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1 Introduction

Reliable meteorological data are a basic requirement for hydrological and
ecological studies at the landscape scale. Given the large spatial variation
of meteorology over complex terrains, meteorological records from a single
weather station are often not representative of entire landscapes. Studies
made on multiple sites over a landscape require different meteorological se-
ries for each site; and other studies may require meteorological data series for
all grid cells of a landscape, in a continuous way. In these cases, spatial corre-
lation between the meteorology series of different sites or cells must be taken
into account. For example, the sequence of days with rain of contiguous cells
will normally be the same or very similar, even if precipitation amounts may
differ. Finally, studies addressing the impacts of climate change on forests
and landscapes require downscaling coarse-scale predictions of global or re-
gional climate models to the landscape scale. When downscaling predictions
for several locations in a landscape, spatial correlation of predictions is also
important.

With the aim to assist research of climatic impacts on forests, the R
package meteoland (De Céceres et al. 2018) provides utilities to estimate
daily weather variables at any position over complex terrains:

1. Spatial interpolation of daily weather records from meteorological sta-
tions.

2. Statistical correction of meteorological data series (e.g. from climate
models).

Spatial interpolation is required when meteorology for the area and pe-
riod of interest cannot be obtained from local sensors. The nearest weather
station may not have data for the period of interest or it may be located
too far away to be representative of the target area. Correcting the bi-
ases of a meteorological data series containing biases using a more accurate
meteorological series is necessary when the more accurate series does not
cover the period of interest and the less accurate series does. The less ac-
curate series may be at coarser scale, as with climate model predictions or
climate reanalysis data. In this case one can speak of statistical correction
adn downscaling. However, one may also correct the predictions of climate
models using reanalysis data estimated at the same spatial resolution.

The following sections describe in detail the design and functioning of
the package. An introduction to the package can be found in De Céceres et
al. (2018), but the present document should be preferred for an up-to-date
description of the package.



2 Data structures and functions

2.1 Data structures

Package meteoland assists in the estimation of the following variables over
lanscapes (units in parentheses):

e DOY: Day of the year ([1-365]).

e MeanTemperature: Mean daily temperature (in degrees Celsius).

e MinTemperature: Minimum daily temperature (in degrees Celsius).
e MaxTemperature: Maximum daily temperature (in degrees Celsius).
e Precipitation: Daily precipitation (in mm of water).

e MeanRelativeHumidity: Mean daily relative humidity (in percent).
e MinRelativeHumidity: Minimum daily relative humidity (in percent).

e MaxRelativeHumidity: Maximum daily relative humidity (in per-
cent).

e Radiation: Incoming radiation (in MJ/m2).

e WindSpeed: Wind speed (in m/s).

e WindDirection: Wind direction (in degrees from North).
e PET: Potential evapo-transpiration (in mm of water).

The package deals with three kinds of spatial structures: individual
points, a set of pixels from a spatial grid and full (i.e. complete) grids.
The package includes six S4 spatial classes, which are defined as children of
classes in package sp.

2.1.1 Topography

Three classes are defined to represent the variation of topographic features
(i.e., elevation, slope and aspect) over space:

e SpatialPointsTopography extends SpatialPointsDataFrame and rep-
resents the topographic features of a set of points in a landscape.

Class "SpatialPointsTopography" [package "meteoland"]
Slots:

Name: data coords.nrs coords bbox proj4string



Class: data.frame numeric matrix matrix CRS

Extends:

Class "SpatialPointsDataFrame", directly

Class "SpatialPoints", by class "SpatialPointsDataFrame", distance 2
Class "Spatial", by class "SpatialPointsDataFrame", distance 3

e SpatialGridTopography extends SpatialGridDataFrame and repre-
sents the continuous variation of topographic features over a full spatial
grid.

Class "SpatialGridTopography" [package "meteoland"]

Slots:

Name: data grid bbox proj4string
Class: data.frame GridTopology matrix CRS
Extends:

Class "SpatialGridDataFrame", directly
Class "SpatialGrid", by class "SpatialGridDataFrame", distance 2
Class "Spatial", by class "SpatialGridDataFrame", distance 3

e SpatialPixelsTopography extends SpatialPixelsDataFrame and rep-
resents the continuous variation of topographic features over a set if
cells in a grid.

Class "SpatialPixelsTopography" [package "meteoland"]

Slots:

Name: data  coords.nrs grid grid.index
Class: data.frame numeric GridTopology integer
Name: coords bbox projéstring

Class: matrix matrix CRS

Extends:

Class "SpatialPixelsDataFrame", directly

Class "SpatialPixels", by class "SpatialPixelsDataFrame", distance 2

Class "SpatialPointsDataFrame", by class "SpatialPixelsDataFrame", distance 2
Class "SpatialPoints", by class "SpatialPixelsDataFrame", distance 3

Class "Spatial", by class "SpatialPixelsDataFrame", distance 4

Although the three classes have the same slots as their parent S4 classes,
data frames in SpatialPointsTopography, SpatialGridTopography and



SpatialPixelsTopography objects have only three variables: ‘elevation’
(in meters), ‘slope’ (in degrees) and ‘aspect’ (in degrees from North).
2.1.2 Meteorology

Analogously to topography, three spatial classes are used to represent the
variation of daily meteorology over space:

e SpatialPointsMeteorology extends SpatialPoints and represents
daily meteorology series for a set of points in a landscape.

Class "SpatialPointsMeteorology" [package "meteoland"]

Slots:

Name: dates data coords bbox proj4string
Class: Date vector matrix matrix CRS
Extends:

Class "SpatialPoints", directly
Class "Spatial", by class "SpatialPoints", distance 2

e SpatialGridMeteorology extends SpatialGrid and represents the
continuous variation of daily meteorology across a grid of cells.

Class "SpatialGridMeteorology" [package "meteoland"]

Slots:

Name: dates data grid bbox
Class: Date vector GridTopology matrix
Name: proj4string

Class: CRS

Extends:

Class "SpatialGrid", directly
Class "Spatial", by class "SpatialGrid", distance 2

e SpatialPixelsMeteorology extends SpatialPixels and represents
the variation of daily meteorology for a set of pixels (cells) of a spatial
grid.

Class "SpatialPixelsMeteorology" [package "meteoland"]

Slots:



Name : dates data grid grid.index

Class: Date vector GridTopology integer
Name: coords bbox projéstring

Class: matrix matrix CRS

Extends:

Class "SpatialPixels", directly
Class "SpatialPoints", by class "SpatialPixels", distance 2
Class "Spatial", by class '"SpatialPixels", distance 3

In addition to their corresponding inherited slots, SpatialPointsMeteorol-
ogy, SpatialGridMeteorology and SpatialPixelsMeteorology have two
additional slots: ‘dates’ (a vector of days specifying a time period), and
‘data’ (a vector of data frames with the meteorological data). Although the
three classes have a ‘data’ slot containing data frames, meteorological data
is in different form in each class. In objects of SpatialPointsMeteorol-
ogy, there is one data frame for each point where variables are in columns
and dates are in rows. In objects of SpatialGridMeteorology and Spa-
tialPixelsMeteorology, each data frame describes the meteorology over a
complete grid, or a subset of cells, for a single day. In these cases, the data
frame has grid cells in rows and variables in columns.

2.2 Reading and writing meteorological data
2.2.1 Point meteorology

Objects of class SpatialPointsMeteorology are stored in the disk using one
data file for each of their spatial points. Files can be stored in ascii format
or rds (compressed) format. Package meteoland provides four input/output
functions for point meteorology:

e Function readmeteorologypoint () reads the meteorological data stored
in one ascii/rds data file and returns a data frame.

e Function writemeteorologypoint() writes the meteorological data
of a single point as an ascii/rds file in the file system.

e Function readmeteorologypointfiles() reads several ascii/rds files
and returns an object of class SpatialPointsMeteorology.

e Functions writemeteorologypointfiles() writes several ascii/rds
files in the disk, one per spatial point. Metadata (i.e. the spatial
coordinates of each point and the corresponding file path) is stored in
an additional file.



2.2.2 Grid meteorology

Objects of class SpatialGridMeteorology are stored in the disk using one
netCDF file per day. In this case, the netCDF file also contains the
date and spatial projection. The following functions are available for in-
put/output of meteorology over a full grid or on a subset of grid cells:

e Functions readmeteorologygrid() and readmeteorologypixels()
reads the meteorological data stored in one netCDF file and re-
turns an object of class SpatialGridDataframe or SpatialPixels-
Dataframe, respectively.

e Functions writemeteorologygrid() and writemeteorologypixels()
write the meteorological data of the full grid or the subset of grid cells,
for a single date in a netCDF file.

e Functions readmeteorologygridfiles() and readmeteorologypix—
elsfiles() read several netCDF files and returns an object of class
SpatialGridMeteorology or SpatialPixelsMeteorology, respectively.

e Functions writemeteorologygridfiles() and writemeteorologyp-
ixelsfiles () write several netCDF files in the disk, one per date,
of the full grid or the subset of grid cells. Metadata (i.e. the dates and
their corresponding file path) is stored in an additional file.

As a special case, function readmeteorologygridcells() reads several
netCDF files and returns an object of class SpatialPointMeteorology
with the meteorological data of a set of specified grid cells.

2.3 Visualizing input topography and meteorological data

Although very simple, the package provides two kinds of functions to visu-
alize the temporal and spatial variation of meteorology:

e Function spplot () has been redefined from package sp to draw maps
of specific weather variables corresponding to specific dates. The func-
tion can be used on objects of classs SpatialGridMeteorology and
SpatialPixelsMeteorology.

e Function meteoplot () allows the temporal series of specific variables
on specific spatial points to be plotted. The function can read the data
from the disk or from objects of class SpatialPointsMeteorology.

Similarly, function spplot() also accepts objects of classes SpatialGrid-
Topography and SpatialPixelsTopography, so that topography can also
be easily displayed.



2.4 Manipulating topographic and meteorological data

Following the design of package sp, package meteoland provides functions
for switching between spatial structures. For example, it is possible to coerce
an object of SpatialPointsTopography into a SpatialPixelsTopography
using a call like as(x, "SpatialPixelsTopography"). Subsetting is also
allowed, so that estimations of daily meteorology can be performed in subsets
of points or grids.

The package provides a few functions to extract/reshape meteorological
data:

e Function extractgridpoints() extracts the meteorology of particu-
lar points in a grid. It accepts objects of SpatialGridMeteorology
and SpatialPixelsMeteorology as input and it returns an object of
SpatialPointsMeteorology.

e Function extractpointdates() extracts the meteorology of a set of
dates from an object of class SpatialPointsMeteorology. It returns
one data frame for each date, with points in rows and meteorology
variables in columns.

2.5 Summarizing meteorological data

The package provides functions to generate temporal summaries of meteo-
rological data. These accept meteorology objects as input and return their
corresponding spatial dataframe structure with the summary statistics in
columns:

e Function summarypoints() summarizes the meteorology of spatial
points. It accepts objects of SpatialPointsMeteorology as input and
returns an object of SpatialPointsDataFrame with point summaries
for the requested variable. Temporal summaries can be calculated for
different periods and using different summarizing functions (e.g. mean,
sum, minimum, maximum, etc.).

e Functions summarygrid() and summarypixels() summarize the me-
teorology of full grids or of subset of grid cells, respectively. They ac-
cept objects of SpatialGridMeteorology and SpatialPixelsMeteo-
rology, respectively, as input and return an object of SpatialGrid-
DataFrame and SpatialPixelsDataFrame, respectively, with tempo-
ral summaries for the requested variable over the range of dates indi-
cated.

e Function summaryinterpolationdata() works similarly to summary-
points (), but takes an object of class MeteorologyInterpolation-
Data as input.



2.6 Meteorology estimation functions
2.6.1 Spatial interpolation

Package meteoland provides two functions for interpolating meteorological
data (i.e., one for each data structure):

e Function interpolationpoints() interpolates weather for a set of
locations given in SpatialPointsTopography and returns an object
of class SpatialPointsMeteorology.

e Function interpolationgrid() interpolates weather for a whole grid
specified in SpatialGridTopography and returns an object of class
SpatialGridMeteorology.

Both functions require an object of class ‘MeteorologyInterpolation-
Data’, which contains the X-Y coordinates, the meteorological data and
topography of a set of weather stations as well as weather interpolation
parameters.

Class "MeteorologyInterpolationData" [package "meteoland"]

Slots:

Name : coords elevation
Class: matrix numeric
Name: slope aspect
Class: numeric numeric
Name: MinTemperature MaxTemperature
Class: matrix matrix
Name : SmoothedPrecipitation Precipitation
Class: matrix matrix
Name: SmoothedTemperatureRange RelativeHumidity
Class: matrix matrix
Name : Radiation WindSpeed
Class: ANY ANY
Name: WindDirection WindFields
Class: ANY ANY
Name: WFIndex WFFactor
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Class: ANY ANY

Name: params dates
Class: list Date
Name: bbox projé4string
Class: matrix CRS
Extends:

Class "MeteorologyProcedureData", directly
Class "Spatial", by class "MeteorologyProcedureData", distance 2

When calling functions interpolationpoints() or interpolationgrid(),
the user may require interpolation outputs to be written into the file system,
instead of being returned in memory. If interpolationpoints() is called
with export = TRUE, the function will write the data frame produced for
each point into an ascii text file or a rds file. If interpolationgrid() is
called with export = TRUE, the function will write an net CDF file for each
day. Metadata files will also be written, so that results can later be loaded
in memory.

Functions interpolation.calibration() and interpolation.cv() are
included in meteoland to calibrate interpolation parameters and evaluate
predictive performance of interpolation routines before using them.

2.6.2 Statistical correction

One function is available for statistical correction of meteorological data
series (i.e., one function for each data structure). Function correction-
points() performs statistical correction of weather data series on a set
of locations and it returns an object of class SpatialPointsMeteorology
containing corrected weather predictions. Statistical correction requires an
object of class ‘MeteorologyUncorrectedData’, which contains the X-Y
coordinates and the coarse-scale meteorological data to be corrected, which
includes a reference (historic) period and projected (e.g. future) period:

Class "MeteorologyUncorrectedData" [package "meteoland"]

Slots:

Name: coords reference_data projection_data
Class: matrix ANY ANY
Name: params dates bbox
Class: list Date matrix
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Name: proj4string
Class: CRS

Extends:
Class "MeteorologyProcedureData", directly
Class "Spatial", by class "MeteorologyProcedureData", distance 2

The reference (historical) period is compared with observed meteorological
data of the same period, and the routine uses this information to correct the
projected (e.g. future) period. Therefore, apart from the ‘MeteorologyUn-
correctedData’ object, the correction function requires accurate meteoro-
logical data (for a set of spatial points or a grid). Normally, these data will
be the result of spatial interpolation.

As before, when calling functions correctionpoints(), the user may
require the outputs to be written into the file system, instead of being re-
turned in memory. If correctionpoints() is called with export = TRUE,
the function will write the data frame produced for each point into an ascii
text file or a rds file. Metadata files will also be written, so that results can
later be loaded in memory.

Function correctionpoints.errors() was included in the package to
evaluate the errors of the less accurate and more accurate series. Compar-
isons can be made before and after applying statistical corrections. In the
latter case, cross-validation is also available.

3 Spatial interpolation of weather records

3.1 Overview

Ecological research studies conducted for historical periods can be perfomed
using meteorological records obtained from surface weather stations of the
area under study. The general procedure for interpolation is very similar to
the one that underpins the U.S. DAYMET dataset (https://daymet.ornl.gov/).
For any target point, minimum temperature, maximum temperature and
precipitation are interpolated from weather records using truncated Gaus-
sian filters, while accounting for the relationship between these variables and
elevation (Thornton et al. 1997). Relative humidity can be either interpo-
lated (in fact, dew-point temperature is the variable being interpolated) or
predicted from temperature estimates, depending on whether it has been
measured in weather stations or not. Potential (i.e. top-of-atmosphere) so-
lar radiation is estimated taking into account latitude, seasonality, aspect
and slope, following Granier & Ohmura (1968). Potential solar radiation is
then corrected to account for atmosphere transmittance using the predic-
tions of temperature range, relative humidity and precipitation (Thornton
& Running 1999). Finally, the wind vector (wind direction and wind speed)
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is interpolated by using weather station records and static wind fields.

In the following subsections we detail the general algorithm used to ob-
tain interpolation weights and the interpolation procedure for temperature,
precipitation, relative humidity and wind. The estimation of potential and
actual solar radiation is explained in next section.

3.2 Interpolation weights

Thornton et al. (1997) suggested interpolating meteorological data using a
truncated Gaussian filter. Its form with respect to a central point p is:

W(r) = e (/) _ g (1)

if » < R, and W(r) = 0 otherwise. Here r is the radial distance from p,
R, is the truncation distance and « is the shape parameter. The spatial
convolution of this filter with a set of weather station locations results, for
each target point, in a vector of weights associated with observations. The
following figure illustrates the Gaussian filter for R, = 500 and either o = 3.0
(continuous line) or aw = 6.25 (dashed line):

— alpha=3
---- alpha=6.25

W(r)
00 02 04 06 08

I I I I I I
0 200 400 600 800 1000

R, is automatically adjusted so that it has lower values in data-rich regions
and is increased in data-poor regions. The method, however, requires the
user to specify NV, the average number of observations to be included for each
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target point. R, is then varied as a smooth function of the local density in
such a way that this average is achieved over the spatial domain. Estimation
of R, is as follows:

1. A user-specified value is used to initialize R,.

2. Interpolation weights W; are calculated for all i = (1,...,n) stations,
and the local station density is calculated as:

Sy Wi/ W)

D. —
P W-RI%

(2)

where W is the average weight over the untruncated region of the
kernel, calculated as:
. 1—e™@
W=(——]—-¢e" 3
(F) - 3

3. A new R, value is calculated as a function of N and D,, as:

N*

R =
P Dy«

(4)

where N* = 2N for the first I — 1 iterations, and N* = N for the final
iteration.

4. The new R, is substituted in step (2) and steps (2-4) are iterated a
specified number of times /. The final R, value is used to generate
interpolation weights W;.

Thornton et al. (1997) suggested to use this algorithm only once per point
(and variable to be estimated), but since missing meteorological values can
occur only in some days, we apply the algorithm for each target point and
day. The interpolation method for a given set of observations is defined
by four parameters R, I, N and «. Following Thornton et al. (1997), we
set R = 140000 meters and I = 3 by default (see parameters ’initial_Rp’
and ’iterations’ given in function defaultInterpolationParams()). The
other parameters (N and «) depend on the variable to be interpolated.

3.3 Temperature

Predictions for minimum temperature and maximum temperature are done
in the same way, so we refer to a general variable T. We focus on the
prediction of T}, the temperature at a single target point p and for a single
day, based on observations T; and interpolation weights W; for the i =
(1,...,n) weather stations. Prediction of T}, requires a correction for the
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effects of elevation differences between observation points z1, ..., z, and the
prediction point z,. Thornton et al. (1997) established the relationship
between elevation and temperature using transformed variables (temporal
or spatial moving window averages) for temperature and elevation, instead
of the original variables, but we did not implement this feature here. A
weighted least-squares regression is used to assess the relationship between
temperature and elevation. Instead of regressing z; on T;, the independent
variable is the difference in elevations associated with a pair of stations, and
the dependent variable is the corresponding difference in temperatures. This
gives a regression of the form:

(Ih —T3) = Bo+ p1- (21 — 22) (5)

where subscripts 1 and 2 indicate the two stations of a pair and 5y and (5
are the regression coefficients. Regression is performed using all possible
pairs of stations and the regression weight associated with each point is the
product of the interpolation weights associated with the stations in a pair.
The temperature for the target point, 7T}, is finally predicted as follows:

_ i Wi (Tit Bo+ B - (3 — 2))
2im Wi

where z, is the elevation of the target point and z; is the elevation of the
weather station.

Ty (6)

3.4 Relative humidity

Relative humidity is a parameter not always recorded in weather stations.
When input station weather data does not include relative humidity, me—
teoland estimates it directly from minimum and maximum temperature
(Thornton et al. 1997). Assuming that minimum daily air temperature
Tonin,p at the target point is a good surrogate of dew-point temperature 7Ty,
(i.e. Tgp = Tminyp; note that this assumption may not be valid in arid
climates), one can estimate actual vapor pressure e, (in kPa) as:

17.269-Td7p>

e, = 0.61078 - e(m“% (7)

and saturated vapor pressure e, (in Pa) as:

174269<Ta,p>

esp = 0.61078 - o(Frarret .

where T, ;, = 0.606 - T}qz,p + 0.394 - T'yip p is the average daily temperature.
Finally, relative humidity RH,, (in percentage) is calculated as:

RH, =100 2 9)

€s,p
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When relative humidity has been measured at weather stations, inter-
polation should be preferred to estimation from minimum and maximum
temperature. However, because relative humidity depends on temperature,
relative humidity RH; of each weather station ¢ has to be converted to dew-
point temperature T, ; before interpolation (Tymstra et al. 2010). To obtain
the dew-point temperature one first needs to calculate vapor pressure:

e; = es; - (RH;/100) (10)

where e ; is the saturated water vapor pressure of station 4, calculated as
indicated above. Then, dew-point temperature of station ¢ is obtained from:

o 237.3 - In(e; /0.61078) (1)
"~ 17.269 — In(e;/0.61078)

Unlike temperature, interpolation of dew temperature is not corrected for
elevation differences. The dew-point temperature for the target point, T},
is predicted as:

> i Wi Ta

Z?:l Wi
From the interpolated dew-point temperature one can obtain actual vapour
pressure e, and, together with saturated vapour pressure at point p, one cal-
culates relative humidity as indicated above. If saturated vapour pressure
is referred to average temperature Ty ,, then relative humidity is average
relative humidity RH,,. If, instead, one refers saturated vapour pressure
to minimum and maximum daily temperatures one obtains, respectively,
maximum and minimum relative humidity values (RHmaz,p, RHminp). Af-
ter their estimation, the routine checks that the predicted maximum and
minimum relative humidity values stay within the physical limits 0% and
100%. Although interpolation of dew-point temperature does not account
for elevation differences, interpolated values of relative humidity will nor-
mally exhibit a pattern following elevation differences because temperature
is involved in the calculation of relative humidity.

Tap = (12)

3.5 Precipitation

Predictions of precipitation are complicated by the need to predict both daily
occurrence and, conditioned on this, daily precipitation amount. Thornton
et al. (1997) define a binomial predictor of spatial precipitation occurrence
as a function of the weighted occurrence at surrounding stations. The pre-
cipitation occurrence probability POP, is:

n

Y W .. PO,

POP, = Z%—ln L (13)

Zz‘:1 Wo,i
where PO; is the binomial precipitation occurrence in station i (i.e., PO; = 0
if P, = 0 and PO; = 1if P, > 0) and W,; is the interpolation weight
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for precipitation occurrence. Once POP, is calculated, then precipitation
occurs if POP, is smaller than a critical value (i.e. PO, =1 if POP, <
POP,; and PO, = 0 otherwise).

Conditional on precipitation occurrence we calculate the prediction of
daily total precipitation, P,. Like with temperature, Thornton et al. (1997)
established the relationship between elevation and precipitation using trans-
formed variables (temporal or spatial moving window averages) for precipita-
tion and elevation. Following their results, we transform precipitation values
using a temporal window with side of 5 days. Weighted least-squares, where
the weight associated with each point is the product of the interpolation
weights associated with the stations in a pair, is used to account for eleva-
tion effects on precipitation. Unlike Thornton et al. (1997), who use the
same set of interpolation weights (i.e. W, ;) for precipitation occurrence and
regression, we use a second set of interpolation weights W,.; for the calcula-
tion of regression weights. The dependent variable in the regression function
is defined as the normalized difference of the precipitation observations P;
for any given pair of stations:

(Pl - P

M) = Bo + B1- (21 — 22) (14)

To obtain the predicted daily total P, we use the following equation:

n 1
Yo i Woi- Pi- PO; - (%)

Z?zl Wo,i : POz

Py = (15)

where f = o + (1 - (2, — 2;). Note the usage of interpolation weight W, ;
(and not W, ;). The form of prediction requires that |f| < 1. A parameter
fmaz (with default fi,q0 = 0.95 ) is introduced to force | f| = fimar Whenever

Lfl > frmaz-

3.6 Wind

Interpolation of wind characteristics depends on the amount of information
available:

e Interpolation of wind speed only
¢ Interpolation of wind vectors (speed and direction)
¢ Interpolation of wind vectors using wind fields

The following subsections detail the calculations in each case.
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3.6.1 Interpolation of wind speed

The predicted wind speed u,, for a target point p is the weighted average of
station wind speed values {u;} i = (1,...,n) using the interpolation weights
W, determined from the truncated Gaussian filter:

i Wi

Uy = =g (16)
g Zi:l Wi

3.6.2 Interpolation of wind vectors

Interpolation of wind vectors for a target point p is as follows. Let v; be
the wind vector in weather station i. v; is initially expressed using polar
coordinates. Indeed, we have u; and 6;, the wind speed and wind direction,
respectively. If we express v; in cartesian coordinates we have:

x; = u; - sin(6;) v = u; - cos(6;) (17)

The predicted wind vector v, is the weighted average of the wind vectors
{vi} i = (1,...,n) predicted for point p using the interpolation weights W;
determined from the truncated Gaussian filter:

The polar coordinates of the predicted wind vector v,, are:

Up =4/ 37120 + Z/;% Op = tan’l(xp/yp) (19)

3.6.3 Interpolation of wind vectors using wind fields

(18)

More precise wind interpolation of wind vectors requires a set of static wind
fields covering the landscape of interest. Each of these wind fields has been
calculated assuming a domain-level combination of wind speed and wind
direction. The set of domain-level combinations should cover all possible
winds in the landscape under study. For example, one could decide to include
the combinations of eight different wind directions (i.e., N, NE, E, SE, ...)
and three wind speed classes. The wind estimation of a given target point
depends on both the wind observations at weather stations and these static
wind fields.

In a given day (and before processing target points) we begin by identi-
fying, for each weather station ¢ = (1,...,n), the wind field m; correspond-
ing to a minimum difference between the observed wind vector v; and the
wind vector of the station in the wind field (i.e., minimum distance be-
tween the corresponding cartesian coordinates). The set of wind fields {m;}
i = (1,...,n) chosen for each weather station conform the information for
wind interpolation in a given day.
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Actual wind interpolation details for a target point p are as follows. We
first draw for each i = (1,...,n) the wind vector v, , corresponding to
the location of the target point p in wind fields m;. Let uy,, , and 6,,, ,
be the wind speed and wind direction of v,,, ,,, respectively. The cartesian
coordinates of v,,, , are:

Lmi,p = Umg,p Sin(gmz'm) Ymip = Umgp - COS(thp) (20)

The predicted wind vector v, is the weighted average of the wind vectors
{vim.p} @ = (1,...,n) predicted for point p using the interpolation weights
W; determined from the truncated Gaussian filter:

T — Z?:l Wi - Lmy,p Yy = Z?:l Wi - Ym,p
P Z?:l Wi P Z?:l Wi

The polar coordinates of the predicted wind vector v, are found as before.

(21)

4 Estimation of solar radiation

Incident daily solar radiation is not interpolated, but estimated from topog-
raphy and measurements of temperature, humidity and precipitation.

4.1 Solar declination and solar constant

The declination of the sun § is the angle between the rays of the sun and the
plan of the Earth’s equator. Solar declination varies with years and seasons.
However, the Earth’s axial tilt changes slowly over thousands of years but
it is nearly constant for shorter periods, so the change in solar declination
during one year is nearly the same as during the next year. Solar constant
(Io) is normally given a nominal value of 1.361 kW-m~2 but in fact it also
varies through the year and over years. Both can be calculated from Julian
day (J), the number of days number of days since January 1, 4713 BCE at
noon UTC. from Julian day. In meteoland, julian days, solar declination and
solar constant are calculated using an adaptation of the code as in package
insol (by J.G. Corripio), which is based on Danby (1988) and Reda &
Andreas (2003).

The following figures show the variation of solar declination and the value
of solar constant over a year (see functions radiation_solarDeclination()
and radiation_solarConstant()):
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4.2 Day length

Calculation of sunrise and sunset on a horizontal surface is rather straight-
forward. The hour angles of sunrise and sunset (sr and ss, both in radians)
for a horizontal surface of latitude ¢ on a day with declination § (both
expressed in radians) are:

st = Ty =cos ! (max(min(— tan(¢) - tan(s),1), —1)) (22)
s§ = T[) == *Tl (23)

Knowing that each hour corresponds to 15 degrees of rotation, hour angles
can be transformed to solar hours. The following figures show the seasonal
variation of sunrise and sunset hours, as well as day length, for horizontal
surfaces in three latitudes (40North, equator and 40South) (see functions
radiation_sunRiseSet() and radiation_daylength()):
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For inclinated slopes, the calculation of day length is based on the con-
cept of equivalent slopes, which are places on earth where the slope of earth’s
surface is equal to the slope of interest. The calculations start with the de-
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termination of the latitude Lq of the equivalent slope:

Ly = sin™! (cos(Z,) - sin(¢) + sin(Z,) - cos(¢) - cos(A)) (24)
D = cos(Zy) - cos(¢) — sin(Zy) - sin(¢) - cos(A) (25)
where ¢ is the latitude, A is the azimuth of the slope (aspect) and Z, is the

zenith angle of the vector normal to the slope (equal to the slope angle).
Then Ly is defined depending on the value of D. If D < 0 then:

Ly = tan~! (Sin(z"”);in(A)> o (26)

Otherwise, Lo is calculated as:

Ly = tan™! <Sin(Z:c)D'Sin(A)>

(27)

Once Ly and Ly are available, we can calculate solar hours on equivalent
slopes:

T = cos ! (max(min(—tan(L;) - tan(d),1), —1)) — L2 (28)
Ts = —cos ! (max(min(—tan(Ly) -tan(s),1),—1)) — L2  (29)

Being Ty and T% the hour angle of sunrise and sunset on equivalent slopes,
respectively. and the hour angles of sunrise (sr) and sunset (ss) on the
slope (both in radians) are found comparing the hour angles on equivalent
surfaces with the hour angles on the horizontal surface:

sr = max(Tp, Ts) (30)
ss = min(T,T7) (31)

The following three figures show the seasonal variation of sunrise and
sunset hours, as well as day length, for slopes of 30 inclination, facing to the
four cardinal points. Curves for flat surfaces are shown for comparison. If
the slopes are at latitude 40North:
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whereas if they are at Equator (i.e. ¢ = 0):
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4.3 Potential radiation

Potential solar radiation is the radiation that a surface on earth would receive
if atmosphere was not present (i.e. without the effects of cloud reflection,
scattering, ...). In meteoland, potential solar radiation is estimated from so-
lar declination, latitude, aspect and slope according to Granier & Ohmura
(1968). Daily potential radiation (Rpet, in MJ-m~2) is calculated by inte-
grating instantaneous potential radiation Rps (in kW-m™2) over the day
between sunrise (sr) and sunset (ss), using 10 min (i.e. 600 sec) intervals:

1 ss
Rpot = m : Z 600 - Rpot,s

S=S8r

(32)

In turn, instantaneous potential solar radiation Ry s is calculated using:
Iy [(sing-cos H)(—cos A-sinZ,) —sin H - (sin A - sin Z,,)
+[(cos ¢ - cos H) - cos Z,] - cos d

+[cos ¢ - (cos A - sin Z;) + sin ¢ - cos Z,] - sin ¢

Rpot,s

(33)
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where I is the solar constant, ¢ is the latitude, H is the hour angle measured
from solar noon, positively towards the west, A is the azimuth of the slope
(aspect), Z, is the zenith angle of the vector normal to the slope (equal to
the slope angle) and ¢ is the sun’s declination. Note that in the case of a
flat surface the previous equation reduces to:

Ryot,s = 1o - [cos ¢ - cos H - cos 6 + sin ¢ - sind] = Iy - sin 3 (34)

where [ is called the solar elevation angle.

The following figures illustrate seasonal variation of potential solar ra-
diation for the horizontal inclinated surfaces presented above (see function
radiation_potentialRadiation()):
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4.4 Incident solar radiation

Incident solar radiation is the amount of (direct) solar radiation reaching
the surface after accounting for the atmosphere. Improving the method
proposed in Thornton et al. (1997), Thornton & Running (1999) calculate
incident daily total solar radiation R, as:

Rg = Rpot : ,Tt,maa: : Tf,ma:p (35)

where T} g, is the maximum (cloud-free) daily total transmittance and
Tf.maz is the proportion of T} ;4 realized on a given day (cloud correction).
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The maximum daily total transmittance T} ;44 is estimated as:

S5 Rpots - 7P/ PoIma

T _ S=sT
t,mar — Zss

s=sT Rp0t75

+ (e, - €p) (36)

where 7 = 0.87 is the instantaneous transmittance at sea level, at nadir, for
a dry atmosphere; e, is the actual water vapor pressure (in kPa), estimated
as explained before; a,, = —6.1 - 1072kPa~! is a parameter describing the
effect of vapour pressure on T} maq; Mg = 1/ cos @ is the optical air mass at
solar zenith angle cos(f) = sin¢-sind + cos ¢ - cosd - cos H; and P, /P is the
ratio between air pressure at elevation z, and air pressure at the sea level,
calculated as:

(P./Py) = (1.0 — 2.2569 - 1077 - z,,)>25%3 (37)

In turn, T 4, Was empirically related to AT = Tyax — Tiin, the difference
between maximum and minimum temperatures for the target point:

Tfmaz = 1.0 — 0.9 - ¢~ BATC (38)
being C' = 1.5 and B calculated from:
B =bo+by e t2AT (39)

with by = 0.031, b = 0.201 and by = 0.185. In this last equation, AT is a
30-day moving average for the temperature range AT. For computational
reasons, we do not estimate AT from the 30-day moving window average of
predicted AT values, but from the interpolation of pre-calculated AT values
in weather stations. On wet days (i.e. if P, > 0) the estimation of T ;45 is
multiplied by a factor of 0.75 to account for clouds.

Although the calculation of incident solar radiation can be done inde-
pendently of interpolation (see function radiation_solarRadiation()), it
is automatically done in functions interpolationpoints() and interpo-
lationgrid().

4.5 Outgoing longwave radiation and net radiation

Potential and actual evapotranspiration calculations require estimating the
energy actually absorved by evaporating surfaces. Daily net radiation R,
(in MJ-m~2-day~") is calculated using:

Rpn=Rs (1—a)— Ry (40)

where R is the input solar radiation (in MJ - m~2 - day™'), a = 0.08
accounts for surface albedo, and R,; is the net longwave radiation. Outgoing
longwave radiation is the radiation emitted by earth. Following McMahon
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et al. (2013) to obtain R,,; one first calculates clear sky radiation R, using:

Ryo = (0.75 + -0.00002 - 2) - Rpor (41)

where z is elevation and R, is potential radiation. R,; is then calculated
using:
T+ T . R,
Ry =0-(0.34—0.14-\/e) - w -(1.35- mln(R—7 1.0) — 0.35) (42)
SO
where e is the actual vapor pressure (kPa), Ti,ax and Ti,iy are the maximum
and minimum temperatures (in Kelvin) and o = 4.903 - 1079 MJ-K~*.m~2
is the Stephan-Boltzmann constant.
The following figure shows an example of radiation balance for a whole
year for a single site (see functions radiation_outgoinglongwaveRadiation()
and radiation_netRadiation()):
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4.6 Diurnal trends in diffuse and direct radiation

Ecological studies sometimes require radiation information at a subdaily
scale. This is particularly true for modeling studies that need to calculate
canopy photosynthesis. Although meteoland has been designed to assist
studies requiring meteorological data at daily scale, a function called ra-
diation_directDiffuseDay() is provided to divide daily radiation into
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instantaneous direct and diffuse radiation. Values of instantaneous direct
and diffuse radiation (shortwave and photosynthetic active radiation) are
calculated following Spitters et al. (1986). First, the ratio between daily
diffuse and global radiation (Rq/Ry) is inferred from the ratio between daily
potential and global radiation (Ry/Rpot):

Ri/Ry=1  Ry/Rpet < 0.07 (43
Ry/Ry=1—23-(Ry/Rpot —0.7)>  0.07 < Ry/Rpot < 0.35 (44
Ry/Ry=1.33—146-Ry/Rpot  0.35 < Ry/Rpot < 0.75 (45
R4/Ry =023  0.75 < Ry/Rpot (46

— — ~— ~—

In a clear day (e.g. not rainy) the ratio is modified to account for the
circumsolar part of diffuse radiation:

A Ru/R
ol o = T = (Ral Ry ) - cos” (= B) cos? B

(47)

where (3 is the solar elevation angle. Otherwise R);/Ry = Rq/Ry. The daily
diffuse shortwave radiation (R,) is found by multiplying global radiation by
the (modified) ratio:

Ry =Ry - (R&/Rg) (48)

The diurnal trend of the irradiance is derived from the daily global radiation
and the daily course of potential (i.e. extra-terrestrial) radiation. If we
assume that the atmospheric transmission is constant during the daylight
period:

Ry.s/Rpot,s = Rg/Rpot (49)

this leads to an estimation of the instantaneous global radiation (assuming
compatible units):

Ry = Ry - (Rpot,s/ Rpot) (50)

and the instantaneous diffuse and direct beam fluxes are estimated using:
Rd,s - Rd : (Rpot,s/Rpot> (51)
Rb,s = Rg,s - Rd,s (52)

The whole procedure to calculate direct and diffuse radiation depends on
the solar elevation angle, which changes through the day. Although R/,/R,
is formulated as a ratio of daily values, the ratio needs to be calculated for
every instant, as Ryt s.

The procedure for photosynthetic active radiation (PAR) is similar. Daily
PAR is assumed to be half of daily global radiation (i.e. Rpar = 0.5 Ry.
The scattered diffuse component of PAR is bigger than that of global radi-
ation, and the ratio of diffuse over total PAR radiation is:

RPAR,d,/RPAR = [1 +0.3- (1 — (Rd/Rg)Q)] . (R&/Rg) (53)
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The ratio Rpar,a/Rpar is used to determine daily diffuse PAR and the
calculation of instant rates are the same as for global radiation.

To illustrate the above calculations, we assume a target location in a flat
terrain located at 42N latitude and 100 m.a.s.l, having 30 MJ-m~2 of daily
global radiation on the 2001/June/01, the hourly variation in diffuse and
direct radiation would be:
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5 Statistical correction of weather data

Statistical correction is necessary when meteorological data is available at a
spatial scale that is too coarse for landscape-level analysis. This is usually
the case when taking predictions from global or regional climate models.
The general idea of correction to the landscape level is that a fine-scale
meteorological series is to be compared to coarse-scale series for the a his-
torical (reference) period. The result of this comparison can be used to
correct coarse-scale meteorological series for other periods (normally future
projections).

5.1 Correction methods

Users of meteoland can choose between three different types of corrections:
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e Unbiasing: consists in subtracting, from the series to be corrected,
the average difference between the two series for the reference period
(Deque 2007). Let z; be the value of the variable of the more accurate
(e.g. local) series for a given day ¢ and u; the corresponding value for
the less accurate series (e.g., climate model output). The bias, 6, is
the average difference over all n days of the reference period:

n
0=> (ui—x)/n (54)
7
The bias calculated in the reference period is then subtracted from the
value of u for any day of the period of interest.

e Scaling: A slope is calculated by regressing u on z through the origin
(i.e. zero intercept) using data of the reference period. The slope can
then be used as scaling factor to multiply the values of u for any day
of the period of interest.

e Empirical quantile mapping: Due to its distributional properties,
neither multiplicative or additive factors are appropriate for daily pre-
cipitation (Gudmundsson et al. 2012; Ruffault et al. 2014). In this
case, it has been recommended to compare the empirical cumulative
distribution function (CDF) of the two series for the reference period
(Déqué 2007). The empirical CDFs of x and u for the reference pe-
riod are approximated using tables of empirical percentiles, and this
mapping is used to correct values of u for the period of interest:

ca = ecdf, ! (ecdfu(ua)) (55)

where ecdf, and ecdf, are the empirical CDFs of z and u respec-
tively. Values between percentiles are approximated using linear inter-
polation. A difficulty arises for quantile mapping when the variables
bounded by zero, such as precipitation. As the models tend to drizzle
(or may have lower frequency of precipitation events), the probability
of precipitation in the model may be greater or lower than that ob-
served. To correct this, when model precipitation is zero an observed
value is randomly chosen in the interval where the observed cumulative
frequency is less than or equal to the probability of no precipitation in
the model. This procedure ensures that the probability of precipitation
after correction is equal to that observed (Boé 2007).

For each target location to be processed, the correction routine first
determines which is the nearest climate model cell and extracts its weather
data series for the reference period and the period of interest. Then, the
correction method chosen by the user for each variable is applied. Statistical
corrections are done for each of the twelve months separately to account for
seasonal variation of distributional differences (Ruffault et al 2014).
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5.2 Default approaches by variable

Although users can choose their preferred correction method for each vari-
able, meteoland has default approaches.

e Precipitation: By default, correction of precipitation is done using
empirical quantile mapping. The following figures show the correction
of RCM precipitation predictions for 2023 using interpolated data from
2002-2003 as observations for the reference period. Note that at least
15 years of observations (and not two!) would be needed for a correct
estimation of monthly CDFs.
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e Mean temperature: Unbiasing method is used by default to correct
mean temperature. The following figures show the correction of RCM
mean temperature predictions for 2023 using interpolated data from
2002-2003 as observations for the reference period:
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¢ Minimum and maximum temperatures: To correct minimum (re-
spectively maximum) temperature values, by default scaling is applied
to the difference between minimum (resp. maximum) temperature and
mean temperature.
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e Radiation: Radiation is by default corrected using the unbiasing pro-
cedure. The following figures show the correction of RCM radiation
predictions for 2023 using interpolated data from 2002-2003 as obser-
vations for the reference period:
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¢ Relative humidity: Mean relative humidity is first transformed to
specific humidity, the unbiasing method is applied by default to this
variable and the result is back transformed to mean, minimum and
maximum relative humidity using the previously corrected series of
mean, maximum and minimum temperature, respectively.

e Wind speed: By default, wind speed is corrected using the scaling
method. Since historic wind data is often not available, however, if
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wind speed data is missing the coarse-scale wind estimate is taken
directly without correction.

6 Estimation of potential evapo-transpiration

Package meteoland allows calculating daily potential evapo-transpiration
(PET) using Penman’s formulation (Penman 1948; 1956) or Penman-Monteith
formulation. PET is automatically calculated after meteorological data
have been interpolated (i.e. within functions interpolationpoints() and
interpolationgrid()) or downscaled (i.e. within functions correction-
points() and correctiongrid()), but PET values can also be calculated
for a single point using functions penman () or penmanmonteith(). For other
formulations of PET, the reader is referred to package ‘Evapotranspira-
tion’.

6.1 Penman formulation

Penman (1948) proposed an equation to calculate daily potential evapora-
tion that combined an energy equation based on net incoming radiation with
an aerodynamic approach. The Penman or Penman combination equation
is:

A R, A

Epot = ~——+ ~*+ 5 - Fa
PP A4y A A+

where PET is the daily potential evaporation (in mm - day~!) from a sat-
urated surface, R, is the daily radiation to the evaporating surface (in
MJ-m~2-day™'), A is the slope of the vapour pressure curve (kPa-°C~1!)
at air temperature, v is the psychrometric constant (kPa -°C~1), and X is
the latent heat of vaporization (in MJ - kg™'). E, (in mm - day™') is a
function of the average daily windspeed (u, in m-s~!), and vapour pressure
deficit (D, in kPa):

(56)

Eq = f(u)-D = f(u) - (vz = va) (57)

where v} is the saturation vapour pressure (kPa) and v, the actual vapour
pressure (kPa) and f(u) is a function of wind speed, for which there are two
alternatives (Penman 1948; 1956):

flu) = 1.313+1.381-u (58)
flu) = 2.626+1.381-u (59)

If wind speed is not available, an alternative formulation for FE,, is used as
an approximation (Valiantzas 2006):

S Hmean
PET ~0.047-R,- (T, +9.5)%% —2.4. (i)%o.og- (T, —20)-(1— L)
Rypot 100
(60)
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where R, is the incoming solar radiation (in M.J-m~2-day~!), T, is the mean
daily temperature (in °C'), Ry is the potential (i.e. extraterrestrial) solar
radiation (in M.J -m~2 - day~"') and RH,,cqn is the mean relative humidity
(in percent).

6.2 Penman-Monteith formulation

The Penman-Monteith combination equation:

_ 1 A-Ry+D-(p-Cp/ra)
PN A+ (1 +re)ra)

E, (61)
where D is the vapour pressure deficit (in kPa), A is the slope of the sat-
urated vapor pressure (in Pa - K _1), v is the psychrometer constant (in
kPa-K~1), X is the latent heat vaporization of water (in MJ-kg~') and C,,
is the specific heat of air (in M.J - kg~' - K~1). r. is the canopy resistance
(in s -m~1). For simplicity, aecrodynamic resistance (r,) is currently set to
rq = 208.0/u where u is the input wind speed.

7 Miscellaneous functions

7.1 Downloading data from AEMET

National meteorological agencies are increasingly adopting an open data
philosophy and one of them is the Spanish meteorological agency (Agencia
Espanola de Meteorologia, AEMET). In meteoland we provide two functions
that retrieve AEMET data using their OpenData API (API keys need to be
obtained from AEMET):

e downloadAEMEThistoricalstationlist() : Gets the list of stations
from which historical daily meteorological data is available.

e downloadAEMEThistorical() : Downloads historical daily meteoro-
logical data corresponding to a input set of stations and period.

e downloadAEMETcurrentday() : Downloads the last 24h of meteoro-
logical data corresponding to a input set of stations.

7.2 Extraction of climatic netCDF data

NetCDF is a standard data format for meteorological data. In particular,
this format is used to store the predictions of global and regional climate
models. Function extractNetCDF () parses a set of NetCDFs and extracts
the daily meteorological data of a landscape boundary box for use within
meteoland. The function first identifies which cells in NetCDF data should
be extracted (according to the input boundary box), and the overall period.
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For each cell to be processed, the function loops over all files (which can
describe different variables and time periods) and extracts the corresponding
data. The function transforms units to the units used in meteoland. If
specific humidity and mean temperature are available, the function also
calculates mean relative humidity.

7.3 Obtaining static wind fields

External software is necessary to calculate the set of wind fields for the
study area under different domain-level average situations. For this we rec-
ommend using WindNinja, a computer program that calculates spatially
varying wind fields for wildland fire applications. WindNinja allows simu-
lating the spatial variation of wind for one instant in time. It was developed
to be used by emergency responders within their typical operational con-
straints of fast simulation times (seconds), low CPU requirements (single
processor laptops), and low technical expertise. WindNinja is typically run
on domain sizes up to 50 kilometers by 50 kilometers and at resolutions
of around 100 meters. The program is free and can be downloaded from
www.firemodels.org.

The inputs for a basic run of WindNinja are an elevation data file for
the study area, a domain-averaged input wind speed and direction and a
specification of the dominant vegetation in the area. In order to obtain
a set of pre-computed rasters of wind direction and speed, we suggest the
following procedure:

e Export the elevation raster of the study area in one of the file formats
accepted by WindNinja (‘.asc’, ‘.tif” or ‘.img’). In the case of a large
study area (e.g. > 100 x 100 km) one should run WindNinja in subsets
of the area and then integrate the results (e.g., Sanjuan et al. 2014).

e Run WindNinja, using the elevation of the study area, for all combi-
nations of wind direction and wind speed class (for each wind speed
class an mean class value has to be chosen). Several combinations
of domain-level wind speed and wind direction can be specified for a
single run, and the program can also be run in batch mode.

e Read raster files created by WindNinja (a wind speed file, a wind
direction file) for each combination of domain-level wind speed and
direction.

Function readWindNinjaOutput() can be used to conduct this last step.
The function allows parsing all the ASCII raster files produced by WindNinja
for combinations of wind direction (e.g., 0, 45, 90, 135, 180, 225, 270 and
315 degrees) and wind speed (e.g., 2, 7 and 10 m/s). The function returns
a list with the following elements:
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e The vector of domain-level wind directions corresponding to Wind-
Ninja Runs

e The vector of domain-level wind speed corresponding to WindNinja
Runs

e An object SpatialGridDataFrame containing the wind directions (in
degrees from North) for all WindNinja runs.

e Anobject SpatialGridDataFrame containing the wind speeds (in m/s)
for all WindNinja runs.
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