
partykit: A Toolkit for Recursive Partytioning

Torsten Hothorn

Ludwig-Maximilians-Universität
München

Achim Zeileis

Universität Innsbruck

Abstract

This vignette is intended to be a short technical introduction to the partykit package.
It is still unfinished but hopefully already helpful to some interested users.

The purpose of the package is to provide a toolkit with infrastructure for representing,
summarizing, and visualizing tree-structured regression and classification models. Thus,
the focus is not on inferring such a tree structure from data but to represent a given
tree so that print/plotting and computing predictions can be performed in a standardized
way. In particular, this unified infrastructure can be used for reading/coercing tree models
from different sources (rpart, RWeka, PMML) yielding objects that share functionality
for print()/plot()/predict() methods.

Keywords:˜recursive partitioning, regression trees, classification trees, decision trees.

1. Motivating example and overview

To illustrate how partykit can be used to represent trees, a simple artificial data set from
Witten & Frank’s book Data Mining: Practical Machine Learning Tools and Techniques is
used. It concerns the conditions suitable for playing some unspecified game.

> data("WeatherPlay", package = "partykit")

> WeatherPlay

outlook temperature humidity windy play

1 sunny 85 85 false no

2 sunny 80 90 true no

3 overcast 83 86 false yes

4 rainy 70 96 false yes

5 rainy 68 80 false yes

6 rainy 65 70 true no

7 overcast 64 65 true yes

8 sunny 72 95 false no

9 sunny 69 70 false yes

10 rainy 75 80 false yes

11 sunny 75 70 true yes

12 overcast 72 90 true yes

13 overcast 81 75 false yes

14 rainy 71 91 true no

2 partykit: A Toolkit for Recursive Partytioning

outlook

1

sunny overcast rainy

humidity

2

<= 75 > 75

yes
3

no
4

yes
5

windy

6

false true

yes
7

no
8

Figure 1: Decision tree for play decision based on weather conditions in WeatherPlay data.

To represent the play decision based on the corresponding weather condition variables one
could use the tree displayed in Figure˜1. For now, it is ignored how this tree was inferred

and it is simply assumed to be given.

To represent this tree (also known as recursive partition) in partykit, two basic building blocks
are used: splits of class “partysplit”and nodes of class “partynode”. The resulting recursive
partition can then be associated with a data set in an object of class “party”.

Splits

First, we employ the partysplit() function to creat the three splits in the “weather tree”
from Figure˜1. The function takes the following arguments

partysplit(varid, breaks = NULL, index = NULL, ..., info = NULL)

where varid is an integer id of the variable used for splitting e.g., 1L for outlook, 3L for
humidity, 4L for windy etc. Then, breaks and index determine which observations are
sent to which of the branches, e.g., breaks = 75 for the humidity split. Apart from further
arguments not shown above (and just comprised under ‘...’), some arbitrary information
can be associated with a “partysplit” object by passing it to the info argument. The three
splits from Figure˜1 can then be created via

> sp_o <- partysplit(1L, index = 1:3)

> sp_h <- partysplit(3L, breaks = 75)

> sp_w <- partysplit(4L, index = 1:2)

For the numeric humidity variable the breaks are set while for the factor variables outlook
and windy the information is supplied which of the levels should be associated with which of
the branches of the tree.

Torsten Hothorn, Achim Zeileis 3

Nodes

Second, we use these splits in the creation of the whole decision tree. In partykit a tree is
represented by a “partynode” object which is recursive in that it may have “kids” that are
again “partynode” objects. These can be created with the function

partynode(id, split = NULL, kids = NULL, ..., info = NULL)

where id is an integer identifier of the node number, split is a “partysplit” object, and
kids is a list of “partynode” objects. Again, there are further arguments not shown (...)
and arbitrary information can be supplied in info. The whole tree from Figure˜1 can then
be created via

> pn <- partynode(1L, split = sp_o, kids = list(

+ partynode(2L, split = sp_h, kids = list(

+ partynode(3L, info = "yes"),

+ partynode(4L, info = "no"))),

+ partynode(5L, info = "yes"),

+ partynode(6L, split = sp_w, kids = list(

+ partynode(7L, info = "yes"),

+ partynode(8L, info = "no")))))

where the previously created “partysplit” objects are used as splits and the nodes are sim-
ply numbered from˜1 to˜8. For the terminal nodes of the tree there are no kids and the
corresponding play decision is stored in the info argument. Printing the “partynode” object
reflects the recursive structure stored.

> pn

[1] root

| [2] V1 in (-Inf,1]

| | [3] V3 <= 75 *

| | [4] V3 > 75 *

| [5] V1 in (1,2] *

| [6] V1 in (2, Inf]

| | [7] V4 <= 1 *

| | [8] V4 > 1 *

However, the displayed information is still rather raw as it has not yet been associated with
the WeatherPlay data set.

Trees (or recursive partitions)

Hence, in a third step the recursive tree structure stored in pn is coupled with the correspond-
ing data in a “party” object.

> py <- party(pn, WeatherPlay)

> py

4 partykit: A Toolkit for Recursive Partytioning

[1] root

| [2] outlook in sunny

| | [3] humidity <= 75: yes

| | [4] humidity > 75: no

| [5] outlook in overcast: yes

| [6] outlook in rainy

| | [7] windy in false: yes

| | [8] windy in true: no

And Figure˜1 can easily be created by

> plot(py)

In addition to print() and plot(), the predict() method can now be applied, yielding the
predicted terminal node IDs.

> predict(py, newdata = WeatherPlay)

In addition to the “partynode” and the “data.frame”, the function party() takes several
further arguments

party(node, data, fitted = NULL, terms = NULL, ..., info = NULL)

i.e., fitted values, a terms object, arbitrary additional info, and again some further argu-
ments comprised in

Further information

More detailed technical information is provided in the subsequent sections. Section˜2, 3,
and˜4 discuss the partysplit(), partynode(), and party() functions, respectively. Sec-
tion˜5 illustrates how this infrastructure can be employed in a function that recursively infers

a tree.

Design principles

To facilitate reading of the subsequent sections, two design principles employed in the creation
of partykit are briefly explained.

(1)˜Many helper utilities are encapsulated in functions that follow a simple naming conven-
tion. To extract/compute some information foo from splits, nodes, or trees, partykit provides
foo_split, foo_node, foo_party functions (that are applicable to“partysplit”,“partynode”,
and“party”objects, repectively). An example for the information foo might be kidids. Such
functions are typically not to be called by the end-user but potentially by package designers
that want to build functionality on top of partykit.

(2)˜Printing and plotting relies on panel functions that visualize and/or format certain aspects
of the resulting display, e.g., that of inner nodes, terminal nodes, headers, footers, etc. A
simple example would be printing with a custom panel function for formatting the terminal
node:

Torsten Hothorn, Achim Zeileis 5

> print(py,

+ terminal_panel = function(node) paste(": play=", node$info, sep = ""))

[1] root

| [2] outlook in sunny

| | [3] humidity <= 75: play=yes

| | [4] humidity > 75: play=no

| [5] outlook in overcast: play=yes

| [6] outlook in rainy

| | [7] windy in false: play=yes

| | [8] windy in true: play=no

Furthermore, arguments like terminal_panel can also take panel-generating functions, i.e.,
functions that produce a panel function when applied to the “party” object.

2. Splits

A split is basically a function that maps data, more specifically a partitioning variable, to
daugther nodes. Objects of class “partysplit” are designed to represent such functions and
are set-up by the partysplit() constructor:

> ## binary split in numeric variable ❵Sepal.Length✬

> sl5 <- partysplit(which(names(iris) == "Sepal.Length"), breaks = 5)

> class(sl5)

[1] "partysplit"

The internal structure of class “partysplit” contains information about the partitioning
variable, the split-points, the handling of split-points, the treatment of observations with
missing values and the daughter nodes to send observations to:

> unclass(sl5)

$varid

[1] 1

$breaks

[1] 5

$index

NULL

$right

[1] TRUE

$prob

6 partykit: A Toolkit for Recursive Partytioning

NULL

$info

NULL

Here, the split is defined in the first variable (corresponds to Sepal.Length in data frame
iris) and the splitting rule is Sepal.Length ≤ 5:

> character_split(sl5, data = iris)

$name

[1] "Sepal.Length"

$levels

[1] "<= 5" "> 5"

This representation of splits is completely abstract and, most importantly, independent of
any data. Now, data comes into play when we actually want to perform splits:

> kidids_split(sl5, data = iris)

[1] 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 2 2 2 2 2 2 2 1 2 1 1 1 2 2 1 1 2

[33] 2 2 1 1 2 1 1 2 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 2

[65] 2 1 2 2

[97] 2 2 2 2 2 2 2 2 2 2 1 2

[129] 2

For each observation in iris the split is performed and the number of the daughter node to
send this observation to is returned. Of course, this is a very complicated way of saying

> (!with(iris, Sepal.Length <= 5)) + 1

[1] 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 2 2 2 2 2 2 2 1 2 1 1 1 2 2 1 1 2

[33] 2 2 1 1 2 1 1 2 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 2

[65] 2 1 2 2

[97] 2 2 2 2 2 2 2 2 2 2 1 2

[129] 2

Formally, a split is a function f mapping an element x = (x1, . . . , xp) of a p-dimensional
sample space X into a set of k daugther nodes D = {d1, . . . , dk}. This mapping is defined
as a composition f = h ◦ g of two functions g : X → I and h : I → D with index set
I = {1, . . . , l}, l ≥ k.

Let µ = (−∞, µ1, . . . , µl−1,∞) denote the split points ((µ1, . . . , µl−1) = breaks). We are
interested to split according to the information contained in the ith element of x (i = varid).
For numeric xi, the split points are also numeric. If xi is a factor at levels 1, . . . ,K, the
default split points are µ = (−∞, 1, . . . ,K − 1,∞).

Torsten Hothorn, Achim Zeileis 7

The function g essentially determines, which of the intervals (defined by µ) the value xi is
contained in (I denotes the indicator function here):

x 7→ g(x) =
l∑

j=1

jIA(j)(xi)

where A(j) = (µj−1, µj] for right = TRUE except A(l) = (µl−1,∞). If right = FALSE, then
A(j) = [µj−1, µj) except A(1) = (−∞, µ1). Note that with some categorical variable xi and
default split points, g is the identity.

Now, h maps from the index set I into the set of daugther nodes:

f(x) = h(g(x)) = dσg(x)

where σ = (σ1, . . . , σl) ∈ {1, . . . , k}l (index). By default, σ = (1, . . . , l) and k = l.

If xi is missing, then f(x) is randomly drawn with P(f(x) = dj) = pj , j = 1, . . . , k for a
discrete probability distribution p = (p1, . . . , pk) over the k daugther nodes (prob).

In the simplest case of a binary split in a numeric variable xi, there is only one split point µ1

and, with σ = (1, 2), observations with xi ≤ µ1 are sent to daugther node d1 and observations
with xi > µ1 to d2. However, this representation of splits is general enough to deal with
more complicated set-ups like surrogate splits, where typically the index needs modification,
for example σ = (2, 1), categorical splits, i.e., there is one data structure for both ordered
and unordered splits, multiway splits, and functional splits. The latter can be implemented
by defining a new artificial splitting variable xp+1 by means of a potentially very complex
function of x later used for splitting.

As an example, consider a split in a categorical variable at three levels where the first two
levels go to the left daugther node and the third one to the right daugther node:

> ## binary split in factor ❵Species✬

> sp <- partysplit(which(names(iris) == "Species"), index = c(1L, 1L, 2L))

> character_split(sp, data = iris)

$name

[1] "Species"

$levels

[1] "setosa, versicolor" "virginica"

> table(kidids_split(sp, data = iris), iris$Species)

setosa versicolor virginica

1 50 50 0

2 0 0 50

The internal structure of this object contains the index slot

> unclass(sp)

8 partykit: A Toolkit for Recursive Partytioning

$varid

[1] 5

$breaks

NULL

$index

[1] 1 1 2

$right

[1] TRUE

$prob

NULL

$info

NULL

that maps levels to daughter nodes. This mapping is also useful with splits in ordered vari-
ables, for example when representing multiway splits:

> ## multiway split in numeric variable ❵Sepal.Width✬,

> ## higher values go to the first kid, smallest values

> ## to the last kid

> sw23 <- partysplit(which(names(iris) == "Sepal.Width"),

+ breaks = c(3, 3.5), index = 3:1)

> character_split(sw23, data = iris)

$name

[1] "Sepal.Width"

$levels

[1] "(3.5, Inf]" "(3,3.5]" "(-Inf,3]"

> table(kidids_split(sw23, data = iris),

+ cut(iris$Sepal.Width, breaks = c(-Inf, 2, 3, Inf)))

(-Inf,2] (2,3] (3, Inf]

1 0 0 19

2 0 0 48

3 1 82 0

The mapping of classes of the categorized numeric variable to daugther nodes can be changed
by modifying index:

> sw23 <- partysplit(which(names(iris) == "Sepal.Width"),

+ breaks = c(3, 3.5), index = c(1L, 3L, 2L))

> character_split(sw23, data = iris)

Torsten Hothorn, Achim Zeileis 9

$name

[1] "Sepal.Width"

$levels

[1] "(-Inf,3]" "(3.5, Inf]" "(3,3.5]"

The additional argument prop is used to specify a discrete probability distribution over the
daugther nodes that is used to map observations with missing values to daugther nodes.
Furthermore, the info argument and slot takes arbitrary objects to be stored with the split
(for example split statistics) but is not structured at the moment.

The slots of “partysplit” objects shall be accessed by the corresponding accessor functions.

3. Nodes

Inner and terminal nodes are represented by objects of class “partynode”. Each node has
a unique identifier id. A node consisting only of such an identifier (and possibly additional
information in info) is a terminal node:

> n1 <- partynode(id = 1L)

> is.terminal(n1)

[1] TRUE

> print(n1)

[1] root

Inner nodes have to have a primary split split and at least two daugther nodes. The
daugther nodes are objects of class “partynode” itself and thus represent the recursive nature
of this data structure. The daugther nodes are pooled in a list kids. In addition, a list of
“partysplit” objects offering surrogate splits can be supplied; a list of “partysplit” objects
in slot surrogates defines such additional splits (mostly used for handling missing values).
Note that “partynode” objects aren’t connected to the actual data.

Based on the binary split sl5 defined in the previous section, we set-up an inner node with
two terminal daugther nodes and print this stump (the data is needed because neither split
nor nodes contain information about variable names or levels):

> n1 <- partynode(id = 1L, split = sl5, kids = sapply(2:3, partynode))

> print(n1, data = iris)

[1] root

| [2] Sepal.Length <= 5 *

| [3] Sepal.Length > 5 *

Now that we have defined our first simple tree, we want to assign observations to terminal
nodes:

10 partykit: A Toolkit for Recursive Partytioning

> fitted_node(n1, data = iris)

[1] 3 2 2 2 2 3 2 2 2 2 3 2 2 2 3 3 3 3 3 3 3 3 2 3 2 2 2 3 3 2 2 3

[33] 3 3 2 2 3 2 2 3 2 2 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3 2 3 3 2 3 3 3

[65] 3 2 3 3

[97] 3 3 3 3 3 3 3 3 3 3 2 3

[129] 3

Here, the ids of the terminal node each observations falls into are returned. Alternatively, we
could compute the position of these daugther nodes in the list kids:

> kidids_node(n1, data = iris)

[1] 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 2 2 2 2 2 2 2 1 2 1 1 1 2 2 1 1 2

[33] 2 2 1 1 2 1 1 2 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 2

[65] 2 1 2 2

[97] 2 2 2 2 2 2 2 2 2 2 1 2

[129] 2

Furthermore, the info argument and slot takes arbitrary objects to be stored with the node
(predictions, for example, but we will handle this issue later). The slots can be extracted by
means of the corresponding accessor functions.

A number of methods are defined for “partynode” objects. is.partynode() checks if the
argument is a valid “partynode” object. is.terminal() is TRUE for terminal nodes and
FALSE for inner nodes. The subset methods return the “partynode” object corresponding to
the ith kid:

> n1[2]

[NA] root

The as.partynode() and as.list() methods can be used to convert flat list structures
into recursive “partynode” objects and vice versa. as.partynode() applied to “partynode”
objects renumbers the recursive nodes starting with root node identifier from.

length() gives the number of kid nodes of the root node, depth() the depth of the tree and
width() the number of terminal nodes.

4. Trees

Although tree structures can be represented by “partynode” objects, a tree is more than a
number of nodes and splits. More information about (parts of the) corresponding data is
necessary for high-level computations on trees.

Objects of class “party” basically consist of a “partynode” object representing the tree struc-
ture in a recursive way and data. The data argument takes a “data.frame” which, however,
might have zero columns. Optionally, a “data.frame” with at least one variable (fitted)

containing the terminal node numbers of data used for fitting the tree may be specified along
with a terms object or any additional (currently unstructured) information as info. Argu-
ment names defines names for all nodes in node.

Torsten Hothorn, Achim Zeileis 11

> t1 <- party(n1,

+ data = iris,

+ fitted = data.frame(

+ "(fitted)" = fitted_node(n1, data = iris),

+ "(response)" = iris$Species,

+ check.names = FALSE)

+)

> t1

[1] root

| [2] Sepal.Length <= 5: *

| [3] Sepal.Length > 5: *

5. My first tree

Package partykit does not offer unified infrastructure for growing trees. However, once you
know how to estimate splits from data, it is fairly straightforward to implement trees. Consider
a very simple tree algorithm. We assume that both response and features are numeric. We
search for the binary best split by means of t-test p-values, i.e., we cycle through all variables
and potential split points and assess the quality of the split by comparing the distributions
of the response in the so-defined two groups. We select the feature/split point combination
with lowest two-sided p-value, however only if this result is significant at level α = 0.05.

This strategy can be implemented based on the data (response and features) and some case
weights as follows (response is just the name of the response and data is a data frame with
all variables):

> findsplit <- function(response, data, weights) {

+

+ ### extract response values from data

+ y <- data[[response]]

+

+ logpmin <- 0

+ xselect <- NULL

+

+ ### cycle through all features

+ for (i in which(names(data) != response)) {

+

+ ### expand data

+ x <- data[[i]]

+ xt <- rep(x, weights)

+ yt <- rep(y, weights)

+

+ ### potential split points (not too many)

+ qx <- unique(quantile(xt,

+ prob = seq(from = 0.1, to = 0.9, by = 0.05)))

12 partykit: A Toolkit for Recursive Partytioning

+

+ ### assess all potential splits by their t-test

+ ### log-p-value

+ logp <- sapply(qx, function(q) {

+ tt <- t.test(yt[xt <= q], yt[xt > q])

+ pt(-abs(tt$statistic), tt$parameter, log = TRUE) + log(2)

+ })

+

+ ### if the best split in variable i significant AND

+ ### better than what we already had store this information

+ if (min(logp) < logpmin & min(logp) < log(0.05)) {

+ logpmin <- min(logp)

+ xselect <- i

+ splitpoint <- qx[which.min(logp)]

+ }

+ }

+

+ ### no significant split found, give up

+ if (is.null(xselect)) return(NULL)

+

+ ### return split as partysplit object

+ return(partysplit(

+ varid = as.integer(xselect), ### which variable?

+ breaks = as.numeric(splitpoint), ### which split point?

+ info = list(pvalue = exp(logpmin) ### save p-value in addition

+)))

+ }

In order to actually grow a tree on data, we have to set-up the recursion for growing a recursive
“partynode” structure:

> growtree <- function(id = 1L, response, data, weights) {

+

+ ### for less than 30 obs. stop here

+ if (sum(weights) < 30) return(partynode(id = id))

+

+ ### find best split

+ sp <- findsplit(response, data, weights)

+ ### no split found, stop here

+ if (is.null(sp)) return(partynode(id = id))

+

+ ### actually split the data

+ kidids <- kidids_split(sp, data = data)

+

+ ### set-up all daugther nodes

+ kids <- vector(mode = "list", length = max(kidids))

+ for (kidid in 1:max(kidids)) {

Torsten Hothorn, Achim Zeileis 13

+ ### select obs for current node

+ w <- weights

+ w[kidids != kidid] <- 0

+ ### get next node id

+ if (kidid > 1) {

+ myid <- max(nodeids(kids[[kidid - 1]]))

+ } else {

+ myid <- id

+ }

+ ### start recursion on this daugther node

+ kids[[kidid]] <- growtree(id = as.integer(myid + 1), response, data, w)

+ }

+

+ ### return nodes

+ return(partynode(id = as.integer(id), split = sp, kids = kids))

+ }

A very rough sketch of formula-based user-interface needs to set-up the data and call growtree():

> mytree <- function(formula, data, weights = NULL) {

+

+ ### name of the response variable

+ response <- all.vars(formula)[1]

+ ### data without missing values, response comes last

+ data <- data[complete.cases(data), c(all.vars(formula)[-1], response)]

+ ### data is numeric

+ stopifnot(all(sapply(data, is.numeric)))

+

+ if (is.null(weights)) weights <- rep(1, nrow(data))

+ ### weights are case weights, i.e., integers

+ stopifnot(length(weights) == nrow(data) &

+ max(abs(weights - floor(weights))) < .Machine$double.eps)

+

+ ### grow tree

+ nodes <- growtree(id = 1L, response, data, weights)

+

+ ### compute terminal node number for each obs.

+ fitted <- fitted_node(nodes, data = data)

+ ### return rich object

+ ret <- party(nodes,

+ data = data,

+ fitted = data.frame(

+ "(fitted)" = fitted,

+ "(response)" = data[[response]],

+ "(weights)" = weights,

+ check.names = FALSE),

+ terms = terms(formula))

14 partykit: A Toolkit for Recursive Partytioning

+ as.constparty(ret)

+ }

We now can fit this tree, for example to the airquality data; the print() method provides us
with a first overview on the resulting model

> aqt <- mytree(Ozone ~ Solar.R + Wind + Temp, data = airquality)

> aqt

Model formula:

Ozone ~ Solar.R + Wind + Temp

Fitted party:

[1] root

| [2] Temp <= 87.5

| | [3] Solar.R <= 48.95: 11.929 (n = 14, err = 580.9)

| | [4] Solar.R > 48.95

| | | [5] Temp <= 77

| | | | [6] Wind <= 8.84: 29.500 (n = 8, err = 450.0)

| | | | [7] Wind > 8.84

| | | | | [8] Temp <= 76.1: 17.852 (n = 27, err = 1677.4)

| | | | | [9] Temp > 76.1: 21.333 (n = 3, err = 0.7)

| | | [10] Temp > 77

| | | | [11] Wind <= 9.7: 61.154 (n = 26, err = 33555.4)

| | | | [12] Wind > 9.7: 37.688 (n = 16, err = 1849.4)

| [13] Temp > 87.5: 90.059 (n = 17, err = 3652.9)

Number of inner nodes: 6

Number of terminal nodes: 7

We depict the model graphically using plot() (see Figure˜2) and compute predictions using

> predict(aqt, newdata = airquality[1:10,])

1 2 3 4 5 6 7

29.50000 29.50000 17.85185 17.85185 11.92857 17.85185 29.50000

8 9 10

17.85185 11.92857 29.50000

An interesting feature is the ability to extract subsets of trees:

> aqt4 <- aqt[4]

> aqt4

Model formula:

Ozone ~ Solar.R + Wind + Temp

Torsten Hothorn, Achim Zeileis 15

> plot(aqt)

Temp

1

<= 87.5 > 87.5

Solar.R

2

<= 48.95 > 48.95

Node 3 (n = 14)

0
50

100
150

Temp

4

<= 77 > 77

Wind

5

<= 8.84 > 8.84

Node 6 (n = 8)

0
50

100
150

Temp

7

<= 76.1 > 76.1

Node 8 (n = 27)

●●

0
50

100
150

Node 9 (n = 3)

0
50

100
150

Wind

10

<= 9.7 > 9.7

Node 11 (n = 26)

●

●

0
50

100
150

Node 12 (n = 16)

0
50

100
150

Node 13 (n = 17)

0
50

100
150

Figure 2: Tree.

Fitted party:

[4] root

| [5] Temp <= 77

| | [6] Wind <= 8.84: 29.500 (n = 8, err = 450.0)

| | [7] Wind > 8.84

| | | [8] Temp <= 76.1: 17.852 (n = 27, err = 1677.4)

| | | [9] Temp > 76.1: 21.333 (n = 3, err = 0.7)

| [10] Temp > 77

| | [11] Wind <= 9.7: 61.154 (n = 26, err = 33555.4)

| | [12] Wind > 9.7: 37.688 (n = 16, err = 1849.4)

Number of inner nodes: 4

Number of terminal nodes: 5

which again are objects inheriting from“party” and thus can be plotted easily (see Figure˜3).

We also might be interested in extracting the p-values in the inner nodes in a nicely formatted
way:

> fun <- function(x) format.pval(info_split(split_node(x))$pvalue,

+ digits = 3, eps = 0.001)

> nid <- nodeids(aqt)

> iid <- nid[!(nid %in% nodeids(aqt, terminal = TRUE))]

> unlist(nodeapply(aqt, ids = iid, FUN = fun))

16 partykit: A Toolkit for Recursive Partytioning

> plot(aqt4)

Temp

4

<= 77 > 77

Wind

5

<= 8.84 > 8.84

Node 6 (n = 8)

0

50

100

150

Temp

7

<= 76.1 > 76.1

Node 8 (n = 27)

●●

0

50

100

150

Node 9 (n = 3)

0

50

100

150

Wind

10

<= 9.7 > 9.7

Node 11 (n = 26)

●

●

0

50

100

150

Node 12 (n = 16)

0

50

100

150

Figure 3: Subtree.

1 2 4 5 7 10

"<0.001" "<0.001" "<0.001" "0.00457" "0.0362" "0.00462"

Affiliation:

Torsten Hothorn
Institut für Statistik
Ludwig-Maximilians-Universität München
Ludwigstr.˜33
80539 München, Germany
E-mail: Torsten.Hothorn@R-project.org
URL: http://www.stat.uni-muenchen.de/~hothorn/

Achim Zeileis
Department of Statistics
Universität Innsbruck
Universitätsstr.˜15
6020 Innsbruck, Austria
E-mail: Achim.Zeileis@R-project.org
URL: http://eeecon.uibk.ac.at/~zeileis/

mailto:Torsten.Hothorn@R-project.org
http://www.stat.uni-muenchen.de/~hothorn/
mailto:Achim.Zeileis@R-project.org
http://eeecon.uibk.ac.at/~zeileis/

	Motivating example and overview
	Design principles

	Splits
	Nodes
	Trees
	My first tree

