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1 Introduction

1.1 Linear functions of parameters, contrasts

A linear function of a p–dimensional parameter vector β has the form

C = Kβ

where K is a q × p matrix. The corresponding linear estimate is Ĉ = Kβ̂. A linear hypothesis has the form
H0 : Kβ = m for some q dimensional vector m.
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1.2 Least-squares means (LS–means)

A special type of linear estimates is the so called least–squares means (or LS–means). Other names for these
estimates include population means and marginal means. Consider an imaginary field experiment analyzed
with model of the form

> lm( y ~ treat + block + year)

where treat is a treatment factor, block is a blocking factor and year is the year (a factor) where the experiment
is repeated over several years. This model specifies the conditional mean E(Y |treat, block, year). One may
be interested in predictions of the form E(Y |treat). This quantity can not formally be found from the model.
However, it is tempting to average the fitted values of E(Y |treat, block, year) across the levels of block and
year and think of this average as E(Y |treat). This average is precisely what is called the LS–means. If the
experiment is balanced then this average is identical to the average of the observations when stratified according
to treat.

An alternative is to think of block and year as random effects, for example:

> library(lme4)
> lmer( y ~ treat + (1|block) + (1|year))

In this case one would directly obtain E(Y |treat) from the model. However, there are at least two reasons why
one may be hesitant to consider such a random effects model. Suppose there are three blocks and the experiment
is repeated over three consecutive years. This means that the random effects are likely to be estimated with a
large uncertainty (the estimates will have only two degrees of freedom). Furthermore, if block and year should
be treated as random effects they should in principle come from a large population of possible blocks and years.
This may or may not be reasonable for the blocks, but it is certainly a dubious assumption for the years.

Below we describe LSmeans as implemented in the doBy package. Notice that the lsmeans package Lenth
(2013) also provides computations of LS–means, see http://cran.r-project.org/web/packages/lsmeans/.

2 Example: Warpbreaks

> summary( warpbreaks )

breaks wool tension
Min. :10.0 A:27 L:18
1st Qu.:18.2 B:27 M:18
Median :26.0 H:18
Mean :28.1
3rd Qu.:34.0
Max. :70.0

> head( warpbreaks, 4 )

breaks wool tension
1 26 A L
2 30 A L
3 54 A L
4 25 A L

> ftable(xtabs( ~ wool + tension, data=warpbreaks))

tension L M H
wool
A 9 9 9
B 9 9 9
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2.1 A linear model

> (warp.lm <- lm(breaks ~ wool + tension, data=warpbreaks))

Call:
lm(formula = breaks ~ wool + tension, data = warpbreaks)

Coefficients:
(Intercept) woolB tensionM tensionH

39.28 -5.78 -10.00 -14.72

The fitted values are:

> uni <- unique(warpbreaks[,2:3])
> prd <- cbind(breaks=predict(warp.lm, newdata=uni), uni); prd

breaks wool tension
1 39.28 A L
10 29.28 A M
19 24.56 A H
28 33.50 B L
37 23.50 B M
46 18.78 B H

2.2 The LS–means

We may be interested in making predictions of the number of breaks for each level of tension for any type
or an average type of wool. The idea behind LS–means is to average the predictions above over the two wool
types. These quantities are the LSmeans for the effect tension.

This is done with:

> LSmeans(warp.lm, effect="tension")

estimate se df t.stat p.value lwr upr tension
1 36.39 2.738 50 13.289 4.948e-18 30.89 41.89 L
2 26.39 2.738 50 9.637 5.489e-13 20.89 31.89 M
3 21.67 2.738 50 7.913 2.269e-10 16.17 27.17 H
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The term LSmeans comes from that these quantities are the same as the least squares main effects of tension
when data is balanced:

> doBy::summaryBy(breaks ~ tension, data=warpbreaks)

tension breaks.mean
1 L 36.39
2 M 26.39
3 H 21.67

When data is not balanced these quantities are in general not the same.

Under the hood, LSmeans() generates a contrast matrix

> K <- LSmatrix(warp.lm, effect="tension"); K

(Intercept) woolB tensionM tensionH
[1,] 1 0.5 0 0
[2,] 1 0.5 1 0
[3,] 1 0.5 0 1

and passes this matrix onto linest():

> linest( warp.lm, K=K )

estimate se df t.stat p.value lwr upr tension
1 36.39 2.738 50 13.289 4.948e-18 30.89 41.89 L
2 26.39 2.738 50 9.637 5.489e-13 20.89 31.89 M
3 21.67 2.738 50 7.913 2.269e-10 16.17 27.17 H

2.3 Models with interactions

Consider a model with interaction:

> (warp.lm2 <- update(warp.lm, .~.+wool:tension))

Call:
lm(formula = breaks ~ wool + tension + wool:tension, data = warpbreaks)

Coefficients:
(Intercept) woolB tensionM tensionH woolB:tensionM

44.6 -16.3 -20.6 -20.0 21.1
woolB:tensionH

10.6

In this case the contrast matrix becomes:

> K2 <- LSmatrix(warp.lm2, effect="tension"); K2

(Intercept) woolB tensionM tensionH woolB:tensionM woolB:tensionH
[1,] 1 0.5 0 0 0.0 0.0
[2,] 1 0.5 1 0 0.5 0.0
[3,] 1 0.5 0 1 0.0 0.5

> linest(warp.lm2, K=K2)

estimate se df t.stat p.value lwr upr tension
1 36.39 2.579 48 14.112 1.055e-18 31.20 41.57 L
2 26.39 2.579 48 10.234 1.183e-13 21.20 31.57 M
3 21.67 2.579 48 8.402 5.468e-11 16.48 26.85 H
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2.4 Alternative models

We can calculate LS–means for e.g. a Poisson or a gamma model. Default is that the calculation is calculated
on the scale of the linear predictor. However, if we think of LS–means as a prediction on the linear scale one
may argue that it can also make sense to transform this prediction to the response scale:

> warp.poi <- glm(breaks ~ wool + tension, family=poisson, data=warpbreaks)
> LSmeans(warp.poi, effect="tension", type="link")

estimate se z.stat p.value lwr upr tension
1 3.589 0.03916 91.64 0 3.512 3.666 L
2 3.268 0.04596 71.10 0 3.178 3.358 M
3 3.070 0.05071 60.55 0 2.971 3.170 H

> LSmeans(warp.poi, effect="tension", type="response")

estimate se z.stat p.value lwr upr tension
1 36.20 1.418 91.64 0 33.52 39.08 L
2 26.25 1.206 71.10 0 23.99 28.72 M
3 21.55 1.093 60.55 0 19.51 23.80 H

> warp.qpoi <- glm(breaks ~ wool + tension, family=quasipoisson, data=warpbreaks)
> LSmeans(warp.qpoi, effect="tension", type="link")

estimate se z.stat p.value lwr upr tension
1 3.589 0.08085 44.39 0.000e+00 3.431 3.747 L
2 3.268 0.09488 34.44 6.093e-260 3.082 3.454 M
3 3.070 0.10467 29.33 3.883e-189 2.865 3.276 H

> LSmeans(warp.qpoi, effect="tension", type="response")

estimate se z.stat p.value lwr upr tension
1 36.20 2.926 44.39 0.000e+00 30.89 42.41 L
2 26.25 2.490 34.44 6.093e-260 21.80 31.61 M
3 21.55 2.256 29.33 3.883e-189 17.55 26.46 H

For comparison with the linear model, we use identity link

> warp.gam <- glm(breaks ~ wool + tension, family=Gamma(link=identity),
data=warpbreaks)

> LSmeans(warp.gam, effect="tension", type="link")

estimate se df t.stat p.value lwr upr tension
1 35.66 3.222 50 11.07 4.766e-15 29.19 42.13 L
2 27.12 2.448 50 11.08 4.543e-15 22.21 32.04 M
3 21.53 1.944 50 11.08 4.629e-15 17.62 25.43 H

Notice that the linear estimates are practically the same as for the linear model, but the standard errors are
smaller and hence the confidence intervals are narrower.

An alternative is to fit a quasi Poisson “model”

> warp.poi3 <- glm(breaks ~ wool + tension, family=quasipoisson(link=identity), data=warpbreaks)
> LSmeans(warp.poi3, effect="tension")

estimate se z.stat p.value lwr upr tension
1 36.00 2.950 12.204 2.965e-34 30.22 41.78 L
2 26.83 2.544 10.546 5.316e-26 21.84 31.81 M
3 21.62 2.281 9.475 2.657e-21 17.14 26.09 H

For the sake of illustration we treat wool as a random effect:

> library(lme4)
> warp.mm <- lmer(breaks ~ tension + (1|wool), data=warpbreaks)
> LSmeans(warp.mm, effect="tension")
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estimate se df t.stat p.value lwr upr tension
1 36.39 3.653 2.538 9.962 0.004230 23.471 49.31 L
2 26.39 3.653 2.538 7.224 0.009353 13.471 39.31 M
3 21.67 3.653 2.538 5.931 0.015092 8.749 34.58 H

Notice here that the estimates themselves are very similar to those above but the standard errors are much
larger. This comes from that there that wool is treated as a random effect.

> VarCorr(warp.mm)

Groups Name Std.Dev.
wool (Intercept) 3.42
Residual 11.62

Notice that the degrees of freedom by default are adjusted using a Kenward–Roger approximation (provided
that pbkrtest is installed). Unadjusted degrees of freedom are obtained with

> LSmeans(warp.mm, effect="tension", adjust.df=FALSE)

estimate se df t.stat p.value lwr upr tension
1 36.39 3.653 49 9.962 2.288e-13 29.05 43.73 L
2 26.39 3.653 49 7.224 2.986e-09 19.05 33.73 M
3 21.67 3.653 49 5.931 2.986e-07 14.33 29.01 H

Lastly, for gee-type “models” we get

> library(geepack)
> warp.gee <- geeglm(breaks ~ tension, id=wool, family=poisson, data=warpbreaks)
> LSmeans(warp.gee, effect="tension")

estimate se z.stat p.value lwr upr tension
1 3.594 0.15869 22.65 1.427e-113 3.283 3.905 L
2 3.273 0.06401 51.13 0.000e+00 3.147 3.398 M
3 3.076 0.09428 32.62 1.903e-233 2.891 3.261 H

> LSmeans(warp.gee, effect="tension", type="response")

estimate se z.stat p.value lwr upr tension
1 36.39 5.775 22.65 1.427e-113 26.66 49.66 L
2 26.39 1.689 51.13 0.000e+00 23.28 29.92 M
3 21.67 2.043 32.62 1.903e-233 18.01 26.06 H

3 Example: ChickWeight

> library(ggplot2)
> ChickWeight$Diet <- factor(ChickWeight$Diet)
> qplot(Time, weight, data=ChickWeight, colour=Chick, facets=~Diet,

geom=c("point","line"))
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Consider random regression model:

> rr <- lmer(weight~Time*Diet + (0+Time|Chick), data=ChickWeight)
> coef(summary(rr))

Estimate Std. Error t value
(Intercept) 33.218 1.7697 18.7701
Time 6.339 0.6103 10.3853
Diet2 -4.585 3.0047 -1.5258
Diet3 -14.968 3.0047 -4.9815
Diet4 -1.454 3.0177 -0.4818
Time:Diet2 2.271 1.0367 2.1902
Time:Diet3 5.084 1.0367 4.9042
Time:Diet4 3.217 1.0377 3.1003

The contrast matrix for Diet becomes:

> LSmatrix(rr, effect="Diet")

(Intercept) Time Diet2 Diet3 Diet4 Time:Diet2 Time:Diet3 Time:Diet4
[1,] 1 10.72 0 0 0 0.00 0.00 0.00
[2,] 1 10.72 1 0 0 10.72 0.00 0.00
[3,] 1 10.72 0 1 0 0.00 10.72 0.00
[4,] 1 10.72 0 0 1 0.00 0.00 10.72

The value of Time is by default taken to be the average of that variable. Hence the LSmeans is the predicted
weight for each diet at that specific point of time. We can consider other points of time with

> K1 <- LSmatrix(rr, effect="Diet", at=list(Time=1)); K1

(Intercept) Time Diet2 Diet3 Diet4 Time:Diet2 Time:Diet3 Time:Diet4
[1,] 1 1 0 0 0 0 0 0
[2,] 1 1 1 0 0 1 0 0
[3,] 1 1 0 1 0 0 1 0
[4,] 1 1 0 0 1 0 0 1

The LSmeans for the intercepts is the predictions at Time=0. The LSmeans for the slopes becomes

> K0 <- LSmatrix(rr, effect="Diet", at=list(Time=0))
> K1-K0

(Intercept) Time Diet2 Diet3 Diet4 Time:Diet2 Time:Diet3 Time:Diet4
[1,] 0 1 0 0 0 0 0 0
[2,] 0 1 0 0 0 1 0 0
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[3,] 0 1 0 0 0 0 1 0
[4,] 0 1 0 0 0 0 0 1

> LSmeans(rr, K=K1-K0)

estimate se df t.stat p.value lwr upr Diet Time
1 6.339 0.6105 49.80 10.38 4.693e-14 5.112 7.565 1 1
2 8.609 0.8380 48.28 10.27 9.713e-14 6.924 10.294 2 1
3 11.423 0.8380 48.28 13.63 3.591e-18 9.738 13.108 3 1
4 9.556 0.8393 48.56 11.39 2.587e-15 7.869 11.243 4 1

We can cook up our own function for comparing trends:

> LSmeans_trend <- function(object, effect, trend){

K<-LSmatrix(object, effect=effect, at=as.list(setNames(1, trend))) -
LSmatrix(object, effect=effect, at=as.list(setNames(0, trend)))

LSmeans(object, K=K)
}

> LSmeans_trend(rr, effect="Diet", trend="Time")

estimate se df t.stat p.value lwr upr Diet Time
1 6.339 0.6105 49.80 10.38 4.693e-14 5.112 7.565 1 1
2 8.609 0.8380 48.28 10.27 9.713e-14 6.924 10.294 2 1
3 11.423 0.8380 48.28 13.63 3.591e-18 9.738 13.108 3 1
4 9.556 0.8393 48.56 11.39 2.587e-15 7.869 11.243 4 1

4 Example: Using covariates

Consider the following subset of the CO2 dataset:

> data(CO2)
> CO2 <- transform(CO2, Treat=Treatment, Treatment=NULL)
> levels(CO2$Treat) <- c("nchil","chil")
> levels(CO2$Type) <- c("Que","Mis")
> ftable(xtabs( ~ Plant + Type + Treat, data=CO2), col.vars=2:3)

Type Que Mis
Treat nchil chil nchil chil

Plant
Qn1 7 0 0 0
Qn2 7 0 0 0
Qn3 7 0 0 0
Qc1 0 7 0 0
Qc3 0 7 0 0
Qc2 0 7 0 0
Mn3 0 0 7 0
Mn2 0 0 7 0
Mn1 0 0 7 0
Mc2 0 0 0 7
Mc3 0 0 0 7
Mc1 0 0 0 7

> ##CO2 <- subset(CO2, Plant %in% c("Qn1", "Qc1", "Mn1", "Mc1"))

> qplot(x=log(conc), y=uptake, data=CO2, color=Treat, facets=~Type)
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Below, the covariate conc is fixed at the average value:

> co2.lm1 <- lm(uptake ~ conc + Type + Treat, data=CO2)
> LSmeans(co2.lm1, effect="Treat")

estimate se df t.stat p.value lwr upr Treat conc
1 30.64 0.9556 80 32.07 2.010e-47 28.74 32.54 nchil 435
2 23.78 0.9556 80 24.89 2.037e-39 21.88 25.69 chil 435

If we use log(conc) instead we will get an error when calculating LS–means:

> co2.lm <- lm(uptake ~ log(conc) + Type + Treat, data=CO2)
> LSmeans(co2.lm, effect="Treat")

In this case one can do

> co2.lm2 <- lm(uptake ~ log.conc + Type + Treat,
data=transform(CO2, log.conc=log(conc)))

> LSmeans(co2.lm2, effect="Treat")

estimate se df t.stat p.value lwr upr Treat log.conc
1 30.64 0.7611 80 40.26 7.169e-55 29.13 32.16 nchil 5.819
2 23.78 0.7611 80 31.25 1.366e-46 22.27 25.30 chil 5.819

This also highlights what is computed: The average of the log of conc; not the log of the average of conc.

In a similar spirit consider

> co2.lm3 <- lm(uptake ~ conc + I(conc^2) + Type + Treat, data=CO2)
> LSmeans(co2.lm3, effect="Treat")

estimate se df t.stat p.value lwr upr Treat conc I(conc^2)
1 34.54 0.9816 79 35.19 4.926e-50 32.59 36.50 nchil 435 275754
2 27.68 0.9816 79 28.20 5.382e-43 25.73 29.64 chil 435 275754

Above I(conc^2) is the average of the squared values of conc; not the square of the average of conc, cfr. the
following.

> co2.lm4 <- lm(uptake ~ conc + conc2 + Type + Treat, data=
transform(CO2, conc2=conc^2))

> LSmeans(co2.lm4, effect="Treat")

estimate se df t.stat p.value lwr upr Treat conc conc2
1 30.64 0.7765 79 39.46 9.318e-54 29.10 32.19 nchil 435 275754
2 23.78 0.7765 79 30.63 1.356e-45 22.24 25.33 chil 435 275754

9



If we want to evaluate the LS–means at conc=10 then we can do:

> LSmeans(co2.lm4, effect="Treat", at=list(conc=10, conc2=100))

estimate se df t.stat p.value lwr upr Treat conc conc2
1 14.735 1.701 79 8.662 4.456e-13 11.35 18.12 nchil 10 100
2 7.876 1.701 79 4.630 1.417e-05 4.49 11.26 chil 10 100

5 Example: Non–estimable contrasts

Consider this highly unbalanced simulated dataset:

> head(dat.nst)

AA BB CC y
1 1 1 1 -0.5843
2 2 1 1 -2.2887
3 1 2 2 -0.4873
4 2 2 2 -0.9780
5 1 3 2 -1.0019
6 2 3 2 -0.8448

> ftable(xtabs( ~ AA + BB + CC, data=dat.nst))

CC 1 2 3 4
AA BB
1 1 3 0 0 0

2 0 1 1 1
3 0 1 1 1

2 1 3 0 0 0
2 0 1 1 1
3 0 1 1 1

We have

> mod.nst <- lm(y ~ AA + BB : CC, data=dat.nst)
> coef(mod.nst)

(Intercept) AA2 BB1:CC1 BB2:CC1 BB3:CC1 BB1:CC2
0.7873 -0.7919 -1.0269 NA NA NA
BB2:CC2 BB3:CC2 BB1:CC3 BB2:CC3 BB3:CC3 BB1:CC4
-1.1240 -1.3147 NA -0.4468 -0.7106 NA
BB2:CC4 BB3:CC4
-0.1849 NA

In this case some of the LSmeans values are not estimable (see Section 6.3 for details):

> LSmeans(mod.nst, effect=c("BB", "CC"))

estimate se df t.stat p.value lwr upr BB CC
1 -0.63558 0.3861 10 -1.64637 1.8693 -1.496 0.2246 1 1
2 NA NA NA NA NA NA NA 2 1
3 NA NA NA NA NA NA NA 3 1
4 NA NA NA NA NA NA NA 1 2
5 -0.73263 0.6687 10 -1.09567 1.7011 -2.223 0.7572 2 2
6 -0.92336 0.6687 10 -1.38091 1.8026 -2.413 0.5665 3 2
7 NA NA NA NA NA NA NA 1 3
8 -0.05542 0.6687 10 -0.08288 1.0644 -1.545 1.4345 2 3
9 -0.31923 0.6687 10 -0.47742 1.3567 -1.809 1.1706 3 3
10 NA NA NA NA NA NA NA 1 4
11 0.20648 0.6687 10 0.30880 0.7638 -1.283 1.6964 2 4
12 0.39133 0.6687 10 0.58525 0.5713 -1.099 1.8812 3 4
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6 Miscellaneous

6.1 LS–means and population averages

Consider these simulated data

> simdat

treat year y
1 t1 1 0.9
2 t1 1 1.0
3 t1 1 1.1
4 t2 1 3.0
5 t1 2 3.0
6 t2 2 4.9
7 t2 2 5.0
8 t2 2 5.1

shown in the figure below.

> qplot(treat, y, data=simdat, color=year)
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The LS–means under an additive model for the factor treat is

> LSmeans( lm(y~treat+year, data=simdat), effect="treat")

estimate se df t.stat p.value lwr upr treat
1 2 0.0483 5 41.40 1.550e-07 1.876 2.124 t1
2 4 0.0483 5 82.81 4.867e-09 3.876 4.124 t2

whereas the population means are

> summaryBy(y~treat, data=simdat)

treat y.mean
1 t1 1.5
2 t2 4.5

Had data been balanced (same number of observations for each combination of treat and year) the results
would have been the same. An argument in favor of the LS–means is that these figures better represent what
one would expect on in an “average year”.
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6.2 Pairwise comparisons

We will just mention that for certain other linear estimates, the matrix K can be generated automatically
using glht() from the multcomp package. For example, pairwise comparisons of all levels of tension can be
obtained with

> library("multcomp")
> g1 <- glht(warp.lm, mcp(tension="Tukey"))
> summary( g1 )

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = breaks ~ wool + tension, data = warpbreaks)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

M - L == 0 -10.00 3.87 -2.58 0.0336 *
H - L == 0 -14.72 3.87 -3.80 0.0011 **
H - M == 0 -4.72 3.87 -1.22 0.4474
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

The K matrix generated in this case is:

> K1 <- g1$linfct; K1

(Intercept) woolB tensionM tensionH
M - L 0 0 1 0
H - L 0 0 0 1
H - M 0 0 -1 1
attr(,"type")
[1] "Tukey"

6.3 Handling non–estimability

The model matrix for the model in Section 5 does not have full column rank and therefore not all values are
calculated by LSmeans().

> X <- model.matrix( mod.nst ); as(X,"Matrix")

18 x 14 sparse Matrix of class "dgCMatrix"

1 1 . 1 . . . . . . . . . . .
2 1 1 1 . . . . . . . . . . .
3 1 . . . . . 1 . . . . . . .
4 1 1 . . . . 1 . . . . . . .
5 1 . . . . . . 1 . . . . . .
6 1 1 . . . . . 1 . . . . . .
7 1 . 1 . . . . . . . . . . .
8 1 1 1 . . . . . . . . . . .
9 1 . . . . . . . . 1 . . . .
10 1 1 . . . . . . . 1 . . . .
11 1 . . . . . . . . . 1 . . .
12 1 1 . . . . . . . . 1 . . .
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13 1 . 1 . . . . . . . . . . .
14 1 1 1 . . . . . . . . . . .
15 1 . . . . . . . . . . . 1 .
16 1 1 . . . . . . . . . . 1 .
17 1 . . . . . . . . . . . . 1
18 1 1 . . . . . . . . . . . 1

We consider a linear normal model, i.e. an n dimensional random vector y = (yi) for which E(y) = µ = Xβ and
Cov(y) = σ2I where X does not have full column rank We are interested in linear functions of β, say

c = k>β =
∑
j

kjβj .

> K <- LSmatrix(mod.nst, effect="BB", at=list(CC=2));K

(Intercept) AA2 BB1:CC1 BB2:CC1 BB3:CC1 BB1:CC2 BB2:CC2 BB3:CC2 BB1:CC3
[1,] 1 0.5 0 0 0 1 0 0 0
[2,] 1 0.5 0 0 0 0 1 0 0
[3,] 1 0.5 0 0 0 0 0 1 0

BB2:CC3 BB3:CC3 BB1:CC4 BB2:CC4 BB3:CC4
[1,] 0 0 0 0 0
[2,] 0 0 0 0 0
[3,] 0 0 0 0 0

> LSmeans(mod.nst, K=K)

estimate se df t.stat p.value lwr upr BB CC
1 NA NA NA NA NA NA NA 1 2
2 -0.7326 0.6687 10 -1.096 1.701 -2.223 0.7572 2 2
3 -0.9234 0.6687 10 -1.381 1.803 -2.413 0.5665 3 2

A least squares estimate of β is
β̂ = GX>y

where G is a generalized inverse of X>X. Since the generalized inverse is not unique then neither is the estimate
β̂. One least squares estimate of β is

> XtXinv <- MASS::ginv(t(X)%*%X)
> bhat <- as.numeric(XtXinv %*% t(X) %*% dat.nst$y)
> zapsmall(bhat)

[1] 0.0879 -0.7919 -0.3275 0.0000 0.0000 0.0000 -0.4246 -0.6153 0.0000
[10] 0.2526 -0.0112 0.0000 0.5145 0.6994

Hence ĉ = k>β̂ is in general not unique.

> K %*% bhat

[,1]
[1,] -0.3080
[2,] -0.7326
[3,] -0.9234

However, for some values of k, the estimate ĉ is unique (i.e. it does not depend on the choice of generalized
inverse). Such linear functions are said to be estimable and can be described as follows:

All we specify with µ = Xβ is that µ is a vector in the linear subspace L = C(X) where C(X) denotes the
column space of X. We can only learn about β through Xβ so the only thing we can say something about is
linear combinations ρ>Xβ. Hence we can only say something about k>β if there exists ρ such that k>β = ρ>Xβ,
i.e., if k = X>ρ, that is, if k is in the column space C(X>) of X>. That is, if k is perpendicular to all vectors

13



in the null space N(X) of X. To check this, we find a basis B for N(X). This can be done in many ways, for
example via a singular value decomposition of X, i.e.

X = UDV >

A basis for N(X) is given by those columns of V that corresponds to zeros on the diagonal of D.

> S<-svd(X)
> names(S)

[1] "d" "u" "v"

> B<-S$v[, S$d<1e-10, drop=FALSE ]; zapsmall(B) ## Basis for N(X)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.3392 -0.0006 0.0997 -0.0043 -0.0023 0
[2,] 0.0000 0.0000 0.0000 0.0000 0.0000 0
[3,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[4,] -0.2727 -0.2494 0.9244 -0.0032 -0.0942 0
[5,] -0.0727 0.9176 0.2509 -0.1669 0.2487 0
[6,] -0.0019 -0.0951 0.0517 0.6615 0.7421 0
[7,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[8,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[9,] 0.0001 0.2944 0.0193 0.7310 -0.6152 0
[10,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[11,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[12,] 0.0000 0.0000 0.0000 0.0000 0.0000 -1
[13,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[14,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0

> zapsmall( rowSums(K%*%B) )

[1] 1.79 0.00 0.00
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