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Abstract

mlogit is a package for R which enables the estimation the multinomial logit models
with individual and/or alternative specific variables. The main extensions of the basic
multinomial model (heteroscedastic, nested and random parameter models) are imple-
mented.
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An introductory example

The logit model is useful when one tries to explain discrete choices, i.e. choices of one among
several mutually exclusive alternatives. There are many useful applications in different fields
of applied econometrics when one wants to analyze individual data, which may be :

� revealed preferences data which means that the data are observed choices of individual
for example for a transport mode (car, plane and train for example),

� stated preferences data, for example three virtual train tickets with different character-
istics proposed to travelers

– A : a train ticket which costs 10 euros, for a trip of 30 minutes and one change,

– B : a train ticket which costs 20 euros, for a trip of 20 minutes and no change,

– C : a train ticket which costs 22 euros, for a trip of 22 minutes and one change.

Suppose that the utility of each alternative depends linearly on cost (x) and price (z)


U1 = α1 + βx1 + γz1
U2 = α2 + βx2 + γz2
U3 = α3 + βx3 + γz3

The multinomial logit model is obtained simply by applying a specific transformation to the
utility level so that the results may be interpreted as probabilities of choosing each alternative
:
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
P1 = eU1

eU1+eU2+eU3

P2 = eU2

eU1+eU2+eU3

P3 = eU3

eU1+eU2+eU3

The two characteristics of probabilities are satisfied :

� 0 ≤ Pj ≤ 1,

�

∑3
j=1 Pj = 1

Once fitted, a logit model is useful for predictions :

� enter new values for the explanatory variables,

� get

– at an individual level the probabilities of choice,

– at an aggregate level the market shares.

Consider, as an example interurban trips between two towns (Lyon and Paris for example).
Suppose that there are three modes (car, plane and train) and that the characteristics of the
modes and the market shares are as follow :

price time share
car 50 4 20%
plane 150 1 25%
train 80 2 55%

With a sample of travelers, on can estimate the coefficients of the logit model, i.e. the
coefficients of time and price in the utility function.

The fitted model can then be used to predict the impact of some chocks on the market shares,
for example :

� the influence of train trips length on modal shares,

� the influence of the arrival of low cost companies.

To get the predictions, one just has to change the values of train time or plane prices and
compute the new probabilities, which can be interpreted at the aggregate level as predicted
market shares.

1. Data management and model description

1.1. Data management

mlogit is loaded using :
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R> library("mlogit")

It comes with several data sets that we’ll use to illustrate the features of the library. Data sets
used for multinomial logit estimation deals with some individuals, that make one or several
choices between several alternatives, the determinants of these choices being variables that
can be alternative specific or purely individual specific. Such data have therefore a specific
structure which can be characterized by three indexes :

� the alternative,

� the choice situation,

� the individual

the last one being only relevant if we have repeated observations for the same individual.

Data sets can have two different shapes :

� a wide shape : in this case, there is one row for each choice situation,

� a long shape : in this case, there is one column for each alternative.

This can be illustrated with two data sets. The first one, Fishing comes with mlogit. The
second one TravelMode is from the AER package.

R> data("Fishing", package = "mlogit")

R> head(Fishing, 3)

mode price.beach price.pier price.boat price.charter catch.beach
1 charter 157.930 157.930 157.930 182.930 0.0678
2 charter 15.114 15.114 10.534 34.534 0.1049
3 boat 161.874 161.874 24.334 59.334 0.5333
catch.pier catch.boat catch.charter income

1 0.0503 0.2601 0.5391 7083.332
2 0.0451 0.1574 0.4671 1250.000
3 0.4522 0.2413 1.0266 3750.000

There are four fishing modes (beach, pier, boat, charter), two alternative specific variables
(price and catch) and one choice/individual specific variable (income)1. This “wide” format
is suitable to store individual specific variable. Otherwise, it is cumbersome for alternative
specific variables because there are as many columns for such variables that there are alter-
natives.

R> data("TravelMode", package = "AER")

R> head(TravelMode)

1Note that the distinction between choice and individual is not relevant here as these data are not panel
data.
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individual mode choice wait vcost travel gcost income size
1 1 air no 69 59 100 70 35 1
2 1 train no 34 31 372 71 35 1
3 1 bus no 35 25 417 70 35 1
4 1 car yes 0 10 180 30 35 1
5 2 air no 64 58 68 68 30 2
6 2 train no 44 31 354 84 30 2

There are four transport modes (air, train, bus and car)and most of the variable are alternative
specific (wait, vcost, travel, gcost). The only individual specific variables are income and size.
This advantage of this shape is that there are much fewer columns than in the wide format,
the caveat being that values of income and size are repeated four times.

mlogit deals with both format. It provides a mlogit.data function that take as first argument
a data.frame and returns a data.frame in “long” format with some information about the
structure of the data.

For the Fishing data, we would use :

R> Fish <- mlogit.data(Fishing, shape = "wide", varying = 2:9, choice = "mode")

The mandatory arguments are choice, which is the variable that indicates the choice made,
the shape of the original data.frame and, if there are some alternative specific variables,
varying which is a numeric vector that indicates which columns contains alternative specific
variables. This argument is then passed to reshape that coerced the original data.frame in
“long” format. Further arguments may be passed to reshape. For example, if the names of
the variables are of the form var:alt, one can add sep = ’:’.

R> head(Fish, 5)

mode income price catch
1.beach FALSE 7083.332 157.930 0.0678
1.boat FALSE 7083.332 157.930 0.2601
1.charter TRUE 7083.332 182.930 0.5391
1.pier FALSE 7083.332 157.930 0.0503
2.beach FALSE 1250.000 15.114 0.1049

R> head(attr(Fish, "index"), 5)

chid alt
1.beach 1 beach
1.boat 1 boat
1.charter 1 charter
1.pier 1 pier
2.beach 2 beach

The result is a data.frame in “long format” with one line for each alternative. The “choice”
variable is now a boolean and the individual specific variable (income) is repeated 4 times.
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An index attribute is added to the data, which contains the two relevant index : chid is the
choice index and alt index.

For data in “long” format like TravelMode, the shape (here equal to long) and the choice
arguments are still mandatory.

The information about the structure of the data can be explicitly indicated or, in part, guessed
by the mlogit.data function. Here, we have 210 individuals which are indicated by a variable
called individual. The information about individuals can also be guessed from the fact that
the data frame is balanced (every individual faces 4 alternatives) and that the rows are ordered
first by individual and then by alternative.

Concerning the alternative, there are indicated by the mode variable and they can also be
guessed tanks to the ordering and the rows and the fact that the data frame is balanced.

The first way to read correctly this data frame is to ignore completely the two index variables.
In this case, the only supplementary argument to provide a alt.levels argument which is a
character vector that contains the name of the alternatives :

R> TM <- mlogit.data(TravelMode, choice = "choice", shape = "long",

+ alt.levels = c("air", "train", "bus", "car"))

It is also possible to provide an argument alt.var which indicates the name of the variable
that contains the alternatives

R> TM <- mlogit.data(TravelMode, choice = "choice", shape = "long",

+ alt.var = "mode")

The name of the variable that contains the information about the choice can be indicated
using the chid.var variable :

R> TM <- mlogit.data(TravelMode, choice = "choice", shape = "long",

+ chid.var = "individual", alt.levels = c("air", "train", "bus",

+ "car"))

Both alternative and choice variable can be provided :

R> TM <- mlogit.data(TravelMode, choice = "choice", shape = "long",

+ chid.var = "individual", alt.var = "mode")

and dropped from the data using the drop.index argument :

R> TM <- mlogit.data(TravelMode, choice = "choice", shape = "long",

+ chid.var = "individual", alt.var = "mode", drop.index = TRUE)

R> head(TM)

choice wait vcost travel gcost income size
1.air FALSE 69 59 100 70 35 1
1.train FALSE 34 31 372 71 35 1
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1.bus FALSE 35 25 417 70 35 1
1.car TRUE 0 10 180 30 35 1
2.air FALSE 64 58 68 68 30 2
2.train FALSE 44 31 354 84 30 2

The final example is a data set called Train which contains data from a stated preference
study.

R> data("Train", package = "mlogit")

R> head(Train, 3)

id choiceid choice price1 time1 change1 comfort1 price2 time2 change2
1 1 1 choice1 2400 150 0 1 4000 150 0
2 1 2 choice1 2400 150 0 1 3200 130 0
3 1 3 choice1 2400 115 0 1 4000 115 0
comfort2

1 1
2 1
3 0

These data are panel data, each individual has responded to several (up to 16) scenario. To
take this panel dimension into account, one has to add an argument id which contains the
individual variable. The index attribute has now a supplementary column, the individual
index.

R> Tr <- mlogit.data(Train, shape = "wide", choice = "choice", varying = 4:11,

+ sep = "", alt.levels = c(1, 2), id = "id")

R> head(Tr, 3)

choiceid choice price time change comfort
1.1 1 TRUE 2400 150 0 1
1.2 1 FALSE 4000 150 0 1
2.1 2 TRUE 2400 150 0 1

R> head(attr(Tr, "index"), 3)

chid alt id
1.1 1 1 1
1.2 1 2 1
2.1 2 1 1

1.2. Model description

mlogit use the standard formula, data interface to describe the model to be estimated.
However, standard formulas are not very practical for such models. More precisely, when
working with multinomial logit models, one has to consider three kinds of variables :
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� alternative specific variables xij with a generic coefficient β,

� individual specific variables zi with alternative specific coefficients γj ,

� alternative specific variables wij with an alternative specific coefficient δj .

The utility for the alternative j (or more precisely the deterministic component of utility) is
then :

Uij = αj + βxij + γjzi + δjwij

Utility being ordinal, only utility differences are relevant to modelize the choice for one alter-
native. This means that, for example, we’ll be interested in the difference between the utility
of two different alternatives j and k :

Uij − Uik = (αj − αk) + β(xij − xik) + (γj − γk)zi + (δjwij − δkwik)

It is clear from the previous expression that coefficients for individual specific variables (the
intercept being one of those) should be alternative specific, otherwise they would disappear
in the differentiation. Moreover, only differences of these coefficients are relevant and may
be identified. For example, with three alternatives 1, 2 and 3, the three coefficients γ1, γ2, γ3

associated to an individual specific variable cannot be identified, but only two linear combi-
nations of them. Therefore, one has to make a choice of normalization and the most simple
one is just to put γ1 = 0.

Coefficients for alternative specific variables may (or may not) be alternative specific. For
example, transport time is alternative specific, but may be 10 mn in public transport don’t
have the same value than 10 mn in a car. In this case, alternative specific coefficients are
relevant. Monetary time is also alternative specific, but in this case, one can consider than
1 euro is 1 euro whatever it is spent in car or in public transports. In this case a generic
coefficient is relevant.

A model with only individual specific variables is sometimes called a multinomial logit model,
one with only alternative specific variables a conditional logit model and one with both kind
of variables a mixed logit model. This is seriously misleading : conditional logit model is
also a logit model for longitudinal data in the statistical literature and mixed logit is one of
the names of a logit model with random parameters. Therefore, in what follow, we’ll use
the name multinomial logit model for the model we’ve just described whatever the kind of
variables introduced.

mlogit package provides objects of class mFormula which are extended model formulas and
which are build upon Formula objects provided by the Formula package.

To illustrate the use of mFormula objects, let’s use again the TravelMode data set. income
and size (the size of the household) are individual specific variables. vcost (monetary cost)
and travel (travel time) are alternative specific. We want to use a generic coefficient for
the former and alternative specific coefficients for the latter. This is done using the following
three-parts formula :

R> f <- mFormula(choice ~ vcost | income + size | travel)



8 Estimation of multinomial logit models in R : The mlogit Packages

By default, an intercept is added to the model, it can be removed by using +0 or -1 in the
second part. Some parts may be omitted when there are no ambiguity. For example, the
following couples of formulas are identical :

R> f2 <- mFormula(choice ~ vcost + travel | income + size)

R> f2 <- mFormula(choice ~ vcost + travel | income + size | 0)

R> f3 <- mFormula(choice ~ 0 | income | 0)

R> f3 <- mFormula(choice ~ 0 | income)

R> f4 <- mFormula(choice ~ vcost + travel)

R> f4 <- mFormula(choice ~ vcost + travel | 1)

R> f4 <- mFormula(choice ~ vcost + travel | 1 | 0)

Finally, we show below some formulas that describe models without intercepts (which is
generally hardly relevant)

R> f5 <- mFormula(choice ~ vcost | 0 | travel)

R> f6 <- mFormula(choice ~ vcost | income + 0 | travel)

R> f6 <- mFormula(choice ~ vcost | income - 1 | travel)

R> f7 <- mFormula(choice ~ 0 | income - 1 | travel)

model.matrix and model.frame methods are provided for mFormula objects. The former is
of particular interest, as illustrated in the following example :

R> f <- mFormula(choice ~ vcost | income | travel)

R> head(model.matrix(f, TM))

alttrain altbus altcar vcost alttrain:income altbus:income
1.air 0 0 0 59 0 0
1.train 1 0 0 31 35 0
1.bus 0 1 0 25 0 35
1.car 0 0 1 10 0 0
2.air 0 0 0 58 0 0
2.train 1 0 0 31 30 0

altcar:income altair:travel alttrain:travel altbus:travel altcar:travel
1.air 0 100 0 0 0
1.train 0 0 372 0 0
1.bus 0 0 0 417 0
1.car 35 0 0 0 180
2.air 0 68 0 0 0
2.train 0 0 354 0 0

The model matrix contains J − 1 columns for every individual specific variable (income and
the intercept), which means that the coefficient associated to the first alternative (air) is
fixed to 0.
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It contains only one column for vcost because we want a generic coefficient for this variable.

It contains J columns for travel, because it is an alternative specific variable for which we
want an alternative specific coefficient.

2. Random utility model and the multinomial logit model

2.1. Random utility model

The individual must choose one alternative among J different and exclusive alternatives. A
level of utility may be defined for each alternative and the individual is supposed to choose
the alternative with the highest level of utility. Utility is supposed to be the sum of two
components2:

� a systematic component, denoted Vj , which is a function of different observed variables
xj . For sake of simplicity, it will be supposed that this component is a linear function
of the observed explanatory variables : Vj = β>j xj ,

� an unobserved component εj which, from the researcher point of view, can be represented
as a random variable. This error term include the impact of all the unobserved variables
which have an impact on the utility of choosing a specific alternative.

It is very important to understand that the utility and therefore the choice is purely deter-
ministic from the individual point of view. It is random form the researcher’s point of view,
because some of the determinants of the utility are unobserved, which implies that the choice
can only be analyzed in terms of probabilities.

We have, for each alternative, the following utility levels :


U1 = β>1 x1 + ε1 = V1 + ε1
U2 = β>1 x1 + ε2 = V2 + ε2

...
...

UJ = β>J xJ + εJ = VJ + εJ

alternative l will be chosen if and only if ∀ j 6= l Uj > Ul which leads to the following J − 1
conditions :


Ul − U1 = (Vl − V1) + (εl − ε1) > 0
Ul − U2 = (Vl − V2) + (εl − ε2) > 0

...
Ul − UJ = (Vl − VJ) + (εl − εJ) > 0

As εj are not observed, choices can only be modeled in terms of probabilities from the re-
searcher point of view. The J − 1 conditions can be rewritten in terms of upper bonds for
the J − 1 remaining error terms :

2when possible, we’ll omit the individual index to simplify the notations.



10 Estimation of multinomial logit models in R : The mlogit Packages


ε1 < (Vl − V1) + εl
ε2 < (Vl − V2) + εl

...
εJ < (Vl − VJ) + εl

The general expression of the probability of choosing alternative l is then :

(Pl | εl) = P(Ul > U1, . . . , Ul > UJ)

(Pl | εl) = F−l(ε1 < (Vl − V1) + εl, . . . , εJ < (Vl − VJ) + εl) (1)

where F−l is the multivariate distribution of J − 1 error terms (all the ε’s except εl). Note
that this probability is conditional on the value of εl.

The unconditional probability (which depends only on β and on the value of the observed
explanatory variables is :

Pl =
∫

(Pl | εl)fl(εl)dεl

Pl =
∫
F−l((Vl − V1) + εl, . . . , (Vl − VJ) + εl)fl(εl)dεl (2)

where fl is the marginal density function of εl.

2.2. The distribution of the error terms

The multinomial logit model (McFadden (1974)) is a special case of the model developed in
the previous section. It relies on three hypothesis :

H1 : independence of errors

If the hypothesis of independence of errors is made, we have :
P(Ul > U1) = F1(Vl − V1 + εl)
P(Ul > U2) = F2(Vl − V2 + εl)

...
P(Ul > UJ) = FJ(Vl − VJ + εl)

And the conditional (1) and unconditional (2) probabilities are just :

(Pl | εl) =
∏
j 6=l

Fj(Vl − Vj + εl) (3)

Pl =
∫ ∏

j 6=l
Fj(Vl − Vj + εl) fl(εl) dεl (4)

which means that the evaluation of only one-dimensional integral is required to compute the
probabilities.
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H2 : Gumbel distribution

Each ε follows a Gumbel distribution :

f(z) =
1
θ
e
µ−z
θ e−e

µ−z
θ

where µ is the location parameter and θ the scale parameter.

P (z < t) = F (t) =
∫ t

−∞

1
θ
e
µ−z
θ e−e

µ−z
θ dz = e−e

− t
θ

The first two moments of the Gumbel distribution are E(z) = µ+ θγ, where γ is the Euler-
Mascheroni constant (0.577) and V(z) = π2

6 θ
2.

The mean and the variance of the εjs are not identified. We can then, without loss of generality
suppose that µj = 0 ∀j and that one of the θj equals 1.

Ul = β>l xl + ηl

Ul
σ

=
βl
σ

>
xl +

ηl
σ

=
βl
σ

>
xl + εl

with εl = ηl
σ follows a standard Gumbel distribution

H3 identically distributed errors

As, the location is not identified for any error term, this hypothesis is essentially an ho-
moscedasticity hypothesis, which means that the scale parameter of Gumbel distribution is
the same for all the alternatives. This common scale parameter is not identified, and therefore,
we can suppose that θj = 1 ∀j ∈ 1 . . . J .

In this case, the conditional (3) and unconditional (4) probabilities further simplify to :

(Pl | εl) =
∏
j 6=l

F (Vl − Vj + εl) (5)

Pl =
∫ ∏

j 6=l
F (Vl − Vj + εl) f(εl) dεl (6)

with F and f respectively the cumulative and the density of the standard Gumbel distribution
(i.e. with position and scale parameters equal to 0 and 1).

2.3. Computation of the logit probabilities

With these hypothesis on the distribution of the error terms, we can now show that the
probabilities have very simple, closed forms, which correspond to the logit transformation of
the deterministic parts of the utility.

Let’s start with the probability that the alternative l is better than one other alternative j.
With hypothesis 2 and 3, it can be written :

P (εj < Vl − Vj + εl) = e−e
−(Vl−Vj+εl) (7)
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With hypothesis 1, the probability of choosing l is then simply the product of probabilities
(7) for all the alternatives except l :

(Pl | εl) =
∏
j 6=l

e−e
−(Vl−Vj+εl) (8)

The unconditional probability is the mean of the previous expression weighted by the Gumbell
density of εl.

Pl =
∫ +∞

−∞
(Pl | εl) e−εle−e

−εldεl =
∫ +∞

−∞

∏
j 6=l

e−e
−(Vi−Vj+εl)

 e−εle−e−εldεl (9)

We first begin by writing the preceding expression for all alternatives, including the l alter-
native.

Pl =
∫ +∞

−∞

∏
j

e−e
−(Vl−Vj+εl)

 e−εldεl
Pl =

∫ +∞

−∞
e
−
∑

j
e−(Vl−Vj+εl)

e−εldεl =
∫ +∞

−∞
e
−e−εl

∑
j
e−(Vi−Vj)

e−εldεl

We then use the following change of variable

t = e−εl ⇒ dt = −e−εldεl

The unconditional probability is therefore the following integral :

Pl = −
∫ +∞

0
e
−t
∑

j
e−(Vl−Vj)

dt

which has a closed form :

Pl = −

e−t∑j
e−(Vl−Vj)∑

j e
−(Vl−Vj)

+∞

0

=
1∑

j e
−(Vl−Vj)

and can be rewritten as the usual logit probability :

Pl =
eVi∑
j e

Vj
(10)

2.4. IIA hypothesis

If we consider the probabilities of choice for two alternatives l and m, we have :

Pl =
eVl∑
j e

Vj
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Pm =
eVm∑
j e

Vj

The ration of these two probabilities is :

Pl
Pm

=
eVl

eVm

This probability ratio for the two alternatives depends only on the characteristics of these
two alternatives and not on those of other alternatives. This is called the IIA hypothesis (for
independence of irrelevant alternatives).

If we use again the introductory example of urban trips between Lyon and Paris :

price time share
car 50 4 20%
plane 150 1 20%
train 80 2 60%

Suppose that, because of low cost companies arrival, the price of plane is now 100$. The
market share of plane will increase (for example up to 60%). With a logit model, share for
train / share for car is 3 before the price change, and will remain the same after the price
change. Therefore, the new predicted probabilities for car and train are 10 and 30%.

The IIA hypothesis relies on the hypothesis of independence of the error terms. It is not a
problem by itself and may even be considered as a useful feature for a well specified model.
However, this hypothesis may be in practice violated if some important variables are unob-
served.

To see that, suppose that the utilities for two alternatives are :

Ui1 = α1 + β1zi + γxi1 + εi1

Ui2 = α2 + β2zi + γxi2 + εi2

with εi1 and εi2 uncorrelated. In this case, the logit model can be safely used, as the hypothesis
of independence of the errors is satisfied.

If zi is unobserved, the estimated model is :

Ui1 = α1 + γxi1 + ηi1

Ui2 = α2 + γxi2 + ηi2

ηi1 = εi1 + β1zi

ηi2 = εi2 + β2zi

The error terms are now correlated because part of them is the common influence of some
omitted variables on utility.
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2.5. Estimation

The coefficients of the multinomial logit model are estimated using maximum likelihood.

The likelihood function

Let’s start with a very simple example. Suppose there are four individuals. For given pa-
rameters and explanatory variables, we can calculate the probabilities. The likelihood for the
sample is the probability associated to the sample :

choice Pi1 Pi2 Pi3 li
1 1 0.5 0.2 0.3 0.5
2 3 0.2 0.4 0.4 0.4
3 2 0.6 0.1 0.3 0.1
4 2 0.3 0.6 0.1 0.6

With random sample the joint probability for the sample is simply the product of the proba-
bilities associated with every observation.

L = 0.5× 0.4× 0.1× 0.6

yij is equal to one if individual i made choice j, 0 otherwise.

The probability of the choice made for one individual is :

Pi =
∏
j

Pyijij

Or in log :

ln Pi =
∑
j

yij ln Pij

which leads to the log-likelihood function :

lnL =
∑
i

ln Pi =
∑
i

∑
j

yij ln Pij

Numerical optimization

We seek to calculate the maximum of a function f .

1. Start with a value βt,

2. Approximate the function to optimize by a second order Taylor series : l(x) = f(βt)+
(x− βt)g(βt) + 0.5(x− βt)2h(βt) where g and h are the first two derivatives of f ,

3. find the maximum of l(x). The first order condition is : ∂l(x)
∂x = g(βt)+(x−βt)h(βt) = 0.

The solution is : x = βt − g(βt)
h(βt)
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x1

Figure 1: Numerical optimization

4. Go back to step one with that value.

Consider now a function of several variables f(β). The vector of first derivatives (called the
gradient) is denoted g and the matrix of second derivatives (called the hessian) is denoted H.
The second order approximation is :

l(x) = f(βt) + (x− βt)g(βt) + 0.5(x− βt)′H(βt)(x− βt)

The vector of first derivatives is :

∂l(x)
∂x

= g(βt) +H(βt)(x− βt)

x = βt −H(βt)−1g(βt)

Two kinds of routines are currently used for maximum likelihood estimation. The first one
can be called “Newton-like” methods. In this case, at each iteration, an estimation of the
hessian is calculated, whether using the second derivatives of the function (Newton-Ralphson
method) or using the outer product of the gradient (BHHH). This approach is very powerful
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x1 x2

Figure 2: Numerical optimization

x1 x2

Figure 3: Numerical optimization
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if the function is well-behaved, but it may performs poorly otherwise and scratch after a few
iterations.

The second one, BFGS, updates at each iteration the estimation of the hessian. It is often
more robust and may performs well in cases where the first one doesn’t work.

Two optimization functions are included in core R: nlm which use the Newton-Ralphson
method and optim which use BFGS (among other methods). Recently, the maxLik package
(?) provides a unified approach. With a unique interface, all the previously described methods
are available.

The behavior of maxLik can be controlled by the user using in the estimation function ar-
guments like print.level (from 0-silent to 2-verbal), iterlim (the maximum number of
iterations), methods (the method used, one of "nr", "bhhh" or "bfgs") that are passed to
maxLik.

Gradient and Hessian for the logit model

∂ lnPij
∂β

= xij −
∑
l

Pilxil

∂ lnL
∂β

=
∑
i

∑
j

(yij − Pij)xij

∂2 lnL
∂β∂β′

=
∑
i

∑
j

Pij

(
xij −

∑
l

Pilxil

)(
xij −

∑
l

Pilxil

)′

2.6. Interpretation

Marginal effects

The coefficients are not directly interpretable. The marginal effects are obtained by deriving
the probabilities with respect with the variables :

∂Pij
∂zi

= Pij

(
βj −

∑
l

Pilβl

)

∂Pij
∂xij

= γPij(1− Pij)

∂Pij
∂xil

= −γPijPil

� For a choice specific variable, the sign of the coefficient is directly interpretable. The
product of two probabilities is at most 0.25.

� For an individual specific variable, the sign of the coefficient is not necessarily the sign
of the coefficient. Actually, it depends on the sign of (βj −

∑
l Pilβl), which would be
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positive if the coefficient for the j alternative is greater than a weighted average of the
coefficients for all the alternative, the weights being the probabilities of choosing the
alternatives.

Marginal rates of substitution

Coefficients are marginal utilities, which are not interpretable because utility is ordinal. How-
ever, ratios of coefficients are marginal rates of substitution, which are interpretable. For
example, if the observable part of utility is : V = βo + β1x1 + βx2 + βx3 ; join variations of
x1 and x2 which ensure the same level of utility are such that : dV = β1dx1 + β2dx2 = 0 so
that :

−dx2

dx1
|dV=0=

β1

β2

For example, if x2 is transport cost (in euros), x1 transport time (in hours), β1 = 1.5 and
β2 = 0.2, β1

β2
= 30 is the marginal rate of substitution of time in terms of euros, the value of

30 means that to reduce the travel time of one hour, the individual is willing to pay at most
30 euros more.

Consumer’s surplus

The level of utility attained by an individual is Uj = Vj + εj , j being the alternative chosen.
The expected utility, from the researcher’s point of view is then :

E(max
j
Uj)

where the expectation is taken on the values of all the error terms. If the marginal utility of
income (α) is known and constant, the expected surplus is simply E(maxjUj)/α.

This expected surplus is a very simple expression in the context of the logit model, which is
called the “sum log”. We’ll demonstrate this fact in the context of two alternatives.

With two alternatives, the values of ε1 and ε2 can be depicted in a plan. Within this plan,
some points corresponds to situations where alternative 1 is chosen and some where alternative
2 is chosen. More precisely, alternative 1 is chosen if ε2 ≤ V1 − V2 + ε1 and alternative 2 is
chosen if ε1 ≤ V2 − V1 + ε2. The first expression is the equation of a straight line in the plan
which delimits the choice for the two alternatives.

We can then write the expected utility as the sum of two terms E1 and E2, with :

E1 =
∫ ∞
ε1=−∞

∫ V1−V2+ε1

−∞
(V1 + ε1)f(ε1)f(ε2)dε1dε2

and

E2 =
∫ ∞
ε2=−∞

∫ V2−V1+ε1

−∞
(V2 + ε2)f(ε1)f(ε2)dε1dε2

with f(z) = exp(−e( − z)) the density of the Gumbell distribution.
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E1 =
∫ ∞
ε1=−∞

(V1 + ε1)

(∫ V1−V2+ε1

−∞
f(ε2)dε2

)
f(ε1)dε1

The expression in brackets is the cumulative density of ε2. We then have :

E1 =
∫ ∞
ε1=−∞

(V1 + ε1)e−e
−(V1−V2)−ε1

f(ε1)dε1

E1 =
∫ ∞
ε1=−∞

(V1 + ε1)e−ε1e−ae
−ε1
f(ε1)dε1

with a = 1 + e−(V1−V2) = eV1+eV2

eV1
= 1

P1

Let define z | e−z = ae−ε1 ⇔ z = ε1 − ln a

We then have :

E1 =
∫ ∞
ε1=−∞

(V1 + z + ln a)/ae−ze−e
−z
f(z)dz

E1 = (V 1 + ln a)/a+ µ/a

E1 =
ln(eV1 + eV2) + µ

(eV1 + eV2)/eV1
=
eV1 ln(eV1 + eV2) + eV1µ

eV1 + eV2

By symmetry,

E2 =
eV2 ln(eV1 + eV2) + eV2µ

eV1 + eV2

And then :

E(U) = E1 + E2 = ln(eV1 + eV2) + µ

More generally, in presence of J alternatives, we have :

E(U) = ln
J∑
j=1

eVj + µ

and the expected surplus is, with α the constant marginal utility of income˜:

E(U) =
ln
∑J
j=1 e

Vj + µ

α

2.7. Application

Train contains data about a stated preference survey in Netherlands. Users are asked to
choose between to train trips characterized by four attributes :
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� price : the price in cents of guilders,

� time : travel time in minutes,

� change : the number of changes,

� comfort : the class of comfort, 0, 1 or 2, 0 being the most comfortable class.

R> data("Train", package = "mlogit")

R> Tr <- mlogit.data(Train, shape = "wide", choice = "choice", varying = 4:11,

+ sep = "", alt.levels = c(1, 2), id = "id")

We first convert price and time in more meaningful unities, hours and euros (1 guilder is
2.20371 euros) :

R> Tr$price <- Tr$price/100 * 2.20371

R> Tr$time <- Tr$time/60

We then estimate the model : both alternatives being virtual train trips, it is relevant to use
only generic coefficients and to remove the intercept :

R> m <- mlogit(choice ~ price + time + change + comfort | -1, Tr)

R> summary(m)

Call:
mlogit(formula = choice ~ price + time + change + comfort | -1,

data = Tr, method = "nr", print.level = 0)

Frequencies of alternatives:
1 2

0.50324 0.49676

nr method
5 iterations, 0h:0m:1s
g'(-H)^-1g = 1.28E-11
optimum reached

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

price -0.0673581 0.0033933 -19.8506 < 2.2e-16 ***
time -1.7205517 0.1603517 -10.7299 < 2.2e-16 ***
change -0.3263410 0.0594892 -5.4857 4.118e-08 ***
comfort -0.9457257 0.0649455 -14.5618 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -1724.2
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All the coefficients are highly significant and have the predicted negative sign (remind than
an increase in the variable comfort implies using a less comfortable class). The coefficients
are not directly interpretable, but dividing them by the price coefficient, we get monetary
values :

R> coef(m)[-1]/coef(m)[1]

time change comfort
25.543370 4.844869 14.040276

We obtain the value of 26 euros for an hour of traveling, 5 euros for a change and 14 euros to
access a more comfortable class.

The second example use the Fishing data. It illustrates the multi-part formula interface
to describe the model, and the fact that it is not necessary to transform the data set using
mlogit.data before the estimation, i.e. instead of using :

R> Fish <- mlogit.data(Fishing, shape = "wide", varying = 2:9, choice = "mode")

R> m <- mlogit(mode ~ price | income | catch, Fish)

it is possible to use mlogit with the original data.frame and the relevant arguments that
will be internally passed to mlogit.data :

R> m <- mlogit(mode ~ price | income | catch, Fishing, shape = "wide",

+ varying = 2:9)

R> summary(m)

Call:
mlogit(formula = mode ~ price | income | catch, data = Fishing,

shape = "wide", varying = 2:9, method = "nr", print.level = 0)

Frequencies of alternatives:
beach boat charter pier

0.11337 0.35364 0.38240 0.15059

nr method
7 iterations, 0h:0m:1s
g'(-H)^-1g = 4.37E-12
optimum reached

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

altboat 8.4184e-01 2.9996e-01 2.8065 0.0050080 **
altcharter 2.1549e+00 2.9746e-01 7.2443 4.348e-13 ***
altpier 1.0430e+00 2.9535e-01 3.5315 0.0004132 ***
price -2.5281e-02 1.7551e-03 -14.4046 < 2.2e-16 ***
altboat:income 5.5428e-05 5.2130e-05 1.0633 0.2876609
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altcharter:income -7.2337e-05 5.2557e-05 -1.3764 0.1687090
altpier:income -1.3550e-04 5.1172e-05 -2.6480 0.0080977 **
altbeach:catch 3.1177e+00 7.1305e-01 4.3724 1.229e-05 ***
altboat:catch 2.5425e+00 5.2274e-01 4.8638 1.152e-06 ***
altcharter:catch 7.5949e-01 1.5420e-01 4.9254 8.417e-07 ***
altpier:catch 2.8512e+00 7.7464e-01 3.6807 0.0002326 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -1199.1
McFadden R^2: 0.19936
Likelihood ratio test : chisq = 597.16 (p.value=< 2.22e-16)

Several methods can be used to extract some results from the estimated model. fitted returns
the predicted probabilities for the outcome or for all the alternatives if outcome=FALSE.

R> head(fitted(m))

[1] 0.3114002 0.4537956 0.4567631 0.3701758 0.4763721 0.4216448

R> head(fitted(m, outcome = FALSE))

beach boat charter pier
[1,] 0.09299769 0.5011740 0.3114002 0.09442817
[2,] 0.09151070 0.2749292 0.4537956 0.17976449
[3,] 0.01410358 0.4567631 0.5125571 0.01657625
[4,] 0.17065868 0.1947959 0.2643696 0.37017585
[5,] 0.02858215 0.4763721 0.4543225 0.04072324
[6,] 0.01029791 0.5572463 0.4216448 0.01081103

Finally, two further arguments can be usefully used while using mlogit

� reflevel indicates which alternative is the“reference”alternative, i.e. the one for which
the coefficients are 0,

� altsubset indicates a subset on which the estimation has to be performed ; in this
case, only the lines that corresponds to the selected alternatives are used and all the
observations which corresponds to choices for unselected alternatives are removed :

R> m <- mlogit(mode ~ price | income | catch, Fish, reflevel = "charter",

+ alt.subset = c("beach", "pier", "charter"))

3. Relaxing the iid hypothesis

With hypothesis 1 and 3, the error terms are iid (identically and independently distributed),
i.e. not correlated and homoscedastic. Extensions of the basic multinomial logit model have
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been proposed by relaxing one of these two hypothesis while maintaining the second hypothesis
of Gumbell distribution.

3.1. The heteroskedastic logit model

The heteroskedastic logit model was proposed by Bhat (1995).

The probability that Ul > Uj is :

P (εj < Vl − Vj + εl) = e−e
−

(Vl−Vj+εl)
θj

which implies the following conditional and unconditional probabilities

(Pl | εl) =
∏
j 6=l

e−e
−

(Vl−Vj+εl)
θj (11)

Pl =
∫ +∞

−∞

∏
j 6=l

e−e− (Vl−Vj+εl)
θj

 1
θl
e
− εl
θl e−e

−
εl
θl dεl (12)

We then apply the following change of variable :

u = e
− εl
θl ⇒ du = − 1

θl
e
− εl
θl dεl

The unconditional probability (12) can then be rewritten :

Pl =
∫ +∞

0

∏
j 6=l

e−e−Vl−Vj−θl lnuθj

 e−udu =
∫ +∞

0

e−∑j 6=l e
−
Vl−Vj−θl lnu

θj

 e−udu
There is no closed form for this integral but it can be written the following way :

Pl =
∫ +∞

0
Gle
−udu

with

Gl = e−Al Al =
∑
j 6=l

αj αj = e
−
Vl−Vj−θl lnu

θj

This one-dimensional integral can be efficiently computed using a Gauss quadrature method,
and more precisely a Gauss-Laguerre quadrature method :

∫ +∞

0
f(u)e−udu =

∑
t

f(ut)wt

where ut and wt are respectively the nodes and the weights.
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Pl =
∑
t

Gl(ut)wt

∂Gl
∂βk

=
∑
j 6=l

αj
θj

(xlk − xjk)Gl

∂Gl
∂θl

= − lnu
∑
j 6=l

αj
θj
Gl

∂Gl
∂θj

= lnαj
αj
θj
Gl

3.2. The nested logit model

The nested logit model was first proposed by McFadden (1978). It is a generalization of the
multinomial logit model that rests on the idea that some alternatives may be joined in several
groups (called nests). The error terms may then present some correlation in the same nest,
whereas error terms of different nests are still uncorrelated.

We suppose that the alternatives can be put into K different nests. This implies the following
multivariate distribution for the error terms.

exp

− K∑
k=1

∑
j∈Bk

e−εj/λk

λk


The marginal distributions of the εs are still univariate extreme value, but there is now some
correlation within nests. 1 − λk is a measure of the correlation, i.e. λk = 1 implies no
correlation. It can then be shown that the probability of choosing alternative j that is part
of nest l is :

Pj =
eVj/λl

(∑
j∈Bl e

Vj/λl
)λl−1

∑K
k=1

(∑
j∈Bk e

Vj/λk
)λk

Let write : Vj = Zj +Wl

Pj =
e(Zj+Wl)/λl∑
j∈Bl e

(Zj+Wl)/λl
×

(∑
j∈Bl e

(Zj+Wl)/λl
)λl

∑K
k=1

(∑
j∈Bk e

(Zj+Wk)/λk
)λk

Pj =
eZj/λl∑
j∈Bl e

Zj/λl
×

(∑
j∈Bl e

(Zj+Wl)/λl
)λl

∑K
k=1

(∑
j∈Bk e

(Zj+Wk)/λk
)λk

∑
j∈Bl

e(Zj+Wl)/λl

λl =

eWl/λl
∑
j∈Bl

eZj/λl

λl = eWl+λlIl
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with Il = ln
∑
j∈Bl e

Zj/λl wich is often denoted as the inclusive value or inclusive utility.

We then can write the probability of choosing alternative j as :

Pj =
eZj/λl∑
j∈Bl e

Zj/λl
× eWl+λlIl∑K

k=1 e
Wk+λkIk

The first term Pj|l is the conditional probability of choosing alternative j if nest l is chosen.
It is often referred as the lower model. The second term Pl is the marginal probability of
choosing the nest l and is referred as the upper model.

Wk + λkIk can be interpreted as the expected utility of choosing the best alternative of the
nest k, Wk being the expected utility of choosing an alternative in this nest (whatever this
alternative is) and λkIk being the expected extra utility he receives by being able to choose
the best alternative in the nest.

The inclusive values link the two models.

It is then straightforward to show that IIA applies within nests, but not for two alternatives
in different nests.

A slightly different version of the nested logit model is often used, but is not compatible with
the random utility maximization hypothesis. Its difference with the previous expression is
that the determinist parts of the utility for each alternative is not normalized by the nest
elasticity :

Pj =
eVj

(∑
j∈Bl e

Vj
)λl−1

∑K
k=1

(∑
j∈Bk e

Vj
)λk

The gradient is, for the first version of the model and denoting Aj = eVk/λk and Nk =∑
j∈Bk Aj :



∂ lnPj
∂β = xj

λk
+ λk−1

λk
1
Nk

∑
j∈Bk Ajxj −

1∑
k
N
λk
k

∑
kN

λk−1
k

∑
j∈Bk Ajxj

∂ lnPj
∂λk

= − Vj
λ2
k

+ lnNk − λk−1
λ2
k

1
Nk

∑
j∈Bk VjAj

− 1∑
k
N
λk
k

(
lnNk − 1

λkNk

∑
j∈Bk VjAj

)
For the unscaled version, Al = eVl and the gradient is :


∂ lnPj
∂β = Ajxj + (λl − 1) 1

Nl

∑
j∈Bl Ajxj −

1∑
k
N
λk
k

∑
k λkN

λk−1
k

∑
j∈Bk Ajxj

∂ lnPj
∂λl

= lnNl − 1∑
k
N
λk
k

Nλl
l lnNl

To illustrate the estimation of nested logit models, we use an application presented by Kenneth
Train. The data consists on 250 newly built houses in California, and we seek to explain the
heating system chosen. The data is available in mlogit under the name HC. Seven heating
modes are available :

gcc gas central heat with cooling,
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ecc electric central resistance heat with cooling,

erc electric room resistance heat with cooling,

hpc electric heat pump which provides cooling also,

gc gaz central heat without cooling,

ec electric central resistance heat without cooling,

er electric room resistance heat without cooling.

The covariates are the installation cost (ich), the operating cost (och) and the income of the
household. This data set has a natural nesting structure, the first four modes providing also
cooling whereas the three other modes being “pure” heating modes. For the cooling mode,
the installation and operating cost for the cooling part (icca and occa should be added.

R> data("HC", package = "mlogit")

R> HC <- mlogit.data(HC, varying = c(2:8, 10:16), choice = "depvar",

+ shape = "wide")

R> cooling.modes <- attr(HC, "index")$alt %in% c("gcc", "ecc", "erc",

+ "hpc")

R> room.modes <- attr(HC, "index")$alt %in% c("erc", "er")

R> HC$icca[!cooling.modes] <- 0

R> HC$occa[!cooling.modes] <- 0

R> HC$icca <- HC$icca/100

R> HC$occa <- HC$occa/100

R> HC$ich <- HC$ich/100

R> HC$och <- HC$och/100

R> HC$inc.cooling <- HC$inc.room <- 0

R> HC$inc.cooling[cooling.modes] <- HC$income[cooling.modes]

R> HC$inc.room[room.modes] <- HC$income[room.modes]

R> HC$int.cooling <- as.numeric(cooling.modes)

R> nl <- mlogit(depvar ~ ich + och + icca + occa + inc.room + inc.cooling +

+ int.cooling | 0, HC, nests = list(cooling = c("gcc", "ecc",

+ "erc", "hpc"), other = c("gc", "ec", "er")), un.nest.el = TRUE)

Initial value of the function : 180.286442614203
iteration 1, step = 1, lnL = 179.72644009, chi2 = 3.89167036
iteration 2, step = 1, lnL = 178.49652314, chi2 = 4.54053221
iteration 3, step = 1, lnL = 178.18517025, chi2 = 0.42915312
iteration 4, step = 0.5, lnL = 178.14799363, chi2 = 0.20072201
iteration 5, step = 0.5, lnL = 178.13242191, chi2 = 0.10419337
iteration 6, step = 1, lnL = 178.1270763, chi2 = 0.01763203
iteration 7, step = 1, lnL = 178.12550886, chi2 = 0.00562972
iteration 8, step = 1, lnL = 178.12477236, chi2 = 0.00146782
iteration 9, step = 1, lnL = 178.12474273, chi2 = 4.802e-05
iteration 10, step = 1, lnL = 178.12473902, chi2 = 7.26e-06
iteration 11, step = 1, lnL = 178.12473901, chi2 = 2e-08
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4. The general extreme value model

McFadden (1978) developed a general model that suppose that the join distribution of the
error terms follow a a multivariate extreme value distribution. Let G be a function with J
arguments yj . G has the following characteristics :

� all of its arguments are non-negative,

� it is non negative,

� it is homogeneous of degree 1 in all its arguments,

� for all its argument, limyj→+∞ = G(y1, . . . yJ) = +∞,

� for distinct arguments, ∂kG
∂yi,...,yj

is non-negative if k is odd and non-positive if k is even.

Assume now that the joint cumulative distribution of the error terms can be written :

F (ε1, ε2, . . . , εJ) = exp
(
−G

(
e−ε1 , e−ε2 , . . . , e−εJ

))
We first show that this is a multivariate extreme value distribution. This implies :

1. if F is a joint cumulative distribution of probability, for any ε ⇒ −∞, we should have
F ⇒ 0,

2. if F is a joint cumulative distribution of probability, for all ε → +∞, we should have
F → 1,

3. if F is a multivariate extreme value distribution, the marginal distribution of any ε
should be an extreme value distribution.

For point 1, if εj → −∞, yj → +∞, G→ +∞ and then F → 0.

For point 2, if (ε1, . . . , εJ)→ +∞, G→ 0 and then F → 1.

To demonstrate the third point, we compute the marginal cumulative distribution of εl which
is :

F (εl) = lim
εj→+∞∀j 6=l

F (ε1, . . . , εl, . . . εJ) =

F (εl) = exp
(
−G

(
0, . . . , e−εl , . . . , 0

))
with G being homogeneous of degree one, we have :

G
(
0, . . . , e−εl , . . . , 0

)
= ale

−εl

with al = G(0, . . . , 1, . . . , 0). The marginal distribution of εl is then :

F (εl) = exp
(
−ale−εl

)
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which is an uni-variate extreme value distribution.

We note compute the probabilities of choosing an alternative :

We denote Gl the derivative of G respective to the lth argument. The derivative of F respec-
tive to the εl is then :

Fl(ε1, ε2, . . . , εJ) = e−εlGl
(
e−ε1 , e−ε2 , . . . , e−εJ

)
exp

(
−G

(
e−ε1 , e−ε2 , . . . , e−εJ

))
which is the density of εl for given values of the other J − 1 error terms.

The probability of choosing alternative l is the probability that Ul > Uj ∀j 6= l which is
equivalent to εj < Vl − Vj + εl.

This probability is then :

Pl =
∫+∞
−∞ Fl(Vl − V1 + εl, Vl − V2 + εl, . . . , Vl − VJ + εl)dεl

=
∫+∞
−∞ e−εlGl

(
e−Vl+V1−εl , e−Vl+V2−εl , . . . , e−Vl+VJ−εl

)
× exp

(
−G

(
e−Vl+V1−εl , e−Vl+V2−εl , . . . , e−Vl+VJ−εl

))
dεl

G being homogeneous of degree one, one can write :

G
(
e−Vl+V1−εl , e−Vl+V2−εl , . . . , e−Vl+VJ−εl

)
= e−Vle−εl ×G

(
eV1 , eV2 , . . . , eVJ

)
Homogeneity of degree one implies homogeneity of degree 0 of the first derivative :

Gl
(
e−Vl+V1−εl , e−Vl+V2−εl , . . . , e−Vl−VJ−εl

)
= Gl

(
eV1 , eV2 , . . . , eVJ

)
The probability of choosing alternative i is then :

Pl =
∫ +∞

−∞
e−εlGl

(
eV1 , eV2 , . . . , eVJ

)
exp

(
−e−εle−VlG

(
eV1 , eV2 , . . . , eVJ

))
dεl

Pl = Gl

∫ +∞

−∞
e−εlexp

(
−e−εle−VlG

)
dεl

Pl = Gl
1

e−VlG

[
exp

(
−e−εle−VlG

)]+∞
−∞

=
Gl

e−VlG

Finally, the probability of choosing alternative i can be written :

Pl =
eVlGl

(
eV1 , eV2 , . . . , eVJ

)
G (eV1 , eV2 , . . . , eVJ )

5. The random parameters (or mixed) logit model

A mixed logit model or random parameters logit model is a logit model for which the param-
eters are assumed to vary from one individual to another.
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5.1. The probabilities

The standard logit model is :

Pil =
eβ
′xil∑

j e
β′xij

The mixed logit model is :

Pil =
eβ
′
ixil∑

j e
β′ixij

Two strategies of estimation may be considered :

� estimate the coefficients for each individual in the sample,

� consider the coefficients as random variables.

The first approach is of limited interest, because it would requires numerous observations for
each individual.

The second approach leads to the mixed logit model.

The probability that individual i will choose alternative l is :

Pil | βi =
eβ
′
ixil∑

j e
β′ixij

This is the probability for individual i conditional on the vector of coefficients βi. To get the
unconditional probability, we have the average probability for the different values of βi.

If Vil = αi + βixil and the density of βi is f(βi, θ) :

Pil = E(Pil | βi) =
∫ +∞

−∞
(Pil | βi)f(βi, θ)dβi

which can be estimated efficiently by quadrature methods.

If Vil = αi + βixil + γivil and the density of βi and γi is f(βi, γi, θ)

Pil = E(Pil | βi, γi) =
∫ +∞

−∞

∫ +∞

−∞
(Pil | βi, γi)f(βi, γiθ)dβidγi

can be estimated by simulations.

5.2. Panel data

Especially important for stated preference survey where several questions are asked to every
individual.

Joint probabilities for each individual are computed.

P rikl =
eβ

r
i xikl∑

j e
βri xikj
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P rik =
∏
l

P rikl
yikl

P ri =
∏
i

∏
l

P rikl
yikl

P̄i =
1
R
P ri

5.3. Simulations

The probabilities for the random parameter logit are integrals with no closed form. Moreover,
the degree of integration is the number of random parameters. In practice, these models are
estimated using simulation techniques, i.e. the expected value is replaced by an arithmetic
mean. More precisely :

� make an initial hypothesis about the distribution of the random parameter : βi follows
a normal distribution with mean µ and standard deviation σ,

� draw R numbers on this distribution,

� for each draw βri , compute the probability : P ril = eβ
r
i
xil∑

j
e
βr
i
xij

� compute the average of these probabilities : P̄il =
∑n
r=1 Pil/R

� compute the log–likelihood for these probabilities,

� iterate until the maximum.

Drawing from densities

� use runif to generate pseudo random-draws from a uniform distribution,

� transform this random numbers with the quantile function of the required distribution.

ex: for the Gumbell distribution :

F (x) = e−e
−x ⇒ F−1(x) = − ln(− ln(x))

Problem : not good coverage of the relevant interval instead numerous draws are made. More
deterministic methods like Halton draws may be used instead.

Halton sequence

To generate a Halton sequence, use a prime (e.g. 3). The sequence is then :

� 0 — 1/3 — 2/3,
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Figure 4: Halton sequences
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1/3+2/9
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1

1/3
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0+1/9

4

1/3+1/9

5

2/3+1/9

6

0+2/9

7

1/3+2/9

8

2/3+2/9

9

0+1/27

10

1/3+1/27

11

2/3+1/27

12

0+1/9+1/27

13

1/3+1/9+1/27

14

2/3+1/9+1/27

15

0+2/9+1/27

16

1/3+2/9+1/27

17

2/3+2/9+1/27

18

� 0+1/9 — 1/3+1/9 — 2/3+1/9 — 0+2/9 — 1/3+2/9 — 2/3+2/9,

� 0+1/27 — 1/3++1/27 — 2/3+1/9+1/27 — 1/3+2/9+1/27 — 2/3+2/9+1/27 — 1/3+1/9+2/27
— 2/3+1/9+2/27 — 1/3+2/9+2/27 — 2/3+2/9+2/27

Correlation

Cholesky decomposition is used :

Ω is the covariance matrix of two random parameters.

The Cholesky matrix is :

C =

(
c11 c12

0 c22

)

so that

C>C =

(
c211 c11c12

c11c12 c212 + c222

)
= Ω

if V(ε1, ε2) = I, then the variance of (ε1ε2)C is Ω

ex :

Ω =

(
0.5 0.8
0.8 2.0

)
and C =

(
0.71 1.13

0 0.85

)
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Figure 5: Halton sequences vs random numbers in two dimensions
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Figure 6: uniform to Gumbell deviates
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Figure 7: Correlation

{
β1 = 0.71ε1
β2 = 1.13ε1 + 0.85ε2
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