
## [54] train-auc:0.777100 eval-auc:0.763010
## [55] train-auc:0.777191 eval-auc:0.762765
## [56] train-auc:0.777166 eval-auc:0.762889
## [57] train-auc:0.777411 eval-auc:0.763013
## [58] train-auc:0.777424 eval-auc:0.762981
## [59] train-auc:0.777868 eval-auc:0.762377
## [60] train-auc:0.777987 eval-auc:0.762323
## [61] train-auc:0.778089 eval-auc:0.762485
## [62] train-auc:0.778069 eval-auc:0.762532
## [63] train-auc:0.778125 eval-auc:0.762694
## [64] train-auc:0.778369 eval-auc:0.762639
## [65] train-auc:0.778341 eval-auc:0.762630
## [66] train-auc:0.778370 eval-auc:0.762705
## [67] train-auc:0.778363 eval-auc:0.762684
## [68] train-auc:0.778890 eval-auc:0.762692
## [69] train-auc:0.779098 eval-auc:0.762551
## [70] train-auc:0.779401 eval-auc:0.762285
## [71] train-auc:0.779712 eval-auc:0.761935
## [72] train-auc:0.779771 eval-auc:0.762039
## [73] train-auc:0.779860 eval-auc:0.762030
## [74] train-auc:0.780006 eval-auc:0.761844
## [75] train-auc:0.780338 eval-auc:0.761726
## [76] train-auc:0.780453 eval-auc:0.761616
## [77] train-auc:0.780456 eval-auc:0.761650
## [78] train-auc:0.780927 eval-auc:0.761504
## [79] train-auc:0.781006 eval-auc:0.761436
## [80] train-auc:0.781168 eval-auc:0.761433
## [81] train-auc:0.781329 eval-auc:0.761363
## [82] train-auc:0.781575 eval-auc:0.761895
## [83] train-auc:0.781690 eval-auc:0.761946
## [84] train-auc:0.781723 eval-auc:0.761771
## [85] train-auc:0.781813 eval-auc:0.761862
## [86] train-auc:0.781958 eval-auc:0.761589
## [87] train-auc:0.782164 eval-auc:0.761271
## [88] train-auc:0.782149 eval-auc:0.761196
## [89] train-auc:0.782177 eval-auc:0.761000
## [90] train-auc:0.782348 eval-auc:0.761203
## [91] train-auc:0.782381 eval-auc:0.761141
## [92] train-auc:0.782423 eval-auc:0.761101
## [93] train-auc:0.782494 eval-auc:0.760964
## [94] train-auc:0.782649 eval-auc:0.761211
## [95] train-auc:0.782786 eval-auc:0.761422
## [96] train-auc:0.782905 eval-auc:0.761469
## [97] train-auc:0.783044 eval-auc:0.761776
## [98] train-auc:0.783252 eval-auc:0.761832
## [99] train-auc:0.783567 eval-auc:0.761688
## [100] train-auc:0.783567 eval-auc:0.761535
## [101] train-auc:0.783681 eval-auc:0.761609
## [102] train-auc:0.783820 eval-auc:0.761912
## [103] train-auc:0.783804 eval-auc:0.761942
## [104] train-auc:0.783937 eval-auc:0.762102
## [105] train-auc:0.784138 eval-auc:0.761679
## [106] train-auc:0.784155 eval-auc:0.761627
## [107] train-auc:0.784168 eval-auc:0.761580
## [108] train-auc:0.784371 eval-auc:0.761552
## [109] train-auc:0.784599 eval-auc:0.761502
## [110] train-auc:0.784798 eval-auc:0.761670
## [111] train-auc:0.784773 eval-auc:0.761580
## [112] train-auc:0.784904 eval-auc:0.761945
## [113] train-auc:0.784996 eval-auc:0.761591
## [114] train-auc:0.785381 eval-auc:0.761333
## [115] train-auc:0.785364 eval-auc:0.761220
## [116] train-auc:0.785563 eval-auc:0.761345
## [117] train-auc:0.785640 eval-auc:0.761336
## [118] train-auc:0.785665 eval-auc:0.761327
## [119] train-auc:0.785884 eval-auc:0.761517
## [120] train-auc:0.785865 eval-auc:0.761492
## [121] train-auc:0.785825 eval-auc:0.761499
## [122] train-auc:0.785900 eval-auc:0.761665
## [123] train-auc:0.785907 eval-auc:0.761247
## [124] train-auc:0.786025 eval-auc:0.761088
## [125] train-auc:0.786134 eval-auc:0.761333
## [126] train-auc:0.786174 eval-auc:0.761297
## [127] train-auc:0.786438 eval-auc:0.761116
## [128] train-auc:0.786445 eval-auc:0.760985
## [129] train-auc:0.786765 eval-auc:0.760563
## [130] train-auc:0.786893 eval-auc:0.760196
## Stopping. Best iteration:
## [30] train-auc:0.771836 eval-auc:0.763535
##
## -- Saving UCICreditCard.XGB_input_vars to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/model/XGB/UCICreditCard.XGB_input_vars.csv
## -- Saving XGB_feature_importance to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/variable/XGB/XGB_feature_importance.csv
## -- Saving XGB.train_prob to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/predict/XGB/XGB.train_prob.csv
## -- Saving XGB.test_prob to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/predict/XGB/XGB.test_prob.csv
## -- Producing plots that characterize the performance of XGboost
## Saving 12 x 5 in image
## -- Saving UCICreditCard.XGB.performance_table to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/performance/XGB/UCICreditCard.XGB.performance_table.csv
## -- Saving XGB.params to:
## * C:\Users\28142\AppData\Local\Temp\Rtmpk9JEMK/UCICreditCard/performance/XGB/XGB.params.csv
In a few minutes, the program completed data cleaning and pretreatment, variable screening, scorecard, Xgboost, GBDT, RandomForest four models development and evaluation.