User’s guide

Miquel De Cáceres, Victor Granda

2018-10-22

Introduction

Purpose

Reliable meteorological data are a basic requirement for hydrological and ecological studies at the landscape scale. Given the large spatial variation of meteorology over complex terrains, meteorological records from a single weather station are often not representative of entire landscapes. Studies made on multiple sites over a landscape require different meteorological series for each site; and other studies may require meteorological data series for all grid cells of a landscape, in a continuous way. In these cases, spatial correlation between the meteorology series of different sites or cells must be taken into account. For example, the sequence of days with rain of contiguous cells will normally be the same or very similar, even if precipitation amounts may differ. Finally, studies addressing the impacts of climate change on forests and landscapes require downscaling coarse-scale predictions of global or regional climate models to the landscape scale. When downscaling predictions for several locations in a landscape, spatial correlation of predictions is also important.

With the aim to assist research of climatic impacts on forests, the R package meteoland provides utilities to estimate daily weather variables at any position over complex terrains:

  1. Spatial interpolation of daily weather records from meteorological stations. }
  2. Statistical correction of meteorological data series (e.g. from climate models).}

Using meteoland package is easy, but some ideas and concepts must be addresed to make the experience easy for new users. This vignette is intended as a working example to explain all the steps needed to get comfortable with meteoland workflow. We assume that the reader is more or less familiar with S4 classes of package sp. You will find detailed information regarding the package structure, its functions, and how calculations are done in vignette “Package meteoland”.

Installing and loading the package

First of all, before starting to work with the package, we must install and load the library. meteoland stable version can be found at CRAN (https://CRAN.R-project.org/package=meteoland), and it can be installed and loaded as any other R package:

install.packages("meteoland")
library(meteoland)

Alternatively, you can install the development version located at GitHub using the devtools package:

library(devtools)
install_github("miquelcaceres/meteoland", build_vignettes = TRUE)
library(meteoland)

Interpolation of daily weather

Spatial interpolation is required when meteorology for the area and period of interest cannot be obtained from local sensors. The nearest weather station may not have data for the period of interest or it may be located too far away to be representative of the target area.

Preparing weather data for interpolation

Before starting using the package, you need to have access to the elevation (in m) and daily weather data series corresponding a set of locations (normally weather stations). Elevation is needed because interpolation routines perform corrections for differences in elevation between the reference locations and the target point. The initial format of your data will be different depending on the format used by your data provider (the package has also tools to access weather data). For our example, we will assume you have data from a set of 38 stations in your study area. On one hand, you should have a data.frame with the coordinates and elevation of each location:

str(st_data)
#> 'data.frame': 38 obs. of 3 variables:
#> $ X_UTM : num 347104 358240 382829 350600 377232 ...
#> $ Y_UTM : num 4614634 4615380 4645816 4616925 4628439 ...
#> $ elevation: int 428 555 689 429 632 490 445 687 330 329 ...
head(st_data)
#> X_UTM Y_UTM elevation
#> C7 347104 4614634 428
#> C8 358240 4615380 555
#> CA 382829 4645816 689
#> VD 350600 4616925 429
#> VP 377232 4628439 632
#> W5 360730 4659875 490

On the other, you should have at least three matrices of meteorological data (one for minimum temperature, one for maximum temperature and the last one for precipitation) with stations in rows and dates in columns. In our example we also add relative humidity (in percent), so that other derived variables can be calculated:

dim(tmax)
#> [1] 38 1461
dim(tmin)
#> [1] 38 1461
dim(prec)
#> [1] 38 1461
dim(rhum)
#> [1] 38 1461
tmax[1:6,1:6]
#> 2000-01-01 2000-01-02 2000-01-03 2000-01-04 2000-01-05 2000-01-06
#> C7 8.8 8.8 10.7 2.9 1.3 -0.2
#> C8 7.9 8.0 9.9 3.2 3.3 -0.4
#> CA 11.5 13.4 13.5 10.6 14.9 12.7
#> VD 7.4 8.0 9.3 2.8 1.4 -0.2
#> VP 4.8 8.1 8.9 2.3 9.0 -1.4
#> W5 NA NA NA NA NA NA

Units should be in degrees Celsius for temperature and mm for precipitation.

Building an interpolation data object

Meteoland stores weather series for reference locations and interpolation parameters in a single object of class MeteorologyInterpolationData. There are several ways of building such objects, but we will first illustrate how to do it from the data we just presented.

First we need to create an object of class SpatialPoints (see package sp) with the spatial coordinates of our stations and the coordinate system (here UTM 31N):

sp = SpatialPoints(st_data[,c("X_UTM", "Y_UTM")],
proj4string = CRS("+proj=utm +zone=31 +ellps=WGS84 +datum=WGS84 +units=m +towgs84=0,0,0"))
head(sp)
#> SpatialPoints:
#> X_UTM Y_UTM
#> C7 347104 4614634
#> C8 358240 4615380
#> CA 382829 4645816
#> VD 350600 4616925
#> VP 377232 4628439
#> W5 360730 4659875
#> Coordinate Reference System (CRS) arguments: +proj=utm +zone=31
#> +ellps=WGS84 +datum=WGS84 +units=m +towgs84=0,0,0

We can now build an object MeteorologyInterpolationData using:

interpolator <- MeteorologyInterpolationData(sp, elevation = st_data$elevation,
MinTemperature = tmin,
MaxTemperature = tmax,
Precipitation = prec,
RelativeHumidity = rhum)
class(interpolator)
#> [1] "MeteorologyInterpolationData"
#> attr(,"package")
#> [1] "meteoland"

The resulting object is now ready to be used to perform interpolation on a set of target locations (see next section). We can inspect the amount of data in our interpolation object using:

spatial_coverage <- interpolation.coverage(interpolator, type = 'spatial')
head(spatial_coverage)
#> coordinates MinTemperature MaxTemperature Precipitation
#> C7 (347104, 4614634) 1456 1454 1456
#> C8 (358240, 4615380) 1450 1449 1450
#> CA (382829, 4645816) 1444 1444 1444
#> VD (350600, 4616925) 1461 1461 1461
#> VP (377232, 4628439) 1461 1461 1461
#> W5 (360730, 4659875) 1288 1288 1288
#> RelativeHumidity Radiation WindSpeed WindDirection
#> C7 1444 0 0 0
#> C8 1405 0 0 0
#> CA 1378 0 0 0
#> VD 1461 0 0 0
#> VP 1455 0 0 0
#> W5 1287 0 0 0
temporal_coverage <- interpolation.coverage(interpolator, type = 'temporal')
head(temporal_coverage)
#> MinTemperature MaxTemperature Precipitation RelativeHumidity
#> 2000-01-01 13 13 14 6
#> 2000-01-02 13 13 14 6
#> 2000-01-03 13 13 14 6
#> 2000-01-04 13 13 14 6
#> 2000-01-05 13 13 14 6
#> 2000-01-06 13 13 14 6
#> Radiation WindSpeed WindDirection
#> 2000-01-01 0 0 0
#> 2000-01-02 0 0 0
#> 2000-01-03 0 0 0
#> 2000-01-04 0 0 0
#> 2000-01-05 0 0 0
#> 2000-01-06 0 0 0

In the first call, function interpolation.coverate returns the number of non-missing observations for each station and variable. The second call produces a similar output, but by dates instead of stations.

Interpolation parameters are also stored in the same object (do not worry if you do not know their meaning now):

names(interpolator@params)
#> [1] "initial_Rp" "iterations"
#> [3] "alpha_MinTemperature" "alpha_MaxTemperature"
#> [5] "alpha_DewTemperature" "alpha_PrecipitationEvent"
#> [7] "alpha_PrecipitationAmount" "alpha_Wind"
#> [9] "N_MinTemperature" "N_MaxTemperature"
#> [11] "N_DewTemperature" "N_PrecipitationEvent"
#> [13] "N_PrecipitationAmount" "N_Wind"
#> [15] "St_Precipitation" "St_TemperatureRange"
#> [17] "pop_crit" "f_max"
#> [19] "wind_height"

A parameter that is important to understand is ìnitial_Rp`, which specifies the initial radius for the truncated spatial Gaussian kernel. By default its value is:

interpolator@params$initial_Rp
#> [1] 140000

The value of initial_Rp must be set in relation to the units of the spatial coordinates of weather data. Our data was in meters, so the default radius is 140 km. In general, the initial radius should be large enough to include a reasonable number of stations (~20-40), but the kernel radius is adjusted for each interpolation target point.

Calibration and cross-validation of the interpolation data

Once we already have weather stations data in shape, we can start calibrating the model in order to obtain the optimal parameters for the meteorological variables we want to interpolate. Parametere calibration has to be done for each variable separately. For example for minimum temperature:

tmin_cal <- interpolation.calibration(interpolator, variable = "Tmin",
N_seq = 20,
alpha_seq = seq(5, 10, by = 1),
verbose = TRUE)
#> Total number of stations: 38
#> Number of stations with available data: 15
#> Number of stations used for MAE: 15
#> Number of parameter combinations to test: 6
#>
#> Evaluation of parameter combinations...
#> N: 20 alpha: 5 MAE = 1.21918531810085
#> N: 20 alpha: 6 MAE = 1.18871267576827
#> N: 20 alpha: 7 MAE = 1.17521992792415
#> N: 20 alpha: 8 MAE = 1.16871617692956
#> N: 20 alpha: 9 MAE = 1.16559427384805
#> N: 20 alpha: 10 MAE = 1.16431324430726
#>
#> Minimum MAE value: 1.16431324430726 N: 20 alpha: 10

This function returns an interpolation.calibration class object which contains several items:

The result of the calibration needs to be manually stored in the interpolation params:

interpolator@params$N_MinTemperature = tmin_cal$N
interpolator@params$alpha_MinTemperature = tmin_cal$alpha

In general, we recommend conducting calibration exercises at least once for each variable and each data set used as reference for interpolation, and more than once periods differ in the number of stations available.

Before using the object for interpolations, we also need to assess its performance. This is done by leave-one-out cross-validation in function interpolation.cv:

#> Station #1 C7
#> Station #2 C8
#> Station #3 CA
#> Station #4 VD
#> Station #5 VP
#> Station #6 W5
#> Station #7 WA
#> Station #8 XT: No observations.
#> Station #9 9713
#> Station #10 9713A: No observations.
#> Station #11 9650X: No observations.
#> Station #12 0166: No observations.
#> Station #13 9717
#> Station #14 9717A
#> Station #15 9718C
#> Station #16 9712N: No observations.
#> Station #17 9712O
#> Station #18 9720N: No observations.
#> Station #19 9638E: No observations.
#> Station #20 9638: No observations.
#> Station #21 0130: No observations.
#> Station #22 9640: No observations.
#> Station #23 9649
#> Station #24 9649A: No observations.
#> Station #25 0133: No observations.
#> Station #26 0132: No observations.
#> Station #27 0131U
#> Station #28 9720X
#> Station #29 9720: No observations.
#> Station #30 9720A
#> Station #31 9647X: No observations.
#> Station #32 9718X: No observations.
#> Station #33 0166I: No observations.
#> Station #34 9648: No observations.
#> Station #35 9644: No observations.
#> Station #36 9645: No observations.
#> Station #37 9712: No observations.
#> Station #38 9712E: No observations.

And the results are inspected using:

summary(cv)
#> n r MAE sd.station.MAE
#> MinTemperature 20618 0.9719910 1.164313 0.4365641
#> MaxTemperature 20616 0.9841445 1.130107 0.4711833
#> TemperatureRange 20612 0.8479033 1.621617 0.5729868
#> RelativeHumidity 10148 0.8775180 6.228231 2.8613220
#> Radiation 0 NA NaN NA
#> Station.rainfall 16 0.8045007 179.693633 150.1331305
#> Station.rainfall.relative 16 NA 11.825926 14.4411686
#> Station.precdays 16 -0.3374503 99.937500 98.1247293
#> Station.precdays.relative 16 NA 29.180756 29.5429033
#> Date.rainfall 689 0.9935306 4.640109 NA
#> Date.rainfall.relative 689 NA 27.099078 NA
#> Date.precstations 689 0.9717731 1.085631 NA
#> Date.precstations.relative 689 NA 23.439052 NA
#> sd.dates.MAE Bias sd.station.Bias
#> MinTemperature 0.4188641 0.18036684 0.8095216
#> MaxTemperature 0.4915072 0.03094508 0.7161885
#> TemperatureRange 0.5510869 -0.14945685 1.1035713
#> RelativeHumidity 2.0755297 -1.05109149 5.5615346
#> Radiation NA NaN NA
#> Station.rainfall NA -21.26181706 237.6977276
#> Station.rainfall.relative NA 1.64067057 18.8375189
#> Station.precdays NA -33.43750000 138.1636560
#> Station.precdays.relative NA -1.19840973 42.1845407
#> Date.rainfall 7.1813374 -0.11319169 NA
#> Date.rainfall.relative 22.7324069 -15.50877004 NA
#> Date.precstations 1.0158252 -0.36574746 NA
#> Date.precstations.relative 23.7813635 -15.01030698 NA
#> sd.dates.Bias
#> MinTemperature 0.1765283
#> MaxTemperature 0.2530024
#> TemperatureRange 0.3116582
#> RelativeHumidity 2.2965499
#> Radiation NA
#> Station.rainfall NA
#> Station.rainfall.relative NA
#> Station.precdays NA
#> Station.precdays.relative NA
#> Date.rainfall 8.5510632
#> Date.rainfall.relative 31.8012292
#> Date.precstations 1.4416115
#> Date.precstations.relative 29.8346132

Interpolation on a grid

The target for weather interpolation in meteoland can be a set of points, pixels or a whole grid. Again, the initial format of data can be very different. Here we assume you have a small grid of 400 (20x20) cells of 1ha in size, with elevation data in form of class SpatialGridDataFrame (see method read.asciigrid in package sp):

summary(elev)
#> Object of class SpatialGridDataFrame
#> Coordinates:
#> min max
#> s1 359950 361950
#> s2 4638950 4640950
#> Is projected: TRUE
#> proj4string :
#> [+proj=utm +zone=31 +ellps=WGS84 +datum=WGS84 +units=m
#> +towgs84=0,0,0]
#> Grid attributes:
#> cellcentre.offset cellsize cells.dim
#> s1 360000 100 20
#> s2 4639000 100 20
#> Data attributes:
#> elevation
#> Min. :418.0
#> 1st Qu.:484.0
#> Median :518.0
#> Mean :511.3
#> 3rd Qu.:539.0
#> Max. :601.0

Note that the coordinate reference system needs to be the same as that of interpolator, which in this case it is. Before performing the interpolation over this grid, we need to reshape this data in a class called SpatialGridTopography:

sgt = SpatialGridTopography(as(elev, "SpatialGrid"), elevation = elev$elevation,
proj4string = elev@proj4string)
sgt
#> Object of class SpatialGridTopography
#> Grid topology:
#> cellcentre.offset cellsize cells.dim
#> s1 360000 100 20
#> s2 4639000 100 20
#> Coordinate Reference System (CRS) arguments: +proj=utm +zone=31
#> +ellps=WGS84 +datum=WGS84 +units=m +towgs84=0,0,0
#>
#> Topography summary:
#> elevation slope aspect
#> Min. :418.0 Min. : 0.2265 Min. : 0.9392
#> 1st Qu.:484.0 1st Qu.: 5.7382 1st Qu.:100.8848
#> Median :518.0 Median : 8.8257 Median :156.2479
#> Mean :511.3 Mean : 9.4178 Mean :172.7948
#> 3rd Qu.:539.0 3rd Qu.:13.1438 3rd Qu.:242.3809
#> Max. :601.0 Max. :23.2798 Max. :347.0054

As you can see in the result, meteoland has calculated for us slope and aspect (both in degrees) from elevation data 1. Slope and aspect are important for radiation calculations, which also requires relative humidity data. We can display elevation over the grid using:

spplot(sgt, "elevation")

Before we call the interpolation routine, we need to define the dates (i.e. days) for which we want weather to be interpolated, for example:

dates = as.Date(c("2001-02-03", "2001-06-03"))

Of course, we need to be sure that the interpolator object has data corresponding to this dates. We can check if there is any missing date using:

sum(!(dates %in% interpolator@dates))
#> [1] 0

The name of interpolation functions depend on the target spatial structure. For grids we need to use function interpolationgrid:

ml <- interpolationgrid(interpolator, sgt, dates)
#> Date 2001-02-03 (1/2) - done.
#> Date 2001-06-03 (2/2) - done.

This function works processing each date at a time. Since calculations can take some time, the console output shows the progress. The output of the function is an object of class SpatialGridMeteorology:

ml
#> Object of class SpatialGridMeteorology
#> Dates: 2 (initial: 2001-02-03 final: 2001-06-03)
#> Grid topology:
#> cellcentre.offset cellsize cells.dim
#> s1 360000 100 20
#> s2 4639000 100 20
#> Coordinate Reference System (CRS) arguments: +proj=utm +zone=31
#> +ellps=WGS84 +datum=WGS84 +units=m +towgs84=0,0,0

We can display interpolated grids in a map using function spplot:

spplot(ml, 2, "MinTemperature")
spplot(ml, 2, "MaxTemperature")

Objects of class SpatialGridMeteorology include a list of data frames, one per date. We can access the interpolated data for a given date using:

df_1 = ml@data[[1]]
head(df_1)
#> MeanTemperature MinTemperature MaxTemperature Precipitation
#> 1 6.772026 -1.311487 12.02764 0
#> 2 6.803369 -1.255197 12.04277 0
#> 3 6.866746 -1.141037 12.07313 0
#> 4 6.850004 -1.171677 12.06542 0
#> 5 6.929330 -1.028796 12.10343 0
#> 6 6.806007 -1.251788 12.04490 0
#> MeanRelativeHumidity MinRelativeHumidity MaxRelativeHumidity Radiation
#> 1 92.96434 65.25483 100 10.30587
#> 2 92.76410 65.18977 100 10.92906
#> 3 92.36071 65.05943 100 12.03064
#> 4 92.46702 65.09245 100 11.18735
#> 5 91.96424 64.92961 100 12.30161
#> 6 92.74708 65.18046 100 10.91869
#> WindSpeed WindDirection PET
#> 1 NA NA 1.340116
#> 2 NA NA 1.456203
#> 3 NA NA 1.662892
#> 4 NA NA 1.507910
#> 5 NA NA 1.719131
#> 6 NA NA 1.454781

Some columns are missing (e.g. wind speed) because we did not include weather station data regarding these variables. If we wants to add grid coordinates to this data frame, we can use the spatial information stored in the ml object:

sgdf_1 = SpatialGridDataFrame(grid = ml@grid, data = ml@data[[1]], proj4string = ml@proj4string)
summary(sgdf_1)
#> Object of class SpatialGridDataFrame
#> Coordinates:
#> min max
#> s1 359950 361950
#> s2 4638950 4640950
#> Is projected: TRUE
#> proj4string :
#> [+proj=utm +zone=31 +ellps=WGS84 +datum=WGS84 +units=m
#> +towgs84=0,0,0]
#> Grid attributes:
#> cellcentre.offset cellsize cells.dim
#> s1 360000 100 20
#> s2 4639000 100 20
#> Data attributes:
#> MeanTemperature MinTemperature MaxTemperature Precipitation
#> Min. :6.175 Min. :-2.3274 Min. :11.70 Min. :0
#> 1st Qu.:6.504 1st Qu.:-1.7491 1st Qu.:11.86 1st Qu.:0
#> Median :6.649 Median :-1.5001 Median :11.95 Median :0
#> Mean :6.628 Mean :-1.5320 Mean :11.93 Mean :0
#> 3rd Qu.:6.770 3rd Qu.:-1.2829 3rd Qu.:12.00 3rd Qu.:0
#> Max. :7.077 Max. :-0.7434 Max. :12.16 Max. :0
#>
#> MeanRelativeHumidity MinRelativeHumidity MaxRelativeHumidity
#> Min. :91.04 Min. :64.68 Min. :100
#> 1st Qu.:92.98 1st Qu.:65.36 1st Qu.:100
#> Median :93.76 Median :65.59 Median :100
#> Mean :93.90 Mean :65.66 Mean :100
#> 3rd Qu.:94.70 3rd Qu.:65.96 3rd Qu.:100
#> Max. :96.87 Max. :66.70 Max. :100
#>
#> Radiation WindSpeed WindDirection PET
#> Min. : 4.482 Min. : NA Min. : NA Min. :0.2716
#> 1st Qu.: 9.582 1st Qu.: NA 1st Qu.: NA 1st Qu.:1.1952
#> Median :10.966 Median : NA Median : NA Median :1.4527
#> Mean :10.962 Mean :NaN Mean :NaN Mean :1.4454
#> 3rd Qu.:12.293 3rd Qu.: NA 3rd Qu.: NA 3rd Qu.:1.6941
#> Max. :16.254 Max. : NA Max. : NA Max. :2.3792
#> NA's :400 NA's :400

Results can be retrieved in this way and saved using write.asciigrid for its use outside R. The package also provides function for reading/writing NetCDFs (see function writemeteorologygrid) from SpatialGridMeteorology objects.

Interpolation on a set of points

If you want to interpolate on a set of target locations, the starting point will normally be a data.frame. In our example this points come from the grid, but we have reshaped them so the starting format is familiar:

points_df
#> X_UTM Y_UTM elevation
#> 1 363500 4640900 524
#> 2 362700 4640700 509
#> 3 362900 4640400 544
#> 4 360300 4638600 425

Analogously with the grid, we need to transform this data into an object SpatialPointsTopography:

spt = SpatialPointsTopography(as.matrix(points_df[,c("X_UTM", "Y_UTM")]),
elevation = points_df$elevation,
proj4string = CRS("+proj=utm +zone=31 +ellps=WGS84 +datum=WGS84 +units=m +towgs84=0,0,0"))
spt
#> Object of class SpatialPointsTopography
#> coordinates elevation slope aspect
#> 1 (363500, 4640900) 524 NA NA
#> 2 (362700, 4640700) 509 NA NA
#> 3 (362900, 4640400) 544 NA NA
#> 4 (360300, 4638600) 425 NA NA

In this case we only have elevation (in m), but slope and aspect should also be included if possible. Let us assume you want to interpolate on this points for the whole time series available in object interpolator. Since we are dealing with points, the function to interpolate is called interpolationpoints:

mp = interpolationpoints(interpolator, spt)
#> Processing point '1' (1/4) - done.
#> Processing point '2' (2/4) - done.
#> Processing point '3' (3/4) - done.
#> Processing point '4' (4/4) - done.

This function works processing one point at a time. The output of the function is an object of class SpatialPointsMeteorology:

mp
#> Object of class SpatialPointsMeteorology
#> Dates: 1461 (initial: 2000-01-01 final: 2003-12-31)
#> SpatialPoints:
#> X_UTM Y_UTM
#> 1 363500 4640900
#> 2 362700 4640700
#> 3 362900 4640400
#> 4 360300 4638600
#> Coordinate Reference System (CRS) arguments: +proj=utm +zone=31
#> +ellps=WGS84 +datum=WGS84 +units=m +towgs84=0,0,0

And the time series for a given can be plotted using function meteoplot. For example, we show here the precipitation series of point #1:

meteoplot(mp, 1, "Precipitation", ylab="Precipitation (mm)", xlab="")

Objects of class SpatialPointsDataFrame include a list of data frames, one per point. We can access one of them using:

df_1 = mp@data[[1]]
head(df_1)
#> DOY MeanTemperature MinTemperature MaxTemperature Precipitation
#> 2000-01-01 1 4.707261 -0.8748933 8.336582 0
#> 2000-01-02 2 5.329918 -1.0196346 9.458175 0
#> 2000-01-03 3 5.571347 -1.6584762 10.271926 0
#> 2000-01-04 4 2.741383 -1.4220586 5.448307 0
#> 2000-01-05 5 2.992349 -1.1386497 5.678180 0
#> 2000-01-06 6 1.742828 -1.9828008 4.165102 0
#> MeanRelativeHumidity MinRelativeHumidity MaxRelativeHumidity
#> 2000-01-01 92.14027 71.74532 100
#> 2000-01-02 93.40416 70.41263 100
#> 2000-01-03 93.82730 68.10807 100
#> 2000-01-04 93.67873 77.43982 100
#> 2000-01-05 88.90175 73.62767 100
#> 2000-01-06 81.30430 68.45843 100
#> Radiation WindSpeed WindDirection PET
#> 2000-01-01 1.702528 NA NA 0
#> 2000-01-02 1.626303 NA NA 0
#> 2000-01-03 1.567222 NA NA 0
#> 2000-01-04 1.957039 NA NA 0
#> 2000-01-05 1.971969 NA NA 0
#> 2000-01-06 2.073756 NA NA 0

This data frame can now be written into a file for its analysis outside R. The package also provides its own functions to write/read point meteorology data in different formats. If we are interested in inspecting the interpolation result by date, instead of by point, we can use function extractpointdates, which returns objects of class SpatialGridDataFrame:

dt_4 = extractpointdates(mp, as.Date("2001-01-04"), verbose = FALSE)
dt_4
#> coordinates DOY MeanTemperature MinTemperature MaxTemperature
#> 1 (363500, 4640900) 4 8.775443 3.971453 11.89883
#> 2 (362700, 4640700) 4 8.823484 3.970469 11.97874
#> 3 (362900, 4640400) 4 8.732016 4.025805 11.79183
#> 4 (360300, 4638600) 4 9.131380 4.062162 12.42721
#> Precipitation MeanRelativeHumidity MinRelativeHumidity
#> 1 2.110921 84.88668 68.89553
#> 2 2.118662 84.61249 68.53432
#> 3 2.091609 85.13838 69.38540
#> 4 2.179343 82.87795 66.54663
#> MaxRelativeHumidity Radiation WindSpeed WindDirection PET
#> 1 100 2.331560 NA NA 0
#> 2 100 2.329258 NA NA 0
#> 3 100 2.337099 NA NA 0
#> 4 100 2.323822 NA NA 0

Statistical correction of daily weather

Correcting the biases of a meteorological data series containing biases using a more accurate meteorological series is necessary when the more accurate series does not cover the period of interest and the less accurate series does. The less accurate series may be at coarser scale, as with climate model predictions or climate reanalysis data. In this case one can speak of statistical correction and downscaling. However, one may also correct the predictions of climate models using reanalysis data estimated at the same spatial resolution.

In the following example we will correct the predictions of Regional Climate Model (CCLM4-8-17; driving global model CNRM-CERFACS-CNRM-CM5) on the same area of the interpolation example. RCM data includes 3 model cells. Meteorological data covers an historical (reference) period (2000-2003) and a future (projection) period (year 2023), the latter simulated under rcp4.5 scenario.

Preparing weather data to be downscaled/corrected

One needs several data items to perform downscaling and statistical correction. First, we need a matrix or data frame with the central coordinates of the RCM cells (here in longitude/latitude format):

pt_coords
#> long lat
#> 1 1.226384 41.79279
#> 2 1.368943 41.81727
#> 3 1.335890 41.92448

Second, we need the uncorrected meteorological data (here RCM outputs) for both a reference period (that will be matched with our more accurate series) and a projection period (that our more accurate series does not cover). Both should be arranged in lists of data frames, one per RCM cell:

length(ref_data)
#> [1] 3
length(proj_data)
#> [1] 3
head(ref_data[[1]])
#> DOY MeanTemperature MinTemperature MaxTemperature Precipitation
#> 2000-01-01 1 7.008813 5.613855 9.692926 2.273821e-01
#> 2000-01-02 2 7.628625 6.728754 8.123132 1.979953e+01
#> 2000-01-03 3 7.204065 3.538507 9.701288 4.990360e+00
#> 2000-01-04 4 4.317285 1.941400 8.395471 0.000000e+00
#> 2000-01-05 5 4.235284 1.565973 8.663568 1.820105e-09
#> 2000-01-06 6 4.464075 2.094171 7.982202 2.747191e-03
#> SpecificHumidity MeanRelativeHumidity Radiation WindSpeed
#> 2000-01-01 0.005365001 87.24593 6.479796 5.300286
#> 2000-01-02 0.006007533 93.63294 2.333908 4.713901
#> 2000-01-03 0.005704192 91.52707 4.233040 2.108916
#> 2000-01-04 0.004497202 88.16652 6.957025 1.168019
#> 2000-01-05 0.004520838 89.14193 6.588341 1.993287
#> 2000-01-06 0.004539691 88.08730 6.849565 1.955944
head(proj_data[[1]])
#> DOY MeanTemperature MinTemperature MaxTemperature Precipitation
#> 2023-01-01 1 0.52730713 -0.9837708 1.922754 5.914489e-10
#> 2023-01-02 2 2.08501587 -1.0495361 6.185968 2.419252e-01
#> 2023-01-03 3 -0.76285400 -3.2190002 2.428308 1.936977e-12
#> 2023-01-04 4 0.02242432 -1.7950195 1.537469 1.174330e-01
#> 2023-01-05 5 1.30117188 -1.0007385 3.657709 3.518532e+00
#> 2023-01-06 6 -1.27564087 -3.2251038 1.087396 1.464739e-09
#> SpecificHumidity MeanRelativeHumidity Radiation WindSpeed
#> 2023-01-01 0.003752435 96.40739 6.263537 1.353957
#> 2023-01-02 0.003748596 86.08917 5.417012 2.057226
#> 2023-01-03 0.003032080 85.58024 7.274775 1.688474
#> 2023-01-04 0.003270915 87.17539 3.522371 1.115798
#> 2023-01-05 0.003813237 92.64220 5.621084 1.008287
#> 2023-01-06 0.003074167 90.09795 7.251414 1.606562

Note that these data frames should follow the conventions of meteoland for variable names and units. Finally, we need to specify the projection period, in this case one year:

proj_dates = seq(as.Date("2023-01-01"), as.Date("2023-12-31"), by="day")

Building the uncorrected data object

Statistical correction needs an object of class MeteorologyUncorrectedData, analogous to the MeteorologyInterpolationData of the previous section. To build this object we need first to express coordinates in an object SpatialPoints:

sp = SpatialPoints(pt_coords, CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"))
sp
#> SpatialPoints:
#> long lat
#> [1,] 1.226384 41.79279
#> [2,] 1.368943 41.81727
#> [3,] 1.335890 41.92448
#> Coordinate Reference System (CRS) arguments: +proj=longlat
#> +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Assuming the weather data to be corrected is in the proper format, the object is constructed using:

uncorrected = MeteorologyUncorrectedData(sp, ref_data, proj_data, proj_dates)

Target point weather meteorology taken as reference

Downscaling/statistical correction is done on a set of target spatial points. meteoland will first find the RCM cell to which each point is nearest (using the central coordinates of RCM cells). Once this matching is done, statistical relations are build between the meteorology of RCM cells and that of target points for the reference period (here 2000-2003) which are used to correct RCM data for the projection period (year 2023). For this process to be done, we need the coordinates and weather series for the reference period. In our case, we will employ a copy the object of class SpatialPointsMeteorology that resulted from interpolation in the previous section:

historical = mp
historical
#> Object of class SpatialPointsMeteorology
#> Dates: 1461 (initial: 2000-01-01 final: 2003-12-31)
#> SpatialPoints:
#> X_UTM Y_UTM
#> 1 363500 4640900
#> 2 362700 4640700
#> 3 362900 4640400
#> 4 360300 4638600
#> Coordinate Reference System (CRS) arguments: +proj=utm +zone=31
#> +ellps=WGS84 +datum=WGS84 +units=m +towgs84=0,0,0

We named it historical to remind that we are using the historical period as reference and want to correct the RCM series for the projection period There are several ways to shape data into objects of class SpatialPointsMeteorology. For example, one can use function readmeteorologypoints.

Tuning correction parameters

Objects of class MeteorologyUncorrectedData have a slot with parameters:

uncorrected@params
#> $varmethods
#> $varmethods$MeanTemperature
#> [1] "unbias"
#>
#> $varmethods$MinTemperature
#> [1] "quantmap"
#>
#> $varmethods$MaxTemperature
#> [1] "quantmap"
#>
#> $varmethods$Precipitation
#> [1] "quantmap"
#>
#> $varmethods$MeanRelativeHumidity
#> [1] "unbias"
#>
#> $varmethods$Radiation
#> [1] "unbias"
#>
#> $varmethods$WindSpeed
#> [1] "quantmap"
#>
#>
#> $qstep
#> [1] 0.01
#>
#> $fill_wind
#> [1] TRUE
#>
#> $allow_saturated
#> [1] FALSE
#>
#> $wind_height
#> [1] 10

Importantly, varmethods is a named list that specifies which correction method has to be used for each variable. Since we do not have reference data for wind speed, we must turn the method for wind speed to "none":

uncorrected@params$varmethods$WindSpeed="none"

Conducting statistical correction

Once we have all the data objects that we need (the hard part), conducting statistical correction is straightforward:

projected = correctionpoints(uncorrected, historical)
#> Points to correct: 4
#> All points inside boundary box.
#> Correcting point '1' (1/4) - ipred = 3 done.
#> Correcting point '2' (2/4) - ipred = 3 done.
#> Correcting point '3' (3/4) - ipred = 3 done.
#> Correcting point '4' (4/4) - ipred = 3 done.

As mentioned above, correction proceeds point by point. The result is again an object of class SpatialPointsMeteorology:

projected
#> Object of class SpatialPointsMeteorology
#> Dates: 365 (initial: 2023-01-01 final: 2023-12-31)
#> SpatialPoints:
#> X_UTM Y_UTM
#> 1 363500 4640900
#> 2 362700 4640700
#> 3 362900 4640400
#> 4 360300 4638600
#> Coordinate Reference System (CRS) arguments: +proj=utm +zone=31
#> +ellps=WGS84 +datum=WGS84 +units=m +towgs84=0,0,0

The following code displays the minimum/maximum temperatures before and after correction:

#Plot predicted mean temperature for point 1
meteoplot(projected, 1, "MinTemperature", ylab="Temperature (Celsius)", ylim=c(-5,40), col="blue")
meteoplot(projected, 1, "MaxTemperature", add=TRUE, col="red")
#Add uncorrected mean temperature data (cell #3)
lines(uncorrected@dates,
uncorrected@projection_data[[3]]$MinTemperature,
col="blue", lty=3)
lines(uncorrected@dates,
uncorrected@projection_data[[3]]$MaxTemperature,
col="red", lty=3)
legend("topright", legend=c("corrected","uncorrected", "Maximum", "Minimum"),
col=c("black","black", "red","blue"), lty=c(1,3,1,1), bty="n")


  1. Objects of class SpatialGridTopography can be initialized with user input values for slope and aspect too, but meteoland has its own routines when this are missing