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The dynamic group-level item response theory (DGIRT) model is a Bayesian
method for estimating subpopulation groups’ average conservatism (or other
trait) from individuals’ responses to dichotomous questions. It is “dynamic”
both in the sense that groups are allowed to evolve over time and in the sense
that the model “borrows strength” from other time periods, to a degree spec-
ified by the user. The DGIRT model is a modified version the hierarchical
group-level IRT model described by Caughey and Warshaw (2015). It dif-
fers from the latter mainly in that DGIRT models groups’ evolution directly
though a dynamic linear model rather than indirectly through a hierarchi-
cal model. The model is implemented in the R package dgirt (Dunham,
Caughey, and Warshaw 2016).

Let ✓i denote individual i’s score on some latent trait, which for the sake
of exposition we will call “conservatism.” Let yiq 2 {0, 1} indicate i’s di-
chotomous response to question q, where yiq = 1 indicates the conservative
response option.1 Under the assumptions of the standard one-dimensional
probit IRT model (e.g., Fox 2010), individual i’s response to question q is a
probabilistic function of i’s conservatism ✓i as well as the question’s “di�-
culty” ↵q, which captures the base level of support for the question, and its
“di�culty” �q, which represents the strength of its relationship with conser-
vatism. Specifically, yiq = 1 if

�q✓i � ↵q + ✏iq > 0 (1)

1. An ordinal question with L > 2 levels can be handled by transforming it into a set

of L � 1 dichotomous variables indicating whether i’s response is above the L � 1 lowest

levels.
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and 0 otherwise, where ✏iq
iid⇠ N(0, 1). Individual i’s probability ⇡iq =

Pr(yiq = 1) of responding conservatively to question q is thus

⇡iq = �(�q✓i � ↵q), (2)

where the normal distribution function � maps �q✓i�↵q to the unit interval.2

If every individual answers many questions, then we can use a standard
IRT model to infer their conservatism from their question responses via the
sampling model

yiq
iid⇠ Bernoulli(⇡iq). (3)

Even if this condition is not satisfied—that is, if respondents answer as
few as one question each—it is often possible to draw inferences about average
conservatism in di↵erent subpopulation groups by aggregating the responses
of di↵erent individuals to di↵erent questions. To do so, it is helpful to re-
paramaterize the individual-level IRT model as

⇡iq = �

✓
✓i � q

�q

◆
, (4)

where q = ↵q/�q and �q = 1/�q. Let g index groups and let ✓̄g denote
average conservatism in group g. Under the assumption that conservatism

has an iid normal and homoskedastic distribution within groups—i.e., ✓i[g]
iid⇠

N(✓̄g, �2
✓)—the probability that a randomly sampled member of group g gives

a conservative response to question q is

⇡gq = �

0

@ ✓̄g � qq
�2
q + �2

✓

1

A , (5)

where �✓ is the standard deviation of ✓i within groups. We can then connect
(5) to the data through the sampling model

sgq
iid⇠ Binomial(ngq, ⇡gq), (6)

2. Note that the assumption ✏iq
iid⇠ N(0, 1) is violated if yiq is a↵ected by other

individual-level traits correlated with (but distinct from) conservatism (i.e., if the true

model is multidimensional).
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where ngq is group g’s total number of non-missing responses to question q
and sgq is the number of those responses that are conservative.3 Together,
(5) and (6) constitute a static group-level IRT model, which can be used to
infer groups’ average conservatism ✓̄g (see Mislevy 1983).

We add dynamics to this model by allowing groups’ conservatism (and
optionally other parameters) to change between time periods and modeling
their temporal evolution with a dynamic linear model (DLM). Specifically,
we model ✓̄gt as a function of its value in the previous period (✓̄g,t�1), a year-
specific intercept common to all groups (⇠t), and a vector of observed group
attributes (xg·):

✓̄gt
iid⇠ N(✓̄g,t�1�✓̄t + ⇠t + x

0
g·�t, �

2
✓̄t). (7)

The standard deviation �✓̄t is estimated from the data and allowed to evolve
across years, as is the within-group SD �✓t. The posterior estimates of ✓̄gt
are a compromise between this prior and the likelihood implied by Equations
(5) and (6). When a lot of survey data are available for a given year, the
likelihood will be given most weight by the model. If no survey data are
available at all, the prior acts as a predictive model that imputes ✓̄gt.

In addition to allowing groups to evolve over time, it is possible to allow
the relationship between conservatism and question responses to evolve as
well.4 This is accomplished by allowing q to vary by period and modeling
its evolution indirectly using the local-level DLM

↵qt
iid⇠ N(↵q,t�1, �

2
�), (8)

where transition variance �2
� is estimated from the data. This “evolving item”

version of the model holds constant each question’s discrimination but allows
the “di�culty” of a conservative response to vary between time periods. The
other time-indexed parameters in (5) and (7) are allowed to evolve in similar

3. Following Ghitza and Gelman (2013) and Caughey and Warshaw (2015, 202–3), we

adjust the raw values of sgq and ngq to account for survey weights and for respondents

who answer multiple questions.

4. This may be desirable if individual question series exhibit idiosyncratic trends.
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fashion:

log(�✓t)
iid⇠ N(log(�✓t�1), �

2
�) (9)

log(�✓̄t)
iid⇠ N(log(�✓̄t�1), �

2
�) (10)

�✓̄t
iid⇠ N(�✓̄t�1, �

2
� ) (11)

⇠qt
iid⇠ N(⇠q,t�1, �

2
�) (12)

�pt
iid⇠ N(�p,t�1��t + z

0
p·t⌫t, �

2
�). (13)

All of the above are simple local-level DLMs except the last, which models
the evolution of the hierarchical parameters �pt as a function of a vector
of period-parameter-specific attributes zp·t. This may be useful if �pt is an
intercept for a geographic unit (e.g., a state) and one wishes borrow strength
from observably similar units (e.g., states with a similar per-capita income).
The parameters in the transition model for �pt themselves evolve over time
as follows:

��t
iid⇠ N(��t�1, �

2
� ) (14)

⌫ht
iid⇠ N(⌫h,t�1, �

2
� ). (15)

To identify the location and scale of the model, in each iteration we transform
the di�culty parameters so that their mean is 0 in the first period, and do
likewise for the discrimination so that their product is 1:

↵̃qt = ↵qt �Q�1
QX

q=1

↵q1 (16)

�̃q = �q

 
QY

q=1

�q

!�1/Q

. (17)

The transformed parameters ↵̃qt and �̃q are then re-parameterized as qt and
�q, as explained above.

The priors for the first period and for temporally constant parameters are
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as follows:

✓̄g1
iid⇠ N(⇠1 + x

0
g·�1, �

2
✓̄1) (18)

↵q1
iid⇠ N(0, 1) (19)

log(�q)
iid⇠ N(0, 1) (20)

|�✓1|
iid⇠ Cauchy(0, 2.5) (21)

|�✓̄1|
iid⇠ Cauchy(0, 2.5) (22)

⇠q1
iid⇠ N(0, 10) (23)

�p1
iid⇠ N(z0

p·1⌫h0, �
2
�) (24)

�✓̄1
iid⇠ N(m�✓̄ , s�✓̄) (25)

��t
iid⇠ N(0.5, 0.5) (26)

⌫h1
iid⇠ N(0, 10) (27)

⌫h0
iid⇠ N(0, 10) (28)

|��|
iid⇠ Cauchy(0, s��

) (29)

|��|
iid⇠ Cauchy(0, s��) (30)

|��|
iid⇠ Cauchy(0, 2.5), (31)

where m�✓̄ , s�✓̄ , s��
, and s�� are specified by the analyst.
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