
S4 Classes for Distributions|a manual for packages "distr",

"distrSim", "distrTEst", version 1.8, "distrEx",

version 0.4-4

Peter Ruckdeschel�

Matthias Kohly

Thomas Stablaz

Florian Camphausenx

Mathematisches Institut
Universit�at Bayreuth
D-95440 Bayreuth

Germany

e-Mail: peter.ruckdeschel@uni-bayreuth.de

November 23, 2006

Abstract

"distr" is a package for R from version 1.8.1 onwards that is distributed under
GPL license 2.0. Its own current version is 1.8. The aim of this package is to provide
a conceptual treatment of random variables (r.v.'s) by means of S4{classes. A mother
class Distribution is introduced with slots for a parameter and for functions r, d,
p, and q for simulation, respectively for evaluation of density / c.d.f. and quantile
function of the corresponding distribution. All distributions of the "stats" package are
implemented as subclasses of either AbscontDistribution or DiscreteDistribution,
which themselves are again subclasses of UnivariateDistribution. By means of these
classes, we may automatically generate new objects of these classes for the laws of
r.v.'s under standard mathematical univariate transformations and under convolution
of independent r.v.'s. From version 1.6 on, "distr" has been split up into the smaller
packages "distr" (only distribution-classes and -methods), "distrSim" (standardized
treatment of simulations, also under contaminations) and "distrTEst"

(classes and methods for evaluations of statistical procedures on such simulations).
The latter two of them require package "setRNG" by Paul Gilbert to be installed from
CRAN.

�Universit�at Bayreuth
ySIRS-Lab GmbH, Jena
zUniversit�at Siegen ????? was soll ich hier machen ?????
xUniversit�at Bayreuth

1

mailto:pgilbert@bank-banque-canada.ca
http://cran.r-project.org/mirrors.html

Additionally, mainly contributed by [4], in "distrEx" we extend the functionality of
"distr", providing functionals like expectation or variance and distances for distri-
butions. Also, this package contains some �rst steps to multivariate distributions,
providing classes for discrete multivariate distributions and for factorized, conditional
distributions.

Contents

0 Motivation 4

1 Concept 6

2 Organization in classes 7
2.1 Distribution classes . 7

2.1.1 Subclasses . 7
2.1.2 Classes for multivariate distributions and for conditional distributions 8
2.1.3 Parameter classes . 9

2.2 Simulation classes . 11
2.3 Evaluation class . 12
2.4 EvaluationList class . 13

3 Methods 13
3.1 A�ne linear transformations . 14
3.2 The group math of unary mathematical operations 14
3.3 Construction of d, p, and q from r . 15
3.4 Convolution . 15
3.5 Overloaded generic functions . 16
3.6 Simulation (in package distrSim) . 18
3.7 Evaluate (in package distrTEst) . 18
3.8 Is-Relations . 18
3.9 Further methods . 19
3.10 Functionals (in package distrEx) . 19

3.10.1 Expectation . 19
3.10.2 Variance . 21
3.10.3 Further functionals . 22

3.11 Truncated moments (in package distrEx) . 22
3.12 Distances (in package distrEx) . 22
3.13 Functions for demos (in package distrEx) 23

3.13.1 CLT for arbitrary summand distribution 23
3.13.2 Deconvolution example . 23

2

4 Options 23
4.1 Options for distr . 23
4.2 Options for distrEx . 24
4.3 Options for distrSim . 25
4.4 Options for distrTEst . 25

5 Startup Messages 26

6 System/version requirements 26
6.1 System requirements . 26
6.2 Required version of R . 26
6.3 Dependencies . 27
6.4 License . 27

7 Details to the implementation 27

8 A general utility 27

9 Odds and Ends 28
9.1 What should be done and what we could do 28
9.2 What should be done but for which we lack the know-how 28

10 Acknowledgement 29

11 Examples 29
11.1 12-fold convolution of uniform (0; 1) variables 29
11.2 Comparison of exact convolution to FFT for normal distributions 30
11.3 Comparison of FFT to RtoDPQ . 33
11.4 Comparison of exact and approximate stationary regressor distribution . . . 34
11.5 Truncation and Huberization/winsorization 36
11.6 Distribution of minimum and maximum of two independent random variables 41
11.7 Instructive destructive example . 45
11.8 A simulation example . 46
11.9 Expectation of a given function under a given distribution 52
11.10n-fold convolution of absolutely continuous distributions 53

This document appeared in an abridged form in R-News, 6(2) as\S4 Classes for Distributions", c.f.

[8], which in its published form refers to package versions 1.6, resp. 0.4-2. This document takes into

account the subsequent revisions and versions.

3

0 Motivation

R up to now contains powerful techniques for virtually any useful distribution using the
suggestive naming convention [prefix]<name> as functions where [prefix] stands for r,
d, p, or q and <name> is the name of the distribution.
There are limitations of this concept, however: You can only use distributions which are
implemented in some library already or for which you yourself have provided an implemen-
tation. In many natural settings you want to formulate algorithms once for all distributions,
so you should be able to treat the actual distribution <name> as sort of a variable.
You may of course paste together pre�x and the value of <name> as a string and then use
eval(parse(....)). This is neither very elegant nor
exible, however.
Instead, we would rather like to implement the algorithm by passing an object of some
distribution class as argument to the function. Even better though, we would use a generic
function and let the S4-dispatching mechanism decide what to do at run-time. In partic-
ular, we would like to automatically generate the corresponding functions r, d, p, and q

for the law of expressions like X+3Y for objects X and Y of class Distribution, or, more
general, of a transformation of X, Y under a function f :R2 ! R which is already realized
as a function in R.
This is possible with package "distr". As an example, try

> library(distr)

> N <- Norm(mean = 2, sd = 1.3)

> P <- Pois(lambda = 1.2)

> Z <- 2 * N + 3 + P

> Z

Distribution Object of Class: AbscontDistribution

> plot(Z)

> p(Z)(0.4)

[1] 0.002415384

> q(Z)(0.3)

[1] 6.70507

> Zs <- r(Z)(50)

> Zs

[1] 7.530445 10.234964 5.722258 6.182583 14.103522 9.944960 9.980536

[8] 6.771546 8.238850 9.947272 9.563634 7.654897 7.126974 9.242383

[15] 5.089696 12.339637 11.014562 13.604341 9.889180 5.543226 9.107229

4

[22] 6.450713 12.210669 11.416910 6.478102 9.050404 8.144519 8.922142

[29] 9.582026 8.250282 6.243961 7.143411 4.935602 7.580706 7.706190

[36] 6.398999 12.762741 7.569283 8.179069 3.820573 4.952510 8.185683

[43] 4.907038 4.071673 3.707401 4.667932 3.464704 2.616173 2.151091

[50] 9.930184

0 10 20 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Density of AbscontDistribution

grid

d(
x)

(g
rid

)

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of AbscontDistribution

grid

p(
x)

(g
rid

)

0.0 0.4 0.8

0
10

20
30

Quantile of AbscontDistribution

p(x)(grid)

gr
id

Comment:

Let N an object of class "Norm" with parameters mean=2, sd=1.3 and let P an object of class "Pois"

with parameter lambda=1.2. Assigning to Z the expression 2*N+3+P, a new distribution object is

generated |of class "AbscontDistribution" in our case| so that identifying N, P, Z with random

variables distributed according to N, P, Z, L(Z) = L(2 � N + 3 + P), and writing p(Z)(0.4) we get

P (Z � 0:4), q(Z)(0.3) the 30%-quantile of Z, and with r(Z)(50) we generate 50 pseudo random

numbers distributed according to Z, while the plot command generates the above �gure.

5

1 Concept

In developing our packages, we had the following principles in mind: We wanted to be
open in our design so that our classes could easily be extended by any volunteer in the R
community to provide more complex classes of distributions as multivariate distributions,
times series distributions, conditional distributions. As an exercise, the reader is encour-
aged to implement extrem value distributions from the package "evd"1. The largest e�ort
will in fact be the documentation. . .
We also wanted to preserve naming and notation from R-"stats" as far as possible so that
any programmer used to S could quickly use our package. Even more so, as the distribu-
tions already implemented to R are all well tested and programmed with skills we lack, we
use the existing r, d, p, and q-functions wherever possible, only wrapping them by small
code sniplets to our class hierarchy.
Third we wanted to use a suggestive notation for our automatically generated methods r,
d, p, and q, which we think is now largely achieved. All this should make intensive use
of object orientation in order to be able to use inheritance and method overloading. Let
us brie
y explain why we decided to realize r, d, p, and q as part of our class de�nitions:
Doing so, we place ourselves somewhere between pure object orientation where methods
would be slots |in the language of the S4-concept, confer [2]| and the S4 paradigm where
methods "live their own life" apart from the classes, or, to q, which should be regarded use
[1]'s terminology, we use COOP2-style for r, d, p, and q methods, and FOOP3 -style for
"normal" methods.
The S4-paradigm with methods which are not attached to an object but rather behave dif-
ferently according to the classes of their arguments is �ne if there are particular user-written
methods for only some few general distribution classes like AbscontDistribution, as in
the case for plot or "+" (c.f. [5], Section 2.2). During a typical R session with "distr",
however, there will be a lot of, mostly automatically generated objects of our distribution
classes, each with its own r, d, p, and q; this even applies to intermediate expressions like
2*N, 2*N+3 to eventually produce Z in the example in the motivation. Treating r, d, p,
and q as generic functions, we would need to generate new classes for each expression 2*N,
2*N+3, Z and, correspondingly, particular S4-methods for r, d, p, and q for each of these
new classes; apparently, this would produce overly many classes for an e�ective inheritance
structure.
In providing arithmetics for distributions, we have to deviate a little from the paradigm of
S as a functional language: For operators like \+", additional parameters controlling the
precision of the results cannot be handily passed as arguments. For this purpose we provide

1a solution to this \homework" may be found in the sources to "distrEx"
2class-object-orientated programming, as e.g. in C++
3function-object-orientated programming, as in the S4-concept

6

global options which may be inspected and modi�ed by distroptions, getdistrOption4

in complete analogy to options, getOption. Finally our concept as to parameters: Con-
trary to the standard R-functions like rnorm we only permit length 1 for parameters like
mean, because we see the objects as implementations of univariate random variables, for
which vector-valued parameters make no sense; rather one could gather several objects
with possibly di�erent parameters to a vector/list of distributions. Of course, the origi-
nal functions rnorm etc. remain unchanged and still allow for vector-valued parameters.
Kouros Owzar in an o�-list mail raised the point, that in case of multiple parameters as
in case of the normal or the �-distribution, it might be useful to be able to pass these
multiple parameters in vectorized form to the generating function. We, too, think that this
is a good idea, but even more plan to introduce a further extension package to "distr"

which will cover statistical models. In this package, this issue will be solved by requiring
a map � 7! P� or, in S, a function function(theta).... which returns an object of class
distribution or subclass, which realizes P�. So it will be up to the programmer or user how
to realize this map.

2 Organization in classes

Loosely speaking we have three large groups of classes: distribution classes (in "distr"),
simulation classes (in "distrSim") and an evaluation class (in "distrTEst"), where the
latter two are to be considered only as tools which allow a uni�ed treatment of simulations
and evaluation of statistical estimation (perhaps also tests and predictions later) under
varying simulation situations. Additionally, package "distrEx" provides classes for discrete
multivariate distributions and for factorized, conditional distributions, as well as a bundle
of functionals and distances (see below).

2.1 Distribution classes

The purpose of the classes derived from the class Distribution is to implement the concept
of a r.v./distribution as such in R.
All classes derived from Distribution have a slot param for a parameter, a slot img for
the range and the constitutive slots r, d, p, and q.

2.1.1 Subclasses

To begin with, we limit ourselves to univariate distributions giving the S4-class Univari-
ateDistribution, and as typical subclasses, we introduce classes for absolutely continu-
ous and discrete distributions |AbscontDistribution and DiscreteDistribution. The

4Upto version 0.4-4, we use a di�erent mechanism to inspect/modify global options of "distrEx" (see
section 4.2); corresponding functions distrExoptions, getdistrExOption for package "distrEx" will only
be available from version 0.4-5 on, which is due for spring 2007.

7

latter has a slot support, a vector containing the support of the distribution, which is trun-
cated to the lower/upper TruncQuantile in case of an in�nite support. TruncQuantile is
a global option of "distr" described in section 4.
As subclasses of these two classes, we have implemented all parametric families which al-
ready exist in the "stats" package of R in form of [prefix]<name> functions |by just
providing wrappers to the original R-functions. Schematically, the inheritance relations as
well as the slots of the corresponding classes may be read o� from �gure 1. Operations to au-
tomatically generate new slots r, d, p, and q|induced by mathematical transformations|
perhaps provide the most powerful use of our package. This is discussed in some detail in
subsection 3.

2.1.2 Classes for multivariate distributions and for conditional distributions

In "distrEx", we provide the following classes for handling multivariate distributions:

Lists of distributions As a �rst step, we allow distributions to be gathered in lists,
giving classes DistrList and UnivarDistrList, where in case of the latter, all elements
must be univariate distributions. For these, the usual indexing operations with [[.]] are
available.

Multivariate distribution classes Multivariate distributions are much more compli-
cated than univariate ones, which is why but a few exceptional ones have already been
implemented to R in packages like "multnorm". In particular it is not so clear what a
slot q should mean and, in higher dimensions slot p, and possibly also slot d may become
awkward. So, for multivariate distributions, realized as class MultivariateDistribution,
we only insist on slot r, while the other functional slots may be left void.

The easiest case is the case of a discrete multivariate distribution with �nite support
which is implemented as class DiscreteMVDistribution.

Conditional distribution classes Also arising in multivariate settings only are condi-
tional distributions. In our approach, we realize factorized, conditional distributions where
the (factorized) condition is in fact treated as an additional parameter to the distribution.
The condition is realized as an object of class Condition, which is a slot of corresponding
classes UnivariateCondDistribution. This latter is the mother class to classes Abscon-
tCondDistribution and DiscreteCondDistribution. The most important application
of these classes so far is regression, where the distribution of the observation given the
covariates is just realized as a UnivariateCondDistribution.

8

Figure 1: Inheritance relations and slots of the corresponding (sub-)classes for Distribution where we

do not repeat inherited slots

2.1.3 Parameter classes

As most distributions come with a parameter which often is of own interest, we endow the
corresponding slots of a distribution class with an own parameter class, which allows for
some checking like \Is the parameter lambda of an exponential distribution non-negative?",
\Is the parameter size of a binomial a positive integer?"

9

Consequently, we have a method liesIn that may answer such questions by a TRUE/FALSE
statement. Schematically, the inheritance relations of class Parameter as well as the slots of
the corresponding (sub-)classes may be read o� in �gure 2 where we do not repeat inherited
slots. The most important set to be used as parameter domain/sample space (rSpace) will

Figure 2: Inheritance relations and slots of the corresponding (sub-)classes for Parameter

be an Euclidean space. So rSpace and EuclideanSpace are also implemented as classes,

10

the structure of which may be read o� in �gure 3.

rSpace
+name: character

EuclideanSpace
+dimension: numeric

Reals

Naturals

Figure 3: Inheritance relations and slots of the corresponding (sub-)classes for rSpace

2.2 Simulation classes

From version 1.6 on, the classes and methods of this subsection are available in package
"distrSim".

The aim of simulation classes is to gather all relevant information about a simulation
in a correspondingly designed class. To this end we introduce the class Dataclass that
serves as a common mother class for both "real" and simulated data. As derived classes
we then have a simulation class where we also gather all information needed to reconstruct
any particular simulation.
From version 1.8 of this package on, we have changed the format how data / simulations
are stored: In order to be able to cope with multivariate, regression and (later) time se-
ries distributions, we have switched to the common array format samplesize x obsDim

x runs where obsDim is the dimension of the observations. For saved objects from earlier
versions, we provide the functions isOldVersion and conv2NewVersion to check whether
the object was generated by an older version of this package and to convert such an object
to the new format, respectively. For objects generated from version 1.8 on, you get the
package version of package "distrSim", under which they have been generated by a call
to getVersion().
Finally, coming from robust statistics we also consider situations where the majority of the
data stems from an ideal situation/distribution whereas a minority comes from a contam-
inating source. To be able to identify ideal and contaminating observations, we also store
this information in an indicator variable.
As the actual values of the simulations only play a secondary role, and as the number of

11

simulated variables can become very large, but still easily reproducible, it is not worth
storing all simulated observations but rather only the information needed to reproduce the
simulation. This can be done by savedata.
Schematically, the inheritance relations of class Dataclass as well as the slots of the corre-
sponding (sub-)classes may be read o� in �gure 4 where we do not repeat inherited slots.
Also, analogously to package"distr", global options for the output by methods plot and

Dataclass
+filename: vectororNULL
+Data: vectororNULL
+runs: numeric
+samplesize: numeric

Simulation
+seed: list
+distribution: UnivariateDistribution

Contsimulation
+ind: vectororNULL
+Data.id: vectororNULL
+Data.c: vectororNULL
+rate: numeric
+seed: list
+distribution.c: UnivariateDistribution
+distribution.id: UnivariateDistribution

Figure 4: Inheritance relations and slots of the corresponding (sub-)classes for Dataclass

summary are controlled by distrSimoptions() and getdistrSimoptions()

2.3 Evaluation class

From version 1.6 on, the class and methods of this subsection are available in package
"distrTEst".
When investigating properties of a new procedure (e.g. an estimator) by means of simu-
lations, one typically evaluates this procedure on a large set of simulation runs and gets a
result for each run. These results are typically not available within seconds, so that it is
worth storing them. To organize all relevant information about these results, we introduce
a class Evaluation the slots of which is �lled by method evaluate |see subsection 3.7.
Schematically, the slots of this class may be read o� in �gure 5. A corresponding savedata
method saves the object of class Evaluation in two �les in the R-working directory: one
using the �lename <filename> also stores the results; the other one, designed to be \hu-
man readable", comes as a comment �le with �lename <filename>.comment only stores
the remaining information. The �lename can be speci�ed in the optional argument fileN
to savedata; by default it is concatenated from the filename slot of the Dataclass ob-
ject and <estimatorname>, which you may either pass as argument estimatorName or by

12

Evaluation
+name: character
+filename: character
+call.ev: call
+result: vectororNULL
+estimator: OptionalFunction

Figure 5: Slots of class Evaluation

default is taken as the R-name of the corresponding R-function speci�ed in slot estimator.
From version 1.8 on, slot result in class Evaluation is of class DataframeorNULL,

i.e.; may be either a data frame or NULL, and slot call.ev in class Evaluation is of class
"CallorNULL", i.e.; may be either a call or NULL. Also, we want to gather Evaluation

objects in a particular data structure EvaluationList (see below), so we have to be able
to check whether all data sets in the gathered objects coincide. For this purpose, from this
version on, class Evaluation has an additional slot Data of class Dataclass. In order not
to burden the objects of this class too heavily with uninformative simulated data, in case
of a slot Data of one of the simulation-type subclasses of Dataclass, this Data itself has
an empty Data-slot.

2.4 EvaluationList class

The class and methods of this subsection are available in package "distrTEst".
In order to compare di�erent procedures / estimators for the same problem, it is natural
to gather several Evaluation objects with results of the same range (e.g. a parameter
space) generated on the same data, i.e.; on the same Dataclass object. To this end, from
version 1.8 on, we have introduced class EvaluationList. Schematically, the slots of this
class may be read o� in �gure 6. The common Data slot of the Evaluation objects in an

HIER KOMMT DAS BILD

Figure 6: Slots of class Evaluation

EvaluationList object may be accessed by the accessor method Data.

3 Methods

We have made available quite general arithmetical operations to our distribution objects,
generating new image distributions automatically.

13

Caveat: These arithmetics operate on the corresponding r.v.'s and not on
the distributions.

(For the latter, they only would make sense in restricted cases like convex combinations).

Martin M�achler pointed out that this might be confusing. So, this warning is also issued
on attaching package "distr", and, by default, again whenever a Distribution object,
produced by such arithmetics is shown or printed; this also applies to the last line in

> A1 <- Norm()

> A2 <- Unif()

> A1 + A2

Distribution Object of Class: AbscontDistribution

Warning message:

arithmetics on distributions are understood as operations on r.v.'s
see 'distrARITH()'; for switching off this warning see '?distroption' in: print(object)

This behaviour will soon be annoying so you may switch it o� setting the global option
WarningArith to FALSE (see section 4).

3.1 A�ne linear transformations

We have overloaded the operators "+", "-", "*", "/" such that a�ne linear transformations
which involve only single univariate r.v.'s are available; i.e. is expressions like Y=(3*X+5)/4
are permitted for an object X of class AbscontDistribution or DiscreteDistribution (or
some subclass), giving again an object Y of class AbscontDistribution or DiscreteDistribution
(in general). Here the corresponding transformations of the d, p, and q-functions are done
analytically.

3.2 The group math of unary mathematical operations

Also the group math of unary mathematical operations is available for distribution classes;
so expressions like exp(sin(3*X+5)/4) are permitted. The corresponding r method con-
sists in simply performing the transformation to the simulated values of X. The corre-
sponding (default-) d, p and q-functions are obtained by simulation, using the technique
described in the following subsection.
By means of substitute, the bodies of the r, d, p, q-slots of distributions show the param-
eter values with which they were generated; in particular, convolutions and applications of
the group math may be traced in the r-slot of a distribution object, compare
r(sin(Norm()) + cos(Unif() * 3 + 2)).

Initially, it might be irritating that the same \arithmetic" expression evaluated twice in
a row gives two di�erent results, compare

14

> A1 <- Norm()

> A2 <- Unif()

> d(sin(A1 + A2))(0.1)

[1] 0.3808551

> d(sin(A1 + A2))(0.1)

[1] 0.3794801

> sin(A1 + A2)

Distribution Object of Class: AbscontDistribution

This is due to the fact, that all slots are �lled starting from simulations. To explain this, a
warning is issued by default, whenever a Distribution object, �lled by such simulations
is shown or printed; this also applies to the last line in the preceding code sniplet. This
behaviour may again be switched o� by setting the global option WarningSim to FALSE

(see section 4).

3.3 Construction of d, p, and q from r

In order to facilitate automatic generation of new distributions, in particular those arising
as image distributions under transformations of correspondingly distributed random vari-
ables, we provide ad hoc methods that should be overloaded by more exact ones wherever
possible: By means of the function RtoDPQ we �rst generate 10RtoDPQ:e random numbers
where RtoDPQ.e is a global option of this package and is discussed in section 4. A den-
sity estimator is evaluated along this sample, the distribution function is estimated by the
empirical c.d.f. and, �nally, the quantile function is produced by numerical inversion. Of
course the result is rather crude as it relies on the law of large numbers only, but this way
all transformations within the group math become available. Where laws under transfor-
mations can easily be computed exactly |as for a�ne linear transformations| we replace
this procedure by the exactly transformed d, p, q-methods.

3.4 Convolution

A convolution method for two independent r.v.'s is implemented by means of explicit calcu-
lations for discrete summands, and by means of FFT5 if one of the summands is absolutely
continuous. This method automatically generates the law of the sum of two independent
variables/distributions X and Y of any univariate distributions |or in S4- jargon: the
addition operator "+" is overloaded for two objects of class UnivariateDistribution and
corresponding subclasses.

5Details to be found in [5]

15

3.5 Overloaded generic functions

Methods print, plot, show and summary have been overloaded for classes Distribution,
Dataclass, Simulation, ContSimulation, as well as Evaluation and EvaluationList

to produce \pretty" output. print, plot, show and summary have additional, optional
arguments for plotting subsets of the simulations / results: index vectors for the dimensions,
the runs, the observations, and the evaluations may be passed using arguments obs0, runs0,
dims0, eval0, confer help("<mthd>-methods",package=<pkg>) where <mthd> stands for
plot, show, print, or plot, and <pkg> stands for either "distrSim" or "distrTEst".

For an object of class Distribution, plot displays the density/probability function,
the c.d.f. and the quantile function of a distribution. Note that all usual parameters of
plot remain valid. For instance, you may increase the axis annotations and so on. More
important, you may also override the automatically chosen x-region by passing an xlim

argument:

> plot(Cauchy())

−40000 0 20000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

Density of Cauchy(0, 1)

grid

d(
x)

(g
rid

)

−40000 0 20000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Cauchy(0, 1)

grid

p(
x)

(g
rid

)

0.0 0.4 0.8

−
40

00
0

−
20

00
0

0
20

00
0

40
00

0

Quantile of Cauchy(0, 1)

p(x)(grid)

gr
id

16

> plot(Cauchy(), xlim = c(-4, 4))

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Density of Cauchy(0, 1)

grid

d(
x)

(g
rid

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Cauchy(0, 1)

grid

p(
x)

(g
rid

)

0.2 0.4 0.6 0.8

−
4

−
2

0
2

4

Quantile of Cauchy(0, 1)

p(x)(grid)

gr
id

For objects of class Dataclass|or of a corresponding subclass| plot plots the sample
against the run index and in case of ContSimulation the contaminating variables are
highlighted by a di�erent color. Additional arguments controlling the plot as in the default
plot command may be passed, confer help("plot-methods",package="distrSim").

For an object of class Evaluation, plot yields a boxplot of the results of the evaluation.
For an object of class EvaluationList, plot regroups the list according to the di�erent
columns/coordinates of the result of the evaluation; for each such coordinate, a boxplot is
generated, containing possibly several procedures, and, if evaluated at a Contsimulation,
the plots are also grouped into evaluations on ideal and real data. As for the usual boxplot
function you may pass additional \plot-type" arguments to this particular plot method,
confer help("plot-methods",package="distrTEst"). In particular, the plot-arguments
main and ylim, however, may also be transmitted coordinatewise, i.e.; a vector of the same
length as the dimension of the result resDim (e.g. parameter dimension), respectively a 2

x resDim matrix, or they may be transmitted globally, using the usual S recycling rules.

17

3.6 Simulation (in package "distrSim")

From version 1.6 on, simulation is available in package "distrSim".
For the classes Simulation and ContSimulation, we normally will not save the current

values of the simulation, as they can easily be reproduced knowing the values of the other
slots of this class. So when declaring a new object of either of the two classes, the slot Data
will be empty (NULL). To �ll it with the simulated values, we have to apply the method
simulate to the object. This has to be redone whenever another slot of the object is
changed. To guarantee reproducibility, we use the slot seed.
This slot is controlled and set through Paul Gilbert's "setRNG" package. By default, seed is
set to setRNG(), which returns the current\state"of the random number generator (RNG).
So the user does not need to specify a value for seed, and nevertheless may reproduce his
samples: He simply uses simulate to �ll the Data slot. If the user wants to, he may also
set the seed explicitly via the replacement function seed(), but has to take care of the
correct format himself, confer the documentation of setRNG. One easy way to �ll the Data
slot of a simulation X with \new" random numbers is

> have.distrSim <- suppressWarnings(require("distrSim"))

> if (have.distrSim) {

+ X <- Simulation()

+ seed(X) <- setRNG()

+ simulate(X)

+ } else {

+ cat("\n functionality not (yet) available; ")

+ cat("you have to install package \"distrSim\" first.\n")

+ }

3.7 Evaluate (in package "distrTEst")

From version 1.6 on evaluate is available in "distrTEst".
In an object of class Evaluation we store relevant information about an evaluation of a

statistical procedure (estimator/test/predictor) on an object of class Dataclass, including
the concrete results of this evaluation. An object of class Evaluation is generated by an
application of method evaluate which takes as arguments an object of class Dataclass
and a procedure of type function. As an example, confer Example 11.8. For data of class
Contsimulation, the result takes a slightly di�erent, combining evalations on ideal and
real data.

3.8 Is-Relations

By means of setIs, we have \told" R that a distribution object obj of class

18

mailto:pgilbert@bank-banque-canada.ca

• "Unif" with Min
:
= 0 and Max

:
= 1 also is a Beta distribution with parameters shape1

= 1, shape2 = 1

• "Geom" also is a negative Binomial distribution with parameters size = 1, prob =

prob(obj)

• "Cauchy" with location
:
= 0 and scale

:
= 1 also is a T distribution with parameters

df = 1, ncp = 0

• "Exp" also is a Gamma distribution with parameters shape = 1, scale = 1/rate(obj)

and a Weibull distribution with parameters shape = 1, scale = 1/rate(obj)

• "Chisq" with non-centrality ncp
:
= 0 also is a Gamma distribution with parameters

shape = df(obj)/2, scale = 2

3.9 Further methods

When iterating/chaining mathematical operations on a univariate distribution, generation
process of random variables can become clumsy and slow. To cope with this, we introduce
a sort of \Forget-my-past"-method simplifyr that replaces the chain of mathematical
operations in the r-method by drawing with replacement from a large sample (10RtoDPQ:e)
of these.

3.10 Functionals (in package "distrEx")

3.10.1 Expectation

The most important contribution of package "distrEx" is a general expectation operator.
In basic statistic courses, the expectation E may come as E [X], E [f(X)], E [XjY = y], or
E [f(X)jY = y]. Our operator (or in S4-language \generic function") E covers all of these
situtations (or signatures).

default call The most frequent call will be E(X) where X is an (almost) arbitrary distri-
bution object. More precisely, if X is of a speci�c distribution class like Pois, it is evaluated
exactly using analytic terms. Else if it is of class DiscreteDistribution we use a sum
over the support of X, and if it is of class AbscontDistribution we use numerical inte-
gration6; if we only know that X is of class UnivariateDistribution we use Monte-Carlo
integration. This also is the default method in for class MultivariateDistribution, while
for DiscreteMVDistribution we again use sums.

6i.e., we �rst try (really(!): try) integrate and if this fails we use Gau�-Legendre integration according
to [6], see also ?distrExIntegrate

19

with a function as argument we proceed just as without: if X is of class DiscreteDistribution,
we use a sum over the support of X, and if X is of class AbscontDistribution we use nu-
merical integration; else we use Monte-Carlo integration.

in addition: with a condition as argument we simply use the corresponding d

respective r slots with the additional argument cond.

exact evaluation is available for X of class Beta (for noncentrality 0), Binom, Cauchy,
Chisq,Dirac, Exp, Fd, Gammad, Geom, Hyper, Logis, Lnorm, Nbinom, Norm, Pois, Td, Unif,
Weibull.

examples

> have.distrEx <- suppressWarnings(require("distrEx"))

> if (have.distrEx) {

+ D4 <- LMCondDistribution(theta = 1)

+ D4

+ N <- Norm(mean = 2)

+ E(D4, cond = 1)

+ E(D4, cond = 1, useApply = FALSE)

+ E(as(D4, "UnivariateCondDistribution"), cond = 1)

+ E(as(D4, "UnivariateCondDistribution"), cond = 1, useApply = FALSE)

+ E(D4, function(x) {

+ x^2

+ }, cond = 2)

+ E(D4, function(x) {

+ x^2

+ }, cond = 2, useApply = FALSE)

+ E(N, function(x) {

+ x^2

+ })

+ E(as(N, "UnivariateDistribution"), function(x) {

+ x^2

+ }, useApply = FALSE)

+ E(D4, function(x, cond) {

+ cond * x^2

+ }, cond = 2, withCond = TRUE)

+ E(D4, function(x, cond) {

+ cond * x^2

+ }, cond = 2, withCond = TRUE, useApply = FALSE)

20

+ E(N, function(x) {

+ 2 * x^2

+ })

+ E(as(N, "UnivariateDistribution"), function(x) {

+ 2 * x^2

+ }, useApply = FALSE)

+ } else {

+ cat("\n functionality not (yet) available; ")

+ cat("you have to install package \"distrEx\" first.\n")

+ }

[1] 10.00136

3.10.2 Variance

The next-common functional is the variance. In order to keep a uni�ed notation we will
use the same name as for the empirical variance, i.e. var.

masking "stats"-method var To cope with the di�erent argument structure of the
empirical variance, i.e. var(x, y = NULL, na.rm = FALSE, use) and our functional vari-
ance, i.e. var(x, fun = function(t) t, cond, withCond = FALSE, useApply = TRUE,

...) we have to mask the original "stats"-method:

> var <- function(x, ...) {

+ dots <- list(...)

+ if (hasArg(y))

+ y <- dots$y

+ na.rm <- ifelse(hasArg(na.rm), dots$na.rm, FALSE)

+ if (!hasArg(use))

+ use <- ifelse(na.rm, "complete.obs", "all.obs")

+ else use <- dots$use

+ if (hasArg(y))

+ stats::var(x = x, y = y, na.rm = na.rm, use)

+ else stats::var(x = x, y = NULL, na.rm = na.rm, use)

+ }

before registering var as generic function. Doing so, if the x (or the �rst) argument of var
is not of class UnivariateDistribution, var behaves identically to the "stats" package

default method if x is of class UnivariateDistribution, var just returns the variance
of distribution X | or of fun(X) if a function is passed as argument fun, or, if a condition
argument cond (for Y = y), Var [XjY = y] respectively Var [f(X)jY = y] | just as for E.

21

exact evaluation is provided for speci�c distributions if no function and no condition
argument is given: this is available for X of class Beta (for noncentrality 0), Binom, Cauchy,
Chisq,Dirac, Exp, Fd, Gammad, Geom, Hyper, Logis, Lnorm, Nbinom, Norm, Pois, Unif, Td,
Weibull.

3.10.3 Further functionals

By the same techniques we provide the following functionals for univariate distributions:

• standard deviation: sd

• median: median (not for function/condition arguments)

• median of absolute deviations: mad (not for function/condition arguments)

• interquartile range: IQR (not for function/condition arguments)

3.11 Truncated moments (in package "distrEx")

For Robust Statistics, the �rst two truncated moments are very useful. These are realized as
generic functions m1df and m2df: They use the expectation operator for general univariate
distributions, but are overloaded for most speci�c distributions:

• Binom

• Pois

• Norm

• Exp

• Chisq

3.12 Distances (in package "distrEx")

For several purposes like Goodness-of-�t tests or minimum-distance estimators, distances
between distributions are useful. This applies in particular to Robust Statistics. In package
"distrEx", we provide the follwoing distances:

• Kolmogoro� distance

• total variation distance

• Hellinger distance

• convex-contamination \distance" (asymmetric!) de�ned as

d(Q;P) := inffr > 0 j 9 probability H : Q = (1� r)P + rHg

22

3.13 Functions for demos (in package "distrEx")

To illustrate the possibilities with packages "distr" and "distrEx" we include two major
demos, each with extra code to it

3.13.1 CLT for arbitrary summand distribution

By means of our convolution algortithm as well as with the operators E and sd an illus-
tration for the CLT is readily written: illustCLT; we have particular methods for discrete
and absolute continuous distributions. The user may specify a given summand distribu-
tion, an upper limit for the consecutive sums to be considered and a pause between the
corresponding plots in seconds.

3.13.2 Deconvolution example

To illustrate conditional distributions and their implementation in
"distrEx", we consider the following situation: We consider a signal X � PX which is dis-
turbed by noise " � P ", independent from X; in fact we observe Y = X+" and want to re-
construct X by means of Y . By means of the generating function PrognCondDistribution

of package "distrEx", for absolutely continuous PX ; P ", we may determine the factorized
conditional distribution PXjY=y, and based on this either its (posterior) mode oder (pos-
terior) expectation; also see demo(Prognose, package="distrEx").

4 Options

4.1 Options for "distr"

Analogously to the options command in R you may specify a number of global \constants"
to be used within the package. These include

• DefaultNrFFTGridPointsExponent: the binary logarithm of the number of grid-
points used in FFT |default 12

• DefaultNrGridPoints: number of grid-points used for a continuous variable |
default 4096

• DistrResolution: the �nest step length that is permitted for a grid for a discrete
variable |default 1e�06

• RtoDPQ.e: For simulational determination of d, p and q, 10RtoDPQ:e random variables
are simulated |default 5

• TruncQuantile: to work with compact support, random variables are truncated to
their lower/upper TruncQuantile-quantile |default 1e�05

23

• warningSim: controls whether a warning issued at printing/showing a Distribution
object the slots of which have been �lled starting with simulations |default TRUE

• warningArith: controls whether a warning issued at printing/showing a Distribution
object produced by arithmetics operating on distributions |default TRUE

All current options may be inspected by distroptions() and modi�ed by
distroptions("<options-name>"=<value>). As options, distroptions("<options-name>")
returns a list of length 1 with the value of the corresponding option, so here, just as
getOption, getdistrOption("<options-name>") will be preferable, which only returns
the value.

4.2 Options for "distrEx"

For the moment we use the function distrExOptions(arg = "missing", value = -1)

to manage some global options for "distrEx", i.e.:
distrExOptions() returns a list of these options, distrExOptions(arg=x) returns option
x, and distrExOptions(arg=x,value=y) sets the value of option x to y. Currently, the
following options are available:

• MCIterations: number of Monte-Carlo iterations used for crude Monte-Carlo inte-
gration.

• GLIntegrateTruncQuantile: If integrate fails and there are in�nite integration
limits, the function GLIntegrate is called inside of distrExIntegrate with the corre-
sponding quantiles GLIntegrateTruncQuantile resp. 1-GLIntegrateTruncQuantile
as �nite integration limits.

• GLIntegrateOrder: The order used for the Gau�-Legendre integration inside of
distrExIntegrate.

• ElowerTruncQuantile: The lower limit of integration used inside of E which corre-
sponds to the ElowerTruncQuantile-quantile.

• EupperTruncQuantile: The upper limit of integration used inside of E which corre-
sponds to the (1-ElowerTruncQuantile)-quantile.

• ErelativeTolerance: The relative tolerance used inside of E when calling distrExIntegrate.

• m1dfLowerTruncQuantile: The lower limit of integration used inside of m1df which
corresponds to the m1dfLowerTruncQuantile-quantile.

• m1dfRelativeTolerance: The relative tolerance used inside of m1df when calling
distrExIntegrate.

24

• m2dfLowerTruncQuantile: The lower limit of integration used inside of m2df which
corresponds to the m2dfLowerTruncQuantile-quantile.

• m2dfRelativeTolerance: The relative tolerance used inside of m2df when calling
distrExIntegrate.

We are planning to switch to distroptions/getdistrOption-like commands in the
next release of this package.

4.3 Options for "distrSim"

Just as with to the distroptions/getdistrOption commands you may specify certain
global output options to be used within the package with distrSimoptions/getdistrSimOption.
These include

• MaxNumberofPlottedObs the maximal number of observation plotted in a plot of an
object of class Dataclass; defaults to 4000

• MaxNumberofPlottedObsDims: the maximum number of observations to be plotted
in a plot of an object of class Dataclass and descendants; defaults to 6.

• MaxNumberofPlottedRuns: the maximum number of runs to be plotted in a plot of
an object of class Dataclass and descendants (one run/panel); defaults to 6.

• MaxNumberofSummarizedObsDims: the maximum number of observations to be sum-
marized of an object of class Dataclass and descendants; defaults to 6.

• MaxNumberofSummarizedRuns: the maximum number of runs to be summarized of
an object of class Dataclass and descendants; defaults to 6.

4.4 Options for "distrTEst"

Just as with to the distroptions/getdistrOption commands you may specify certain
global output options to be used within the package with distrTEstoptions/getdistrTEstOption.
These include

• MaxNumberofPlottedEvaluations: the maximal number of evaluations to be plotted
in a plot of an object of class EvaluationList; defaults to 6

• MaxNumberofPlottedEvaluationDims: the maximal number of evaluation dimen-
sions to be plotted in a plot of an object of class Evaluation; defaults to 6

• MaxNumberofSummarizedEvaluations: the maximal number of evaluations to be
summarized of an object of class EvaluationList; defaults to 15

• MaxNumberofPrintedEvaluations: the maximal number of evaluations printed of
an object of class EvaluationList; defaults to 15

25

5 Startup Messages

For the management of startup messages, from version 1.7, we use package "startupmsg":
When loading/attaching packages "distr", "distrEx", "distrSim", or "distrTEst" for
each package a disclaimer is displayed.

You may suppress these start-up banners/messages completely by setting
options("StartupBanner"="off") somewhere before loading this package by library

or require in your R-code / R-session.
If option "StartupBanner" is not de�ned (default) or setting

options("StartupBanner" = NULL) or options("StartupBanner" = "complete") the
complete start-up banner is displayed.

For any other value of option "StartupBanner" (i.e., not in c(NULL, "off", "complete"))
only the version information is displayed.

The same can be achieved by wrapping the library or require call into either
onlytypeStartupMessages(<code>, atypes="version") or suppressStartupMessages(<code>).

6 System/version requirements, license, etc.

6.1 System requirements

As our package is completely written in R, there are no dependencies on the underlying
OS; of course, there is the usual speed gain possible on recent machines. We have tested
our package on a Pentium II with 233 MHz, on Pentium III's with 0.8{2.1 GHz, and on an
Athlon with 2.5 GHz giving a reasonable performance.

6.2 Required version of R

Contrary to the hardware required, if you want to use library or require to use "distr"
within R code, you need at least R Version 1.8.1, as we make use of name space operations
only available from that version on; also, the command setClassUnion, which is used in
some sources, is only available from that version on.
On the other hand, if the package may be pasted in by source, the code works with R from
version 1.7.0 on |but without using name-spaces, which is only available from 1.8.0 on.
Due to some changes in R from version 1.8.1 to 1.9.0 and from 1.9.1 to 2.0.0, we have
to provide di�erent zip/tar.gz-Files for these versions.
Versions of "distr" from version number 1.5 onwards are only supplied for RVersion 2.0.1
patched and later. After a reorganization, versions of "distr" from version number 1.6
onwards are only supplied for R Version 2.2.0 patched and later.

26

6.3 Dependencies

In package "distrSim", and conseqently also in package "distrTEst" we use Paul Gilbert's
package "setRNG" to be installed from CRAN for the control of the seed of the random
number generator in our simulation classes. More precisely, for our version � 1.6 we need
his version < 2006.2-1, and for our version � 1.7 we need his version � 2006.2-1.

From package version 1.7/0.4-3 on, we also need package "startupmsg". also available
on CRAN.

6.4 License

This software is distributed under the terms of the GNU GENERAL PUBLIC LICENSE
Version 2, June 1991, confer
http://www.gnu.org/copyleft/gpl.html

7 Details to the implementation

• As the normal distribution is closed under a�ne transformations, we have overloaded
the corresponding methods.

• For the general convolution algorithm for univariate probability distribution func-
tions/densities by means of FFT, which we use in the overloaded "+"-operator, con-
fer [5].

• Exact convolution methods are implemented for the normal, the Poisson, the binomial
the negative binomial, the Gamma (and the Exp), and the �2 distribution; exact
formulae for scale transformations for the Exp-/Gamma-distribution

• Instances of any class transparent to the user are initialized by
<classname>([<slotname>=<value>,...]) where except for class DataClass in
package "distrSim" all classes have default values for all their slots; in DataClass,
the slot Data has to be speci�ed.

• As suggested in [3] all slots are accessed and modi�ed by corresponding accessor- and
replacement functions |templates for which were produced by standardMethods.

We strongly discourage the use of the @-operator to modify or even access
slots r, d, p, and q, confer Example 11.7.

8 A general utility

Following [3], the programmer of S4-classes should provide accessor and replacement func-
tions for the inspection/modi�cation of any newly introduced slot. This can be quite a

27

mailto:pgilbert@bank-banque-canada.ca
http://cran.r-project.org/mirrors.html
http://cran.r-project.org/mirrors.html
http://www.gnu.org/copyleft/gpl.html

task when you have a lot of classes/slots. As these functions all have the same structure,
it would be nice to automatically generate templates for them. Faced with this problem
in developing this package, Thomas Stabla has written such a utility, standardMethods
|which the authors of this package recommend for any developer of S4-classes. For more
details, see ?standardMethods.

9 Odds and Ends

9.1 What should be done and what we could do |for version >1.8

• application of FFT to any univariate distributions |perhaps also to be controlled by
a parameter/option

• use the q-slot applied to runif in simplifyr for continuous distributions

• further exact formulae for binary arithmetic operations like "*"

• derivation of a class LatticeDistribution from DiscreteDistribution to be able
to easily apply FFT

• redo the initialize- and the math-method for discrete distributions when only slot r
is given

• generating function for new distribution classes to ease inclusion of new distributions

• goodness of �t tests for distribution-objects

• use of nS4method in documentation

• overloading binary operators of group Math2 for independent distributions

• de�ning a subgroup of Math2 of invertible binary operators

• better use of concept in rd-�les

9.2 What should be done but for which we lack the know-how

• multivariate distributions

• conditional distributions

• copula

28

10 Acknowledgement

In order to give our acknowledgements their due place in the manual, we insert them before
some rather extensive presentation of examples, because otherwise they would probably get
lost or overseen by most of the readers.

We thank Martin M�achler and Josef Leydold for their helpful suggestions in conceiving
the package. John Chambers also gave several helpful hints and insights when responding
to our requests concerning the S4-class concept in r-devel/ r-help. We got stimulating
replies to an RFC on r-devel by Duncan Murdoch and Gregory Warnes. We also thank
Paul Gilbert for drawing our attention to his package setRNG and making it available as
stand-alone version. In the last few days before the release on CRAN, Kurt Hornik and Uwe
Ligges were very kind, helping us to �nd the clue how to pass all necessary checks by R

cmd check.
Last not least a big "thank you"to Torsten Hothorn as editor of R-News, for his patience

with our endless versions until we �nally came to a publishable version.

11 Examples

11.1 12-fold convolution of uniform (0; 1) variables

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/NormApprox.R

This example shows how easily we may get the distribution of the sum of 12 i:i:d: ufo(0; 1){variables

minus 6| which was used as a fast generator of N (0; 1){variables in times when evaluations of exp,

log, sin and tan were expensive, confer [7], example C, p. 163. The user should not be confused by

expressions like U+U: this does not mean 2U but rather convolution of two independent identically

distributed random variables.

> require(distr)

[1] TRUE

> N <- Norm(0, 1)

> U <- Unif(0, 1)

> U2 <- U + U

> U4 <- U2 + U2

> U8 <- U4 + U4

> U12 <- U4 + U8

> NormApprox <- U12 - 6

> x <- seq(-4, 4, 0.001)

> opar <- par()

29

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/NormApprox.R

> par(mfrow = c(2, 1))

> plot(x, d(NormApprox)(x), type = "l", xlab = "", ylab = "Density",

+ main = "Exact and approximated density")

> lines(x, d(N)(x), col = "red")

> legend(-4, d(N)(0), legend = c("NormApprox", "Norm(0,1)"), fill = c("black",

+ "red"))

> plot(x, d(NormApprox)(x) - d(N)(x), type = "l", xlab = "", ylab = "\"black\" - \"red\"",

+ col = "darkgreen", main = "Error")

> lines(c(-4, 4), c(0, 0))

> par(opar)

−4 −2 0 2 4

0.
0

0.
2

0.
4

Exact and approximated density

D
en

si
ty

NormApprox
Norm(0,1)

−4 −2 0 2 4

−
0.

00
4

0.
00

2

Error

"b
la

ck
"

−
 "

re
d"

11.2 Comparison of exact convolution to FFT for normal distributions

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/ConvolutionNormalDistr.R

30

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/ConvolutionNormalDistr.R

This example illustrates the exactness of the numerical algorithm used to compute the convolution:

We know that L(A+ B) = N (5; 13) | if the second argument of N is the variance

> require(distr)

[1] TRUE

> A <- Norm(mean = 1, sd = 2)

> B <- Norm(mean = 4, sd = 3)

> AB <- A + B

> A1 <- as(A, "AbscontDistribution")

> B1 <- as(B, "AbscontDistribution")

> oldeps <- getdistrOption("TruncQuantile")

> eps <- 1e-08

> distroptions(TruncQuantile = eps)

> AB1 <- A1 + B1

> par(mfrow = c(1, 3))

> low <- q(AB)(1e-15)

> upp <- q(AB)(1 - 1e-15)

> x <- seq(from = low, to = upp, length = 10000)

> plot(x, d(AB)(x), type = "l", lwd = 5)

> lines(x, d(AB1)(x), col = "orange", lwd = 1)

> title("Densities")

> legend(low, d(AB)(5), legend = c("exact", "FFT"), fill = c("black",

+ "orange"))

> plot(x, p(AB)(x), type = "l", lwd = 5)

> lines(x, p(AB1)(x), col = "orange", lwd = 1)

> title("Cumulative distribution functions")

> legend(low, 1, legend = c("exact", "FFT"), fill = c("black",

+ "orange"))

> x <- seq(from = eps, to = 1 - eps, length = 1000)

> plot(x, q(AB)(x), type = "l", lwd = 5)

> lines(x, q(AB1)(x), col = "orange", lwd = 1)

> title("Quantile functions")

> legend(0, q(AB)(1 - eps), legend = c("exact", "FFT"), fill = c("black",

+ "orange"))

> total.var <- function(z, N1, N2) {

+ 0.5 * abs(d(N1)(z) - d(N2)(z))

+ }

> dv <- integrate(total.var, lower = -Inf, upper = Inf, rel.tol = 1e-08,

+ N1 = AB, N2 = AB1)

> cat("Total variation distance of densities:\t")

31

Total variation distance of densities:

> print(dv)

4.250016e-07 with absolute error < 1.8e-09

> z <- r(Unif(Min = low, Max = upp))(1e+05)

> dk <- max(abs(p(AB)(z) - p(AB1)(z)))

> cat("Kolmogorov distance of cdfs:\t", dk, "\n")

Kolmogorov distance of cdfs: 2.028470e-07

> distroptions(TruncQuantile = oldeps)

−20 0 10 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

x

d(
A

B
)(

x)

Densities

exact
FFT

−20 0 10 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
A

B
)(

x)

Cumulative distribution functions

exact
FFT

0.0 0.4 0.8

−
10

0
10

20

x

q(
A

B
)(

x)

Quantile functions

exact
FFT

32

11.3 Comparison of FFT to RtoDPQ

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/ComparisonFFTandRtoDPQ.R

This example illustrates the exactness (or rather not{so{exactness) of the simulational default

algorithm used to compute the distribution of transformations of group math.

> require(distr)

[1] TRUE

> N1 <- Norm(0, 3)

> N2 <- Norm(0, 4)

> rnew1 <- function(n) r(N1)(n) + r(N2)(n)

> X <- N1 + N2

> Y <- N1 + as(N2, "AbscontDistribution")

> Z <- new("AbscontDistribution", r = rnew1)

> x <- seq(-15, 15, 0.01)

> plot(x, d(X)(x), type = "l", lwd = 3, xlab = "", ylab = "density",

+ main = "Comparison 1", col = "black")

> lines(x, d(Y)(x), col = "yellow")

> lines(x, d(Z)(x), col = "red")

> legend(-15, d(X)(0), legend = c("Exact", "FFT-Approximation",

+ "RtoDQP-Approximation"), fill = c("black", "yellow", "red"))

> B <- Binom(size = 6, prob = 0.5) * 10

> N <- Norm()

> rnew2 <- function(n) r(B)(n) + r(N)(n)

> Y <- B + N

> Z <- new("AbscontDistribution", r = rnew2)

> x <- seq(-5, 65, 0.01)

> plot(x, d(Y)(x), type = "l", xlab = "", ylab = "density", main = "Comparison 2",

+ col = "black")

> lines(x, d(Z)(x), col = "red")

> legend(-5, d(Y)(30), legend = c("Exact", "RtoDQP-Approximation"),

+ fill = c("black", "red"))

33

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/ComparisonFFTandRtoDPQ.R

−15 −10 −5 0 5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

Comparison 1

de
ns

ity

Exact
FFT−Approximation
RtoDQP−Approximation

11.4 Comparison of exact and approximate stationary regressor distri-
bution

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/StationaryRegressorDistr.R

Another illustration for the use of package "distr". In case of a stationary AR(1){model, for

non{normal innovation distribution, the stationary distribution of the observations must be ap-

proximated by �nite convolutions. That these approximations give fairly good results for approx-

imations down to small orders is exempli�ed by the Gaussian case where we may compare the

approximation to the exact stationary distribution.

> require(distr)

[1] TRUE

34

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/StationaryRegressorDistr.R

> phi <- 0.5

> V <- as(Norm(), "AbscontDistribution")

> oldeps <- getdistrOption("TruncQuantile")

> eps <- 1e-08

> distroptions(TruncQuantile = eps)

> H <- V

> n <- 15

> for (i in 1:n) {

+ Vi <- phi^i * V

+ H <- H + Vi

+ }

> X <- Norm(sd = sqrt(1/(1 - phi^2)))

> par(mfrow = c(1, 3))

> low <- q(X)(1e-15)

> upp <- q(X)(1 - 1e-15)

> x <- seq(from = low, to = upp, length = 10000)

> plot(x, d(X)(x), type = "l", lwd = 5)

> lines(x, d(H)(x), col = "orange", lwd = 1)

> title("Densities")

> legend(low, d(X)(0), legend = c("exact", "FFT"), fill = c("black",

+ "orange"))

> plot(x, p(X)(x), type = "l", lwd = 5)

> lines(x, p(H)(x), col = "orange", lwd = 1)

> title("Cumulative distribution functions")

> legend(low, 1, legend = c("exact", "FFT"), fill = c("black",

+ "orange"))

> x <- seq(from = eps, to = 1 - eps, length = 1000)

> plot(x, q(X)(x), type = "l", lwd = 5)

> lines(x, q(H)(x), col = "orange", lwd = 1)

> title("Quantile functions")

> legend(0, q(X)(1 - eps), legend = c("exact", "FFT"), fill = c("black",

+ "orange"))

> total.var <- function(z, N1, N2) {

+ 0.5 * abs(d(N1)(z) - d(N2)(z))

+ }

> dv <- integrate(total.var, lower = -Inf, upper = Inf, rel.tol = 1e-05,

+ N1 = X, N2 = H)

> cat("Total variation distance of densities:\t")

Total variation distance of densities:

> print(dv)

35

9.100439e-06 with absolute error < 6.4e-06

> z <- r(Unif(Min = low, Max = upp))(1e+05)

> dk <- max(abs(p(X)(z) - p(H)(z)))

> cat("Kolmogorov distance of cdfs:\t", dk, "\n")

Kolmogorov distance of cdfs: 4.30419e-06

> distroptions(TruncQuantile = oldeps)

−5 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

x

d(
X

)(
x)

Densities

exact
FFT

−5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
X

)(
x)

Cumulative distribution functions

exact
FFT

0.0 0.4 0.8

−
6

−
4

−
2

0
2

4
6

x

q(
X

)(
x)

Quantile functions

exact
FFT

11.5 Truncation and Huberization/winsorization

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/huberize.R

36

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/huberize.R

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/truncate.R

The operations of truncation and Huberization play a crucial role in Robust Statistics, but also arise

in many other contexts like censoring etc; they may now be formulated quite generally as shown in

this example. With the slots d, p and q of class UnivariateDistribution being OptionalFunction

from version 1.4 on, it would be no problem to return a corresponding distribution object now.

> require(distr)

[1] TRUE

> if (!isGeneric("Huberize")) setGeneric("Huberize", function(object,

+ lower, upper) standardGeneric("Huberize"))

[1] "Huberize"

> setMethod("Huberize", signature(object = "AbscontDistribution",

+ lower = "numeric", upper = "numeric"), function(object, lower,

+ upper) {

+ rnew = function(n) {

+ rn = r(object)(n)

+ ifelse(rn < lower, lower, ifelse(rn >= upper, upper,

+ rn))

+ }

+ pnew = function(x) ifelse(x < lower, 0, ifelse(x >= upper,

+ 1, p(object)(x)))

+ plower = p(object)(lower)

+ pupper = p(object)(upper)

+ qnew = function(x) ifelse(x < plower, ifelse(x < 0, NA, -Inf),

+ ifelse(x >= pupper, ifelse(x > 1, NA, upper), q(object)(x)))

+ new("UnivariateDistribution", r = rnew, p = pnew, q = qnew,

+ d = NULL)

+ })

[1] "Huberize"

> N = Norm()

> HN = Huberize(N, -0.5, 1)

> r(HN)(10)

[1] 1.0000000 -0.5000000 0.2154488 1.0000000 0.6802175 -0.5000000

[7] -0.5000000 1.0000000 0.2453647 0.5290800

37

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/truncate.R

> oldpar = par()

> par(mfrow = c(1, 2))

> x = seq(-1.5, 1.5, length = 1000)

> plot(x, p(HN)(x), type = "l", lwd = 5, ylab = "CDF")

> lines(x, p(N)(x), lwd = 2, col = "red")

> legend(-1.5, 1, legend = c("N(0,1)", "N(0,1) huberized"), fill = c("red",

+ "black"))

> x = seq(0, 1, length = 1000)

> plot(x, q(HN)(x), type = "l", lwd = 5, ylab = "Quantiles", ylim = c(-2.5,

+ 3))

> lines(x, q(N)(x), lwd = 2, col = "red")

> legend(0, 3, legend = c("N(0,1)", "N(0,1) huberized"), fill = c("red",

+ "black"))

> par(oldpar)

−1.5 −0.5 0.5 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C
D

F

N(0,1)
N(0,1) huberized

0.0 0.4 0.8

−
2

−
1

0
1

2
3

x

Q
ua

nt
ile

s

N(0,1)
N(0,1) huberized

38

> require(distr)

[1] TRUE

> if (!isGeneric("Truncate")) setGeneric("Truncate", function(object,

+ lower, upper) standardGeneric("Truncate"))

[1] "Truncate"

> setMethod("Truncate", signature(object = "AbscontDistribution",

+ lower = "numeric", upper = "numeric"), function(object, lower,

+ upper) {

+ rnew = function(n) {

+ rn = r(object)(n)

+ while (TRUE) {

+ rn[rn < lower] = NA

+ rn[rn > upper] = NA

+ index = is.na(rn)

+ if (!(any(index)))

+ break

+ rn[index] = r(object)(sum(index))

+ }

+ rn

+ }

+ plower = p(object)(lower)

+ pupper = p(object)(upper)

+ pnew = function(x) ifelse(x < lower, 0, ifelse(x >= upper,

+ 1, (p(object)(x) - plower)/(pupper - plower)))

+ lostmass = plower + 1 - pupper

+ dnew = function(x) ifelse(x < lower, 0, ifelse(x >= upper,

+ 0, d(object)(x)/(1 - lostmass)))

+ qfun1 <- function(x) {

+ if (x == 0)

+ return(lower)

+ if (x == 1)

+ return(upper)

+ fun <- function(t) pnew(t) - x

+ uniroot(fun, interval = c(lower, upper))$root

+ }

+ qfun2 <- function(x) sapply(x, qfun1)

+ return(new("AbscontDistribution", r = rnew, d = dnew, p = pnew,

+ q = qfun2))

+ })

39

[1] "Truncate"

> N = Norm()

> Z = Truncate(N, -0.5, 1)

> plot(Z)

> r(Z)(10)

[1] -0.26004404 -0.20930077 0.42901044 0.20736589 -0.32304838 0.02591731

[7] -0.16227450 0.17318232 0.58873571 0.78461899

> oldpar = par()

> par(mfrow = c(1, 2))

> x = seq(-1.5, 1.5, length = 1000)

> plot(x, p(Z)(x), type = "l", lwd = 5, xlab = "", ylab = "CDF")

> lines(x, p(N)(x), lwd = 2, col = "red")

> legend(-1.5, 1, legend = c("N(0,1)", "N(0,1) truncated"), fill = c("red",

+ "black"))

> x = seq(-1.5, 1.5, length = 1000)

> plot(x, d(Z)(x), type = "l", lwd = 5, xlab = "", ylab = "density")

> lines(x, d(N)(x), lwd = 2, col = "red")

> legend(-1.5, 0.7, legend = c("N(0,1)", "N(0,1) truncated"), fill = c("red",

+ "black"))

> par(oldpar)

40

−0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

Density of AbscontDistribution

grid

d(
x)

(g
rid

)

−0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of AbscontDistribution

grid

p(
x)

(g
rid

)

0.0 0.4 0.8

−
0.

5
0.

0
0.

5
1.

0

Quantile of AbscontDistribution

p(x)(grid)

gr
id

11.6 Distribution of minimum and maximum of two independent random
variables

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/minandmax.R

As in the preceding example, we illustrate the use of package "distr" by making available widely

necessary operations: Minimum and maximum of two independent random variables.

> require(distr)

[1] TRUE

> if (!isGeneric("Minimum")) setGeneric("Minimum", function(e1,

+ e2) standardGeneric("Minimum"))

41

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/minandmax.R

[1] "Minimum"

> setMethod("Minimum", signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution"),

+ function(e1, e2) {

+ rnew <- function(n) {

+ rn1 <- r(e1)(n)

+ rn2 <- r(e2)(n)

+ ifelse(rn1 < rn2, rn1, rn2)

+ }

+ pnew <- function(x) {

+ p1 <- p(e1)(x)

+ p2 <- p(e2)(x)

+ p1 + p2 - p1 * p2

+ }

+ dnew <- function(x) {

+ d1 <- d(e1)(x)

+ d2 <- d(e2)(x)

+ p1 <- p(e1)(x)

+ p2 <- p(e2)(x)

+ d1 + d2 - d1 * p2 - p1 * d2

+ }

+ lower1 <- q(e1)(0)

+ lower2 <- q(e2)(0)

+ upper1 <- q(e1)(1)

+ upper2 <- q(e2)(1)

+ lower <- min(lower1, lower2)

+ upper <- min(upper1, upper2)

+ maxquantile = min(q(e1)(1 - 1e-06), q(e2)(1 - 1e-06))

+ minquantile = min(q(e1)(1e-06), q(e2)(1e-06))

+ qfun1 <- function(x) {

+ if (x == 0)

+ return(lower)

+ if (x == 1)

+ return(upper)

+ fun <- function(t) pnew(t) - x

+ uniroot(fun, interval = c(maxquantile, minquantile))$root

+ }

+ qfun2 <- function(x) sapply(x, qfun1)

+ return(new("AbscontDistribution", r = rnew, d = dnew,

+ p = pnew, q = qfun2))

+ })

42

[1] "Minimum"

> if (!isGeneric("Maximum")) setGeneric("Maximum", function(e1,

+ e2) standardGeneric("Maximum"))

[1] "Maximum"

> setMethod("Maximum", signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution"),

+ function(e1, e2) {

+ rnew <- function(n) {

+ rn1 <- r(e1)(n)

+ rn2 <- r(e2)(n)

+ ifelse(rn1 > rn2, rn1, rn2)

+ }

+ pnew <- function(x) {

+ p1 <- p(e1)(x)

+ p2 <- p(e2)(x)

+ p1 * p2

+ }

+ dnew <- function(x) {

+ d1 <- d(e1)(x)

+ d2 <- d(e2)(x)

+ p1 <- p(e1)(x)

+ p2 <- p(e2)(x)

+ d1 * p2 + p1 * d2

+ }

+ lower1 <- q(e1)(0)

+ lower2 <- q(e2)(0)

+ upper1 <- q(e1)(1)

+ upper2 <- q(e2)(1)

+ lower <- max(lower1, lower2)

+ upper <- max(upper1, upper2)

+ maxquantile = max(q(e1)(1 - 1e-06), q(e2)(1 - 1e-06))

+ minquantile = max(q(e1)(1e-06), q(e2)(1e-06))

+ qfun1 <- function(x) {

+ if (x == 0)

+ return(lower)

+ if (x == 1)

+ return(upper)

+ fun <- function(t) pnew(t) - x

+ uniroot(fun, interval = c(maxquantile, minquantile))$root

+ }

43

+ qfun2 <- function(x) sapply(x, qfun1)

+ return(new("AbscontDistribution", r = rnew, d = dnew,

+ p = pnew, q = qfun2))

+ })

[1] "Maximum"

> N <- Norm(mean = 0, sd = 1)

> U <- Unif(Min = 0, Max = 1)

> Y <- Maximum(N, U)

> plot(Y)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Density of AbscontDistribution

grid

d(
x)

(g
rid

)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of AbscontDistribution

grid

p(
x)

(g
rid

)

0.0 0.4 0.8

0
1

2
3

4

Quantile of AbscontDistribution

p(x)(grid)

gr
id

> Z <- Minimum(N, U)

> plot(Z)

44

−5 −3 −1 1

0.
0

0.
2

0.
4

0.
6

0.
8

Density of AbscontDistribution

grid

d(
x)

(g
rid

)

−5 −3 −1 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of AbscontDistribution

grid

p(
x)

(g
rid

)

0.0 0.4 0.8

−
5

−
4

−
3

−
2

−
1

0
1

Quantile of AbscontDistribution

p(x)(grid)

gr
id

11.7 Instructive destructive example

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/destructive.R

> require(distr)

[1] TRUE

> N <- Norm()

> B <- Binom()

> N@d <- B@d

> plot(N)

45

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/destructive.R

−4 0 2 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Density of Norm(0, 1)

grid

d(
x)

(g
rid

)

−4 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Norm(0, 1)

grid

p(
x)

(g
rid

)

0.0 0.4 0.8

−
4

−
2

0
2

4

Quantile of Norm(0, 1)

p(x)(grid)

gr
id

11.8 A simulation example

needs packages "distrSim"/"distrTEst"

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/SimulateandEstimate.R

> have.distrTEst <- suppressWarnings(require(distrTEst))

> if (have.distrTEst) {

+ sim <- new("Simulation", seed = setRNG(), distribution = Norm(mean = 0,

+ sd = 1), filename = "sim_01", runs = 1000, samplesize = 30)

+ contsim <- new("Contsimulation", seed = setRNG(), distribution.id = Norm(mean = 0,

+ sd = 1), distribution.c = Norm(mean = 0, sd = 9), rate = 0.1,

+ filename = "contsim_01", runs = 1000, samplesize = 30)

46

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/SimulateandEstimate.R

+ simulate(sim)

+ simulate(contsim)

+ print(sim)

+ summary(contsim)

+ plot(contsim)

+ } else {

+ cat("\n functionality not (yet) available; ")

+ cat("you have to install package \"distrTEst\" first.\n")

+ }

filename of Simulation: sim_01

seed of Simulation: Mersenne-Twister

seed of Simulation: Inversion

seed of Simulation: c(312, 992586505, -1091336977, -1873268990, 1830591758, 568584456, -1733810521, -193247257, 407903804, 853277018, -1291849909, 690983857, -1222907145, 1349331796, -1956014272, 2049648770, 1722259598, 18384930, -1660853598, -1504143456, 676636782, -1307850353, 885336488, 493255236, 2101148134, 1065335730, -912707068, -1967312219, -702172411, -108588300, -233389314, 396170801, -270615063, 1488113139, -650897964, -885276147, 2107126223, -1747657349, -398195964, -1216170335, -1670286632, -1409033516,

number of runs: 1000

dimension of the observations: 1

size of sample: 30

object was generated by version: 1.8

Distribution:

Distribution Object of Class: Norm

mean : 0

sd : 1

name of simulation: contsim_01

rate of contamination: 0.100000

real Data:

dimension of the observations: 1

number of runs: 1000

size of sample: 30

47

*
*

*

*

*

**

*

*

**

*

*
*

*
*

*

*
*

*

*
*

*

*

*

*
*
*

0

−
5

0
5

observation−index

da
ta

x

x

*

*

*

*
*

**

*

*

*
*

*
*

*

*

*

*

*

*

*
*

*

*

0

−
5

0
5

observation−index

da
ta

x

x

x

*
*
*

**

*

*

*

*

**

*

*
*
*

*

*

*

*
**
*

*
*

0

−
5

0
5

observation−index

da
ta

x

x

*

*
**

*

*

**

*

*

**

*
*

*
**
*

*

*

*

*

*

*

*

*

*
*

0

−
5

0
5

observation−index

da
ta

x

x

*

*

*

*

**

*

*

**

*

*

*
*
**

*

*

**
*

*

0

−
5

0
5

observation−index

da
ta

x

x
x

**
*
*
*

*
*

*

*
*

*

*

**

*

*

**

*

*

0

−
5

0
5

observation−index

da
ta x

x

> have.distrTEst <- suppressWarnings(require("distrTEst"))

> if (have.distrTEst) {

+ psim <- function(theta, y, m0) {

+ mean(pmin(pmax(-m0, y - theta), m0))

+ }

+ mestimator <- function(x, m = 0.7) {

+ uniroot(psim, low = -20, up = 20, tol = 1e-10, y = x,

+ m0 = m, maxiter = 20)$root

+ }

+ result.id.mean <- evaluate(sim, mean)

+ result.id.mest <- evaluate(sim, mestimator)

+ result.id.median <- evaluate(sim, median)

+ result.cont.mean <- evaluate(contsim, mean)

+ result.cont.mest <- evaluate(contsim, mestimator)

+ result.cont.median <- evaluate(contsim, median)

48

+ elist <- EvaluationList(result.cont.mean, result.cont.mest,

+ result.cont.median)

+ print(elist)

+ summary(elist)

+ plot(elist, cex = 0.7)

+ } else {

+ cat("\n functionality not (yet) available; ")

+ cat("you have to install package \"distrTEst\" first.\n")

+ }

An EvaluationList Object

name of Evaluation List: a list of "Evaluation" objects

name of Dataobject: object

name of Datafile: contsim_01

An Evaluation Object

estimator: mean

Result: 'data.frame': 1000 obs. of 2 variables:

$ mean.id: num -0.13697 0.06051 0.00985 -0.04599 0.43008 ...

$ mean.re: num -0.064 0.991 -0.445 0.237 1.423 ...

An Evaluation Object

estimator: mestimator

Result: 'data.frame': 1000 obs. of 2 variables:

$ mstm.id: num -0.0720 0.0621 0.0818 -0.0753 0.3795 ...

$ mstm.re: num -0.0483 0.5620 0.0514 0.1390 0.5566 ...

An Evaluation Object

estimator: median

Result: 'data.frame': 1000 obs. of 2 variables:

$ medn.id: num 0.10299 0.00262 0.15605 0.05464 0.30376 ...

$ medn.re: num 0.103 0.681 0.156 0.260 0.465 ...

name of Evaluation List: a list of "Evaluation" objects

name of Dataobject: object

name of Datafile: contsim_01

name of Evaluation: object

estimator: mean

Result:

mean.id mean.re

Min. :-0.647788 Min. :-1.95427

49

1st Qu.:-0.116459 1st Qu.:-0.34752

Median : 0.004664 Median :-0.01436

Mean : 0.005352 Mean :-0.01149

3rd Qu.: 0.126965 3rd Qu.: 0.29756

Max. : 0.567246 Max. : 1.80795

name of Evaluation: object

estimator: mestimator

Result:

mstm.id mstm.re

Min. :-0.680226 Min. :-0.685379

1st Qu.:-0.123801 1st Qu.:-0.148639

Median :-0.004340 Median :-0.002694

Mean : 0.004876 Mean : 0.002649

3rd Qu.: 0.136163 3rd Qu.: 0.148642

Max. : 0.663399 Max. : 0.663399

name of Evaluation: object

estimator: median

Result:

medn.id medn.re

Min. :-0.711295 Min. :-0.757078

1st Qu.:-0.136414 1st Qu.:-0.150264

Median : 0.000839 Median :-0.001653

Mean : 0.008166 Mean : 0.005374

3rd Qu.: 0.150733 3rd Qu.: 0.167842

Max. : 0.706914 Max. : 0.706914

50

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●
●
●

●

●

●

●

●●

●●●

●

●

mean.id mstm.id medn.id mstm.re

−
2

−
1

0
1

1. coordinate

Output by plot/show-method for an object of class Evaluation

> result.cont.mest

An Evaluation Object

name of Dataobject: object

name of Datafile: contsim_01

estimator: mestimator

Result: 'data.frame': 1000 obs. of 2 variables:

$ mstm.id: num -0.0720 0.0621 0.0818 -0.0753 0.3795 ...

$ mstm.re: num -0.0483 0.5620 0.0514 0.1390 0.5566 ...

Output by summary-method for an object of class EvaluationList

> summary(elist)

name of Evaluation List: a list of "Evaluation" objects

name of Dataobject: object

name of Datafile: contsim_01

name of Evaluation: object

estimator: mean

51

Result:

mean.id mean.re

Min. :-0.647788 Min. :-1.95427

1st Qu.:-0.116459 1st Qu.:-0.34752

Median : 0.004664 Median :-0.01436

Mean : 0.005352 Mean :-0.01149

3rd Qu.: 0.126965 3rd Qu.: 0.29756

Max. : 0.567246 Max. : 1.80795

name of Evaluation: object

estimator: mestimator

Result:

mstm.id mstm.re

Min. :-0.680226 Min. :-0.685379

1st Qu.:-0.123801 1st Qu.:-0.148639

Median :-0.004340 Median :-0.002694

Mean : 0.004876 Mean : 0.002649

3rd Qu.: 0.136163 3rd Qu.: 0.148642

Max. : 0.663399 Max. : 0.663399

name of Evaluation: object

estimator: median

Result:

medn.id medn.re

Min. :-0.711295 Min. :-0.757078

1st Qu.:-0.136414 1st Qu.:-0.150264

Median : 0.000839 Median :-0.001653

Mean : 0.008166 Mean : 0.005374

3rd Qu.: 0.150733 3rd Qu.: 0.167842

Max. : 0.706914 Max. : 0.706914

In this example we present a standard robust simulation study that | in variations | arises in

almost every paper on Robust Statistics. We do this with the tools provided by our package. . .

11.9 Expectation of a given function under a given distribution

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/Expectation.R

This code is for illustration only; in the mean-time, the expectation- and variance operators implemented in

this example have been included to package "distrEx" where their functionality has further been extended.

As in examples 11.5 and 11.6, we illustrate the use of package "distr" by implementing a general

evaluation of expectation and variance under a given distribution.

> have.distrEx <- suppressWarnings(require("distrEx"))

> if (have.distrEx) {

+ id <- function(x) x

+ sq <- function(x) x^2

52

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/Expectation.R

+ B <- Binom(6, 0.5)

+ E(B, id)

+ E(B, sq) - E(B, id)^2

+ N <- Norm(1, 1)

+ E(N, id)

+ E(N, sq) - E(N, id)^2

+ } else {

+ cat("\n functionality not (yet) available; ")

+ cat("you have to install package \"distrEx\" first.\n")

+ }

[1] 1

11.10 n-fold convolution of absolutely continuous distributions

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/nFoldConvolution.R

Might be useful for teaching the CLT: a straightforward implementation of the n{fold convolution

of an arbitrary implemented absolutely continuous distribution | to show accuracy of our method

we compare it to the exact formula valid for n-fold convolution of normal distributions.

> require(distr)

[1] TRUE

> if (!isGeneric("convpow")) setGeneric("convpow", function(D1,

+ N) standardGeneric("convpow"))

[1] "convpow"

> setMethod("convpow", signature(D1 = "AbscontDistribution", N = "numeric"),

+ function(D1, N) {

+ if ((N < 1) || (!identical(floor(N), N)))

+ stop("N has to be a natural greater than 0")

+ m <- getdistrOption("DefaultNrFFTGridPointsExponent")

+ lower <- ifelse((q(D1)(0) > -Inf), q(D1)(0), q(D1)(getdistrOption("TruncQuantile")))

+ upper <- ifelse((q(D1)(1) < Inf), q(D1)(1), q(D1)(1 -

+ getdistrOption("TruncQuantile")))

+ M <- 2^m

+ h <- (upper - lower)/M

+ if (h > 0.01)

53

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/nFoldConvolution.R

+ warning(paste("Grid for approxfun too wide, ", "increase DefaultNrFFTGridPointsExponent",

+ sep = ""))

+ x <- seq(from = lower, to = upper, by = h)

+ p1 <- p(D1)(x)

+ p1 <- p1[2:(M + 1)] - p1[1:M]

+ pn <- c(p1, numeric((N - 1) * M))

+ fftpn <- fft(pn)

+ pn <- Re(fft(fftpn^N, inverse = TRUE))/(N * M)

+ pn <- (abs(pn) >= .Machine$double.eps) * pn

+ i.max <- N * M - (N - 2)

+ pn <- c(0, pn[1:i.max])

+ dn <- pn/h

+ pn <- cumsum(pn)

+ x <- c(N * lower, seq(from = N * lower + N/2 * h, to = N *

+ upper - N/2 * h, by = h), N * upper)

+ dnfun1 <- approxfun(x = x, y = dn, yleft = 0, yright = 0)

+ standardizer <- sum(dn[2:i.max]) + (dn[1] + dn[i.max +

+ 1])/2

+ dnfun2 <- function(x) dnfun1(x)/standardizer

+ pnfun1 <- approxfun(x = x + 0.5 * h, y = pn, yleft = 0,

+ yright = pn[i.max + 1])

+ pnfun2 <- function(x) pnfun1(x)/pn[i.max + 1]

+ yleft <- ifelse(((q(D1)(0) == -Inf) | (q(D1)(0) == -Inf)),

+ -Inf, N * lower)

+ yright <- ifelse(((q(D1)(1) == Inf) | (q(D1)(1) == Inf)),

+ Inf, N * upper)

+ w0 <- options("warn")

+ options(warn = -1)

+ qnfun1 <- approxfun(x = pnfun2(x + 0.5 * h), y = x +

+ 0.5 * h, yleft = yleft, yright = yright)

+ qnfun2 <- function(x) {

+ ind1 <- (x == 0) * (1:length(x))

+ ind2 <- (x == 1) * (1:length(x))

+ y <- qnfun1(x)

+ y <- replace(y, ind1[ind1 != 0], yleft)

+ y <- replace(y, ind2[ind2 != 0], yright)

+ return(y)

+ }

+ options(w0)

+ rnew = function(N) apply(matrix(r(e1)(n * N), ncol = N),

+ 1, sum)

54

+ return(new("AbscontDistribution", r = rnew, d = dnfun1,

+ p = pnfun2, q = qnfun2))

+ })

[1] "convpow"

> A <- Norm(mean = 0, sd = 1)

> N <- 10

> AN <- convpow(A, N)

> AN1 <- Norm(mean = 0, sd = sqrt(N))

> eps <- getdistrOption("TruncQuantile")

> par(mfrow = c(1, 3))

> low <- q(AN1)(eps)

> upp <- q(AN1)(1 - eps)

> x <- seq(from = low, to = upp, length = 10000)

> plot(x, d(AN1)(x), type = "l", lwd = 5)

> lines(x, d(AN)(x), col = "orange", lwd = 1)

> title("Densities")

> legend(low, d(AN)(0), legend = c("exact", "FFT"), fill = c("black",

+ "orange"))

> plot(x, p(AN1)(x), type = "l", lwd = 5)

> lines(x, p(AN)(x), col = "orange", lwd = 1)

> title("Cumulative distribution functions")

> legend(low, 1, legend = c("exact", "FFT"), fill = c("black",

+ "orange"))

> x <- seq(from = eps, to = 1 - eps, length = 1000)

> plot(x, q(AN1)(x), type = "l", lwd = 5)

> lines(x, q(AN)(x), col = "orange", lwd = 1)

> title("Quantile functions")

> legend(0, q(AN1)(1 - eps), legend = c("exact", "FFT"), fill = c("black",

+ "orange"))

55

−10 0 5 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

x

d(
A

N
1)

(x
)

Densities

exact
FFT

−10 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
A

N
1)

(x
)

Cumulative distribution functions

exact
FFT

0.0 0.4 0.8

−
10

−
5

0
5

10

x

q(
A

N
1)

(x
)

Quantile functions

exact
FFT

References

[1] Bengtsson H. The R.oo package - object-oriented programming with references using
standard R code. In: Hornik K., Leisch F. and Zeileis A. (Eds.) Proceedings of the

3rd International Workshop on Distributed Statistical Computing (DSC 2003). Vienna,
Austria. Published as http://www.ci.tuwien.ac.at/Conferences/DSC-2003/ 6

[2] Chambers J.M. Programming with data. A guide to the S language. Springer.
http://cm.bell-labs.com/stat/Sbook/index.html 6

[3] Gentleman R. Object Orientated Programming. Slides of a Short Course held in Auck-

land . http://www.stat.auckland.ac.nz/S-Workshop/Gentleman/Methods.pdf 27

[4] Kohl M. Numerical Contributions to the Asymptotic Theory of Robustness. Disserta-
tion, Universit�at Bayreuth. See also http://stamats.de/ThesisMKohl.pdf 2

56

[5] Kohl M., Ruckdeschel P. and Stabla T. General Purpose Convolution Algorithm for
Distributions in S4-Classes by means of FFT. unpublished manual 6, 15, 27

[6] Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. Numerical recipes in

C. The art of scienti�c computing. Cambridge Univ. Press, 2. Au
. 19

[7] Rice J.A. Mathematical statistics and data analysis. The Wadsworth & Brooks/Cole
Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software,
Paci�c Grove, California. 29

[8] Ruckdeschel P., Kohl M., Stabla T., and Camphausen F. S4 Classes for Distributions.
R-News, 6(2): 10{13. http://CRAN.R-project.org/doc/Rnews/Rnews 2006-2.pdf 3

57

	Motivation
	Concept
	Organization in classes
	Distribution classes
	Subclasses
	Classes for multivariate distributions and for conditional distributions
	Parameter classes

	Simulation classes
	Evaluation class
	EvaluationList class

	Methods
	Affine linear transformations
	The group math of unary mathematical operations
	Construction of d, p, and q from r
	Convolution
	Overloaded generic functions
	Simulation (in package distrSim)
	Evaluate (in package distrTEst)
	Is-Relations
	Further methods
	Functionals (in package distrEx)
	Expectation
	Variance
	Further functionals

	Truncated moments (in package distrEx)
	Distances (in package distrEx)
	Functions for demos (in package distrEx)
	CLT for arbitrary summand distribution
	Deconvolution example

	Options
	Options for distr
	Options for distrEx
	Options for distrSim
	Options for distrTEst

	Startup Messages
	System/version requirements
	System requirements
	Required version of R
	Dependencies
	License

	Details to the implementation
	A general utility
	Odds and Ends
	What should be done and what we could do
	What should be done but for which we lack the know-how

	Acknowledgement
	Examples
	12-fold convolution of uniform (0,1) variables
	Comparison of exact convolution to FFT for normal distributions
	Comparison of FFT to RtoDPQ
	Comparison of exact and approximate stationary regressor distribution
	Truncation and Huberization/winsorization
	Distribution of minimum and maximum of two independent random variables
	Instructive destructive example
	A simulation example
	Expectation of a given function under a given distribution
	n-fold convolution of absolutely continuous distributions

