
An Introduction to iBUGS

Yihui Xie ∗

November 11, 2012

iBUGS is an R package which aims to make it easier to call WinBUGS and OpenBUGS in R. The compu-
tation is done by R2WinBUGS (Sturtz et al., 2005) and BRugs (Thomas et al., 2006), and the GUI is created
by gWidgetsRGtk2 (Lawrence and Verzani, 2010). To start the GUI, simply type library(iBUGS) in R. In
case you close the window carelessly, you may start it again by iBUGS().

the GUI will show up once the package is loaded
library(iBUGS)
or call iBUGS() to generate another GUI
iBUGS()

1 Motivation

I was thinking about writing this package when I saw the default value for the argument bugs.directory
was “c:/Program Files/WinBUGS14/” in the main function bugs() of R2WinBUGS, as I believe it is not a
too difficult task to use R to find the installation directories of WinBUGS and OpenBUGS for most Windows
users. I tried the Windows registry approach1 but found it was not general enough, so I switched to another
“brute-force” way: searching for WinBUGS and OpenBUGS in the directory defined by the environment
variable “ProgramFiles”. Most Windows users will install programs in this directory, so we no longer need
to manually specify “bugs.directory = c:/Program Files/WinBUGS14/”.

Based on this trivial motivation, I think we can also make other arguments easier to specify. For instance,
we can analyze the BUGS model code and guess the parameter names using regular expressions; then put
them in a list and select the ones we are interested in. In this case, we do not need to type the names of
parameters one by one, which will otherwise be tedious in R or WinBUGS/OpenBUGS. When I was new to
WinBUGS2, I often forgot to specify the parameters (node) to monitor in the “Sampler Monitor Tool” panel,
and the consequence was I got nothing after a long long waiting and began to regret clicking the “Update”
menu too fast.

2 The GUI

The main interface of iBUGS looks quite simple as shown in Figure 1. The button “Open” and “Save” can
be used to open and save a BUGS model respectively. There will be a tooltip hanging around the text box
and showing the path of the current file when you move the mouse over it (the tooltip will be empty if you
didn’t open a model and have not saved the current one). The text box is the place to write the model; it
comes with a default sketch of the model.

When you finished writing the model, you need to make sure the data objects you mentioned in the
model are already in the current R session. Then open the “Preferences” panel (Figure 2): all the arguments

∗Department of Statistics, Iowa State University. Email: xie@yihui.name (or xie@iastate.edu). Homepage: http://yihui.name
1http://yihui.name/en/2010/03/looking-for-software-paths-in-windows-registry/
2In fact, I’m still new to WinBUGS, because now I mainly use R and iBUGS...

1

mailto:xie@yihui.name
mailto:xie@iastate.edu
http://yihui.name
http://yihui.name/en/2010/03/looking-for-software-paths-in-windows-registry/

2 THE GUI

Figure 1: The main interface of iBUGS

Figure 2: The preference panel

2

3 TECHNICAL DETAILS

for the function bugs() are listed there. If you are familiar with the function bugs(), I will not need to explain
anything here. The data list is read from R’s workspace; note it even includes the names from the objects
that are attach()ed to the R session. For example, the code below can make the two objects x and y in dat
visible to iBUGS:

dat = list(x = 1:3, y = rnorm(5))
personally I don't recommend attaching R objects that is a
bad habit
attach(dat)

The parameter names, as introduced before, can be found out automatically from the BUGS model. In
case it failed to identify certain parameter names, you can also double click on the list box and manually
add the names to the list. Other options are from the parameters of the bugs() function.

Note that in the preference panel, there is an additional option “model.name” (default to be “bugs.model”);
the results will be saved to an R object with this name, so that you can do further analysis with this object.

Click “Execute” to run the model. There is also a simple demo and you can test if iBUGS works for you.

3 Technical Details

3.1 WinBUGS / OpenBUGS directory

Most Windows system comes with an environment variable “ProgramFiles”, which records the default
directory to install new software packages. We can search in this directory for WinBUGS or OpenBUGS.
Using file manipulation functions such as list.files() as well as regular expressions, we can test if any BUGS
package has been installed; e.g.

if (nzchar(prog <- Sys.getenv("ProgramFiles")) && length(bugs.dir <- list.files(prog,
"^(Open|Win)BUGS.*")) && length(bugs.exe <- dirname(list.files(file.path(prog,
bugs.dir), pattern = "(Open|Win)BUGS.*\\.exe$", full.names = TRUE,
recursive = TRUE)))) {

if I can find OpenBUGS, use it prior to WinBUGS
program = ifelse(length(grep("OpenBUGS", bugs.exe)), "OpenBUGS",

"WinBUGS")
ignore multiple directories if (several versions of) BUGS
installed in multiple places
bugs.directory = bugs.exe[grep(program, bugs.exe)][1]

}

program
bugs.directory

Note if both WinBUGS and OpenBUGS are detected, iBUGS will prefer OpenBUGS, as we know the
development of WinBUGS has stopped.

3.2 GUI construction

Building a GUI in R with the gWidgets (Verzani, 2010) package is quite easy. What’s more, it is even dy-
namic! That means you can generate GUI components dynamically whenever you need them. The gWid-
gets package comes with 4 types of interface, namely GTK+ (gWidgetsRGtk2), tcltk (gWidgetstcltk), Java
(gWidgetsrJava) and WWW (gWidgetsWWW). You don’t need to deal with these four specific packages –
just play with gWidgets and specify your GUI type. Personally I like the GTK+ interface most, so I made it
the default one for iBUGS. Here is a short demo:

3

REFERENCES

library(gWidgets)
options(guiToolkit = "RGtk2")
create a window and add a button to it
gw = gwindow("GUI Demo")
gb = gbutton("Click me!", container = gw, handler = function(h,

...) {

svalue(h$obj) = paste(svalue(h$obj), "haha!")
})

In gWidgets, there are several widgets available (text boxes, buttons, drop-down list, ...), and you just
need to think about how to arrange them. You can attach an event (handler) to a widget so that this event
will be called when users take an action to the widget.

4 Future Work

A list of things in my mind:

1. Dynamically read the help page of bugs() and add the explanations of all arguments to the widgets, so
users do not need to turn to ?bugs each time they use it;

2. Add support for Linux – possibly with JAGS3 (R packages like rjags, R2jags or runjags); I know little
about Mac, but I guess with proper Wine emulation specifications, iBUGS can also work (but not so
intelligent); I’ll appreciate help from Mac users;

3. I have not made up my mind yet: is it worth providing a menu for diagnostics? (e.g. Plot . Gelman-
Rubin-Brooks) Sounds like I’m re-inventing the wheel...

4. Intelligent enough to automatically judge convergence and adaptively select parameters?...

Acknowledgment

I’d like to thank Prof Di Cook for her support and ideas, Ted Peterson for the IT support, and Dr Alyson
Wilson for introducing me to the Bayesian world.

References

Lawrence M, Verzani J (2010). gWidgetsRGtk2: Toolkit implementation of gWidgets for RGtk2. R package version
0.0-64, URL http://CRAN.R-project.org/package=gWidgetsRGtk2.

Sturtz S, Ligges U, Gelman A (2005). “R2WinBUGS: A Package for Running WinBUGS from R.” Journal of
Statistical Software, 12(3), 1–16. URL http://www.jstatsoft.org.

Thomas A, O’Hara B, Ligges U, Sturtz S (2006). “Making BUGS Open.” R News, 6(1), 12–17. URL http:
//cran.r-project.org/doc/Rnews/.

Verzani J (2010). gWidgets: gWidgets API for building toolkit-independent, interactive GUIs. R package version
0.0-40, URL http://CRAN.R-project.org/package=gWidgets.

3Just Another Gibbs Sampler: http://www-fis.iarc.fr/˜martyn/software/jags/

4

http://CRAN.R-project.org/package=gWidgetsRGtk2
http://www.jstatsoft.org
http://cran.r-project.org/doc/Rnews/
http://cran.r-project.org/doc/Rnews/
http://CRAN.R-project.org/package=gWidgets
http://www-fis.iarc.fr/~martyn/software/jags/

	1 Motivation
	2 The GUI
	3 Technical Details
	3.1 WinBUGS / OpenBUGS directory
	3.2 GUI construction

	4 Future Work

