
paramlink: Parametric linkage analysis in R

Magnus Dehli Vigeland

February 1, 2012

This document gives an introduction to the R package paramlink, which provides various functions for
likelihood based pedigree analysis, including parametric LOD scores, power analysis for linkage, genotype
probability distributions, and many utility functions for manipulating pedigrees and markers. Likelihoods
are calculated using the Elston-Stewart algorithm.

1 Introduction

To get started, install the paramlink package (if it isn’t already installed) and load it.

> install.packages("paramlink")

> require(paramlink)

In paramlink, pedigrees and associated marker data are stored as linkdat objects. An object of class
linkdat is basically a list with elements like ”pedigree”, ”markerdata”, ”model”, a.s.o.

There are 3 basic ways of creating a linkdat object:

1. Building it from scratch in paramlink.

2. Reading a ped file in standard LINKAGE format, possibly accompanied by map, dat and freq files
(MERLIN style).

3. Creating the pedigree first as a data frame or matrix in R and then converting this to a linkdat

object.

The first method is usually the quickest if you don’t already have a ped file describing your pedigree.
In linkage projects with many markers, method 2 is the most natural. In the next subsections we will
briefly demonstrate each method. Along the way we will also see how to plot, summarize and modify
pedigrees and markers.

1.1 Creating, manipulating and displaying pedigrees and markers

As an example, suppose we want to create the pedigree in Figure 1, including the genotypes. With a
little practice, paramlink’s utility functions provide an efficient alternative to writing ped files. Below are
two possible ways of building the pedigree in Figure 1. The main difference between the two lies in the
labeling of individuals: In the first, correct assignments of sex/affection status/ID label are postponed
until the end. This makes the commands nice and short, but usually requires plotting the pedigree after
each operation to figure out who’s who so far. The second alternative assigns everything correctly from
the start, making the commands slightly longer but with the advantage that the whole thing can be
written without visual aid from intermediate plots.
Alternative 1:

> x = cousinPed(degree=1)

> x = addOffspring(x, father=7, mother=8, noffs=3)

> x = addParents(x, 6)

> x = swapSex(x, c(3, 7, 9, 11))

> x = swapAff(x, 8:10, c(0,2,2))

> x = relabel(x, new=c(11:14,21:24,31:32,41:43), old=c(1,2,12,13,5,3,4,6,7:11))

Alternative 2:

1

> x2 = nuclearPed(noffs=2, sex=2:1)

> x2 = relabel(x2, c(11,12,22,23))

> x2 = addOffspring(x2, father=21, mother=22, noffs=1, id=31, sex=2)

> x2 = addOffspring(x2, father=23, mother=24, noffs=1, id=32, aff=0)

> x2 = addParents(x2, id=24, father=13, mother=14)

> x2 = addOffspring(x2, father=32, mother=31, noffs=3, ids=41:43, sex=c(2,1,2), aff=c(2,2,1))

We can check that the two objects are in fact describing the same pedigree by using the all.equal
method for linkdat objects provided by paramlink:

> all.equal(x, x2)

[1] TRUE

To add the genotypes, we first create a marker object and then add it to x:

> m = marker(x, 14, c('A', 0), 41:42, c('A','A'), 43, c('A','B'))

> x = addMarker(x, m)

Note the syntax of the marker function: The first argument provides a pedigree (in form of a linkdat

object), while the arguments following it alternate between pedigree member ID’s and their genotypes.
In other words, the above command states that individual 14 has genotype A/− (0 is the default symbol
for missing alleles), 41 and 42 have A/A, 43 has A/B, while the rest is missing.

To inspect what we have made, we use the print, summary and plot methods written for linkdat

objects:

> x

ID FID MID SEX AFF V1

1 11 0 0 1 1 -/-

2 12 0 0 2 1 -/-

3 22 11 12 2 1 -/-

4 23 11 12 1 1 -/-

5 21 0 0 1 1 -/-

6 13 0 0 1 1 -/-

7 14 0 0 2 1 A/-

8 24 13 14 2 1 -/-

9 31 21 22 2 1 -/-

10 32 23 24 1 0 -/-

11 41 32 31 2 2 A/A

12 42 32 31 1 2 A/A

13 43 32 31 2 1 A/B

> summary(x)

Pedigree:

13 individuals

5 founders, 8 nonfounders; bit size = 11

1 nuclear subfamily

2 affected by disease, 10 unaffected, 1 with unknown affection status

Marker data:

1 marker in total

9 individuals with no available genotypes: 11, 12, 22, 23, 21, 13, 24, 31, 32

12.5 % missing alleles (excluding ungenotyped individuals)

Chromosome distribution of markers:

chromosome unknown: 1 marker

2

Allele number distribution:

2 alleles: 1 marker

Model parameters:

No model parameters set

> plot(x, marker=1)

11
−/−

12
−/−

13
−/−

14
A/−

21
−/−

22
−/−

23
−/−

24
−/−

31
−/−

?

32
−/−

41
A/A

42
A/A

43
A/B

Family 1

Figure 1

0 | 0 0 | 0 0 | 0 mut | 0

0 | 0 0 | 0 0 | 0 0 | 0

0 | 0

?

0 | 0

mut | mut mut | mut mut | wt

Figure 2

The plot is shown in Figure 1. The plot function has many optional arguments. For example, in
Figure 2 we see the same pedigree and marker, but without id labels and title, with genotypes displayed
differently, and some individuals marked as deceased. The plot is produced by the command:

> plot(x, marker=1, alleles=c('mut', 'wt'), missing="0", sep=" | ", id.labels="",

+ title="", deceased=11:12)

See ?plot.linkdat for other options and more details.
To prepare for the next section, we modify our marker so that it includes information about allele

frequencies and map information.

> x = modifyMarker(x, marker=1, afreq=c(0.1, 0.9), chr=1, pos=10, name="SNP1")

1.2 Writing and reading input files

In linkage analysis projects, the pedigree and markers are usually describing in a set of files generated by
the genotyping software. While various formats exist, paramlink reads and writes files in the same format
as MERLIN, one of the most popular programs for linkage analysis. If you are unfamiliar with these
formats, please consult the web tutorial for MERLIN at http://www.sph.umich.edu/csg/abecasis/

Merlin/tour/.
Writing all the information contained in our linkdat object x to a collection of files, is done by the

following command.

> write.linkdat(x, prefix="ex")

The 4 files created by default are ”ex.ped”, ”ex.dat”, ”ex.map” and ”ex.freq”. If we had set a model
for x (see next section), a file ”ex.model” would also have been made. If only a subset of these files
are needed, say the .map and .dat files, this could be achieved by calling write.linkdat(x, pre-

fix="ex", what=c("map", "dat")).
To build a linkdat object based on the files created above, we use the linkdat function:

> y = linkdat("ex.ped", dat="ex.dat", map="ex.map", freq="ex.freq")

3

http://www.sph.umich.edu/csg/abecasis/Merlin/tour/
http://www.sph.umich.edu/csg/abecasis/Merlin/tour/

Family name: 1.

Pedigree read, 13 individuals.

Loop(s) detected.

1 marker read.

> all.equal(y,x)

[1] TRUE

The default symbol for missing alleles in the ped file is ”0”. If your file uses something else, say ”x”,
simply add missing="x" as an argument in the linkdat command.

If the frequency file is not included, all markers will be taken as equifrequent. In particular, markers
with zero or one non-missing alleles present in the ped file will be interpreted as monoallelic.

If map/dat files are not included, the markers present in the ped file will have missing name, chro-
mosome number and position. In certain analysis where these are required (e.g. in MERLIN runs), a
dummy map is then created, placing the markers on chromosome one, 1 cM apart, and with names ”M1”,
”M2”, a.s.o.

In general, the first argument of the linkdat function can be either the (path and) name of a pedigree
file (as above), or a matrix or data.frame in LINKAGE format. The latter can be useful in cases where
the pedigree file has a non-standard format. One can then load it into R with read.table, do the
necessary tweaking, and then feed it to linkdat.

2 Parametric linkage analysis

2.1 Setting the disease model

Before linkage analysis can be performed, parameters describing a disease model must be specified. The
parameters include whether the disease is autosomal or X-linked, penetrance values, phenocopy rate and
allele frequencies at the disease locus. All of these are controlled by the setModel function. For the
simplest cases, there is a shortcut: Setting model=i for an integer i in the range 1-4, is interpreted as
follows:

1 = Autosomal dominant

2 = Autosomal recessive

3 = X-linked dominant

4 = X-linked recessive

If nothing else is indicated, the other parameters are given default values: Full penetrance, no phenocopies,
disease allele frequency=0.00001.

For our example pedigree in Figure 1 we want an autosomal recessive model:

> x = setModel(x, model=2)

> x$model

Autosomal inheritance with penetrances: (f0, f1, f2) = (0, 0, 1)

Disease allele frequency: 1e-05

The shortcut model=2 above is equivalent to the following command, where the parameters are specified
individually:

> x = setModel(x, chrom="autosomal", penetrances=c(0, 0, 1), dfreq=0.00001)

Note in particular the penetrance parameters, given as a vector of length 3 of the form penetrances =
(f0, f1, f2) using the conventional notation for penetrance values:

fi = P (affected | i copies of the disease allele).

If the input linkdat object to setModel already has a model, setModel uses the existing model values
for any missing arguments. This makes it easy to change one parameter while keeping everything else as
before. For example, the command x = setModel(x, penetrances=c(0.01, 0.01, 0.9)) alters the
penetrance values (to indicate 1% phenocopy rate and 90% penetrance) keeping everything else as before.

4

2.2 Singlepoint LOD scores

The function lod computes singlepoint LOD scores for all the markers of any linkdat object. There is
no automatic loop breaking implemented at the moment, so loop breakers must be specified manually:

> lod(x, loop_breaker=32)

SNP1

0 1.193642

By default, the recombination fraction between the disease locus and the marker is set to θ = 0, but this
can be changed using the theta argument:

> lod(x, theta=c(0, 0.1, 0.2), loop_breaker=32)

SNP1

0 1.1936416

0.1 0.8599471

0.2 0.5405310

For a more interesting example, let us load the dominant dataset: A data frame describing a pedigree
with 23 members and genotypes at 650 SNP markers.

> data(dominant)

> y = linkdat(dominant)

Family name: 1.

Pedigree read, 23 individuals.

5 maximal nuclear subfamilies. Peeling order set.

650 markers read.

As usual we plot the pedigree before doing any analysis. Note the available=T option, which displays
the genotyped individuals in red. Running summary(y) (not done here) is also a good idea to get an
overview of the data.

> plot(y, available=T)

1 2

3 4 20 5 6 7 21 8 9 10 19

11 12 13 14 15 16 22 23 17 18

The pedigree suggests an autosomal dominant mode of inheritance, so we set this using the shortcut
model=1 explained in the previous section.

> y = setModel(y, 1)

> y$model

5

Autosomal inheritance with penetrances: (f0, f1, f2) = (0, 1, 1)

Disease allele frequency: 1e-05

Now we compute the LOD scores, and plot the results. Since we haven’t provided map info for the 650
markers, a dummy map will be used in the plot, placing all markers on chromosome 1.

> lods = lod(y)

> summary(lods)

Max LOD score: 1.80618

Achieved at marker(s): M309

> plot(lods)

0 100 200 300 400 500 600

−
1

0
1

2
3

Position (cM) on chromosome 1

LO
D

 s
co

re

There is a peak near position 300, but it is far from the standard significance threshold of LOD = 3.3.

2.3 Multipoint analysis: Running MERLIN from paramlink

If MERLIN is installed, and properly pointed to in the PATH variable on your computer, paramlink offers
a convenient wrapper function, simply called merlin. Its default action is to generate (and afterwards
remove) files named ”merlin.ped”, ”merlin.dat”, ”merlin.map”, ”merlin.freq” and ”merlin.model” and run
the following command via system:

merlin -p merlin.ped -d merlin.dat -m merlin.map -f merlin.freq –model merlin.model

For example, let us check MERLIN’s evaluation of the marker in Figure 1:

> merlin(x)

SNP1

0 1.446

Comparing this with the result LOD = 1.19 that we found in the previous section, we see that MERLIN
gives a different score than paramlink for this marker. This is because of the partial genotype A/0 of
individual 14. While paramlink handles partial genotypes, MERLIN treats them simply as missing. To
check that this in fact the reason, we recalculate the LOD score in paramlink after setting the genotype
of individual 14 to be missing:

> x = modifyMarker(x, marker=1, id=14, genotype=c(0,0))

> lod(x, loop_breaker=32)

SNP1

0 1.446123

6

This agrees with the MERLIN result.
Turning to the dominant dataset, the complete family is too big for MERLIN to cope with directly.

(Running summary(y) shows that the bit size is 28, which is larger than MERLIN’s default limit of 24.)
However, we can trim the pedigree and do an ”affected only” analysis. The trimming is done by the trim

function, whose second argument decides if one should keep all affected or all available individuals:

> y_aff = trim(y, keep="affected")

Removing individuals: 6, 7, 12, 13, 19, 20, 21, 22 and 23

The resulting pedigree is small enough for MERLIN (summary(y_aff) tells us the bit size is down to 16).
Multipoint LOD scores can then be obtained by calling the wrapper function merlin:

> mlods = merlin(y_aff)

We plot the results together with the singlepoint scores (dashed red line) that we computed in the last
section for the complete family:

> plot(mlods)

> par(new=T); plot(lods, lty=3, col="red")

0 100 200 300 400 500 600

−
1

0
1

2
3

Position (cM) on chromosome 1

LO
D

 s
co

re

0 100 200 300 400 500 600

−
1

0
1

2
3

Position (cM) on chromosome 1

LO
D

 s
co

re

The merlin command has several optional arguments, described in detail in the help page ?merlin.
For instance, use outputfile to write the MERLIN output to a file; markers if only a subset of the
markers should be considered; and options if additional parameters should be passed on to MERLIN.
(The contents of options (which must be a single character string) is simply pasted onto the command,
so it must include dashes and spaces. See example below.) In some cases you might not want the ”–model
merlin.model” part of the command: this is removed by setting model=FALSE. For example, the MERLIN
syntax for computing the likelihood of all the marker data, is

merlin -p merlin.ped -d merlin.dat -m merlin.map -f merlin.freq –lik

The corresponding command in paramlink would be:

> merlin(y_aff, model=F, options="--lik")

Note: When model=F, no parsing is done of the results; the whole MERLIN output is returned as a
character vector.

7

1
−/−

2
−/−

3
A/B

4
A/−

5
−/−

Figure 3

1
−/−

2
−/−

3
A/B

4
A/−

5
−/−

Figure 4

3 Genotype probability distributions

The paramlink package provides two functions for calculating genotype distributions of specific fam-
ily members, conditional on the known alleles at the involved markers: oneMarkerDistribution and
twoMarkerDistribution.

The first works on a single marker and finds the joint genotype distribution for any number of individ-
uals. If the pedigree is affected with a monogenic disease for which a model has been set, the distribution
can be computed conditional on a given recombination fraction between the marker and the disease locus.

The second function, twoMarkerDistribution, takes a single individual as input, and computes the
joint distribution of his/her genotypes at two markers, separated by a given recombination fraction.

For a simple illustration on the use of these functions, we create a nuclear family with three offspring,
and a SNP marker for which some alleles are known.

> z = nuclearPed(3)

> marker1 = marker(z, 3, c('A','B'), 4, c('A', 0))

> z = addMarker(z, marker1)

> plot(z, 1)

The plot is shown in Figure 3. To begin with, let us find the genotype distribution of individual 5:

> dist1 = oneMarkerDistribution(z, id=5, partialmarker=1)

Assuming that the marker is autosomal.

Partial marker data:

ID V1

1 --

2 --

3 AB

4 A-

5 --

Allele frequencies:

A B

0.5 0.5

Genotype probability distribution for individual 5:

AA BB AB

0.2115 0.1346 0.6538

Written as integer fractions, the conditional probabilities are P (AA) = 11/52, P (BB) = 7/52, P (AB) =
34/52. At first glance these numbers appear somewhat more complicated than we might have expected.
The reason is of course that the missing allele of individual 4 leaves open many possibilities for the
genotypes of the parents. In fact, their joint distribution is as follows (this time we add verbose=F to
reduce the output on the screen):

> parents = oneMarkerDistribution(z, id=1:2, partialmarker=1, verbose=F)

8

The rows of the result matrix correspond to the genotypes of the father (individual 1), and the columns
to those of the mother. After a little trial and error, we find an integral representation with 13 as the
common denominator:

> parents * 13

AA BB AB

AA 0 2 2

BB 2 0 1

AB 2 1 3

Given the distribution of the parents it is easy to compute the probabilities for individual 5, checking the
results above. For example, if G denotes the genotype of individual 5, we have

Pr(G = AA) =Pr(G = AA | father AA, mother AB) · Pr(father AA, mother AB)

+Pr(G = AA | father AB, mother AA) · Pr(father AB, mother AA)

+Pr(G = AA | both parents AB) · Pr(both parents AB)

=
1

2
· 2

13
+

1

2
· 2

13
+

1

4
· 3

13
=

11

52

which is the same as we found above.
Next, suppose the three offspring are affected with a recessive disorder, and that the marker is com-

pletely linked to the causal gene.

> z2 = swapAff(z, 3:5)

> z2 = setModel(z2, model=2)

> plot(z2, 1)

The plot is shown in Figure 4. How does this affect the distribution of individual 5?

> oneMarkerDistribution(z2, id=5, partialmarker=1, theta=0, verbose=F)

AA BB AB

0 0 1

We see that the genotype of individual 5 is now forced to be AB. This was to be expected: Since we
assume no recombination between the marker and disease loci, all the affected offspring must carry the
same haplotypes. Since individual 3 has genotype AB, so must 4 and 5.

Finally we turn to twoMarkerDistribution. Suppose there is another SNP for which the available
genotype data is similar to that of marker1. For clarity we let the allele names of the new marker be C
and D.

> marker2 = modifyMarker(z, marker1, alleles=c('C', 'D'))

> z = addMarker(z, marker2)

> plot(z, marker=1:2)

1
−/−
−/−

2
−/−
−/−

3
A/B
C/D

4
A/−
C/−

5
−/−
−/−

Suppose first that the two markers segregate independently of each other, i.e. that their recombination
fraction is θ = 0.5. The joint distribution of the genotypes of individual 5 is then:

9

> twoMarkerDistribution(z, id=5, partialmarker1=1, partialmarker2=2, theta=0.5)

Conditioning on the following marker data:

ID M1 M2

1 -- --

2 -- --

3 AB CD

4 A- C-

5 -- --

Allele frequencies, marker 1:

A B

0.5 0.5

Allele frequencies, marker 2:

C D

0.5 0.5

Recombination rate between marker loci: 0.5

Joint genotype distribution at the two markers for individual 5:

CC DD CD

AA 0.0447 0.0285 0.1383

BB 0.0285 0.0181 0.0880

AB 0.1383 0.0880 0.4275

Since the two markers are assumed to be independent, an alternative way of finding their joint distribution
would be to take the (tensor) square of the vector dist1 obtained above:

> dist1 %o% dist1

AA BB AB

AA 0.04474852 0.02847633 0.13831361

BB 0.02847633 0.01812130 0.08801775

AB 0.13831361 0.08801775 0.42751479

However, if the two markers were completely linked, the distribution would be different:

> twoMarkerDistribution(z, id=5, partialmarker1=1, partialmarker2=2, theta=0, verbose=F)

CC DD CD

AA 0.06104651 0.03488372 0.11337209

BB 0.03488372 0.03488372 0.06976744

AB 0.11337209 0.06976744 0.46802326

Although not impossible, calculating these probabilities by hand is not a pleasant task even in this simple
example.

10

	Introduction
	Creating, manipulating and displaying pedigrees and markers
	Writing and reading input files

	Parametric linkage analysis
	Setting the disease model
	Singlepoint LOD scores
	Multipoint analysis: Running MERLIN from paramlink

	Genotype probability distributions

