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Abstract

The R package pt (prospect theory) provides computational tools to systematically illustrate the predictive results of
prospect theory against other theories of risky decision making. The package has three main capabilities. First, it allows
choices to be created, saved and visualised. Next, it allows the predictive results of expected and non-expected utility
decision making theories to be compared for these choices. Different utility and probability weighting functional forms and
parameterisations can be specified and visualised. Finally, it allows critical tests for decision making such as the Allais
paradoxes to be examined. It can also help build insight to assist in the development of new theories of risky decision
making.
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1 Introduction

Tversky and Kahneman| (1992) introduced cumulative prospect theory as a theory of risky decision making (and decision
making under uncertainty) that was able to explain empirical phenomena that the expected utility theory (Bernoulli, [1954;
von Neumann and Morgenstern, [1947)) was unable to account for, most notably the [Allais| (1953} (1979) paradoxes. (Following
the convention in |[Wakker| (2010)) this theory will be referred to as prospect theory and the theory in Kahneman and Tversky
(1979) as original prospect theory from now on.) Designed to address the shortcomings of original prospect theory, prospect
theory has been highly influential in the field of decision making, and contributed to Kahneman being awarded the Nobel
Prize for economics in 2002.

This article introduces the pt package which provides computational tools to explore prospect theory and alternative
theories of risky decision making. The R statistical environment (R Core Team)| 2013) was chosen to develop this software as
R has become a popular standard for open source statistical computing and has a large and expanding user base. This paper
is structured as follows. Section 2 reviews expected and non-expected utility theories of risky decision making. Section 3
describes the classes and functions available in the pt package (version 1.0). Section 4 describes the validity tests conducted
for the package functions. Section 5 describes how the package can be used to explore key phenomena in risky decision
making such as the Allais paradoxes. Section 6 shows how new critical tests of risky decision making can be explored using
the package.

2 Theories of risky decision making

Many theories of risky decision making are related to each other through correspondence limits as shown in Figure A
straightforward way to understand these correspondences is to begin with the simplest theory (expected value or EV) and
generalise to increasingly elaborate theories that provide more comprehensive accounts of risky decision making phenomena.
The generalisations of EV can be through using different probability weighting functions or utility functions, or using different
equational forms for combining the probability and objective consequence variables. Different psychological principles may
underlie the introduction of these constructs.
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2.1 Expected value (EV)
The basic unit of risky decision making is the gamble. A gamble G = (x1,p1;%2,P2;.-.,%n,Pn) is a set of n objective
n

consequences x; with the probability of each objective consequence being p; and . p; = 1. The individual outcomes {z;, p;}
i=1

are considered to be mutually exclusive and exhaustive. Given two or more gambles to choose from, it is assumed a decision

maker will prefer the gamble that has the highest utility. The EV of a gamble G is the long-run mean, given by

i=1

Empirical studies provide evidence that decision makers do not maximise expected value when faced with individual
choices but the principle becomes increasingly salient when decision makers are faced with a large (> 10) (Montgomery and
Adelbratt] [1982) number of repeated choices (Lichtenstein et al., [1969; [Li, |2003; Colbert et al., 2009)). Nearly all decision
making research has focussed on single choice rather than repeated choice situations, the latter being more common in game
theoretic research (e.g. repeated Prisoner’s dilemmas) (although see [Post et al., 2008 for a study of path-dependence on
decision making). The theories discussed in this paper have been applied to single choice decision situations. An open
research question is how to accommodate these theories under a temporal framework where the effects of past and current
decisions on future decisions can be predicted, incorporating the effects of learning (see Problem 6 [Hastie), 2001} p. 665).

2.2 Expected utility (EU)

An analysis of the St. Petersburg paradox led Bernoulli| (1954) to develop EU. An axiomatic formulation of EU assuming
completeness, transitivity, continuity and independence was subsequently developed (von Neumann and Morgenstern, {1947,
p. 26). The EU of a gamble G is given by

EU(G) = piulx;). (2)
i=1
If w(z;) = z; then the EU reduces to EV.

2.3 Subjective weighted utility (SWU)
Edwards| (1954} [1962) proposed a more general form to allow for probability weightings w(p;) defined by

n

SWU(G) =D w(pi)u(x:), (3)

i=1
with SWU reducing to EU when w(p;) = p;.
SWU has a similar form to subjective expected utility [Savage, (1954), given by

SEU(G) = ZS(pi)U(xi). (4)

However, the S(p;) in SEU represents a subjective probability rather a probability weighting w(p;). When wu(z;) = z;
SEU reduces to subjective expected value theory (Preston and Barattal [1948)), given by

n

SEV(G) = Zs(pi)fvi- (5)

i=1

2.4 Rank-dependent utility (RDU)

Quiggin| (1982, |1985| [1993|) used ranks to explain the Allais paradoxes without transparently violating first-order stochastic
dominance. First gamble outcomes are arranged from the best outcome to the worst. A rank is the probability of a gamble
yielding an outcome better than a worse outcome. Rather than use probability weightings of individual probabilities, RDU
first computes the differences in ranks, and applies a probability weighting to this difference. For strictly positive gambles
T1 > x93 > ... >z, > 0, the RDU of a gamble G is given by



RDU(G) u(z;)

lw+<10i+-~+p1> w+<pi—1+~-+]91>

i i—1 (6)
l?f <ij> —w? <ij>] u(;),
i=1 j=1 j=1

where w™ (p;) is a monotonically increasing function with boundary conditions w™(0) = 0 and w™ (1) = 1. Similarly, for
strictly negative gambles z; < x5 < ... <z, <0, the RDU is given by

M- 10

RDU(G):i:[w_<pZ++p1> —’LU_< i—1+~--+p1>

i=1

£ () (o

RDU reduces to EU when w(p;) = p;.

2.5 Prospect theory utility (PTU)

Tversky and Kahneman| (1992) incorporated theoretical developments from |Gilboa) (1987)) and [Schmeidler| (1989) to develop
PT, providing the ability to model decision making under uncertainty. The outcomes in a gamble are ranked such that
1> 2w, >0>xp401 > > 2, and 0 < k < n. The utility of a gamble G is the sum of two RDU terms and is given by

PTU(G) =) [uﬁ (pi +... +p1> —wt <pi-1 + ... +p1> u(z;)
+ Z [w‘ <Pz’ +... +Pn+1> —w <pi1 +... +pn+1>]u($i)
j=n+1

n % i—1 (8)
S () (e

S () ()

i=n+1 j=n+1
Under PT loss aversion is modelled by the assumption
x®, ifz>0
)= - 9
u(x) {_A(_x)ﬂ, if 2 <0, ©)

where A is the loss aversion coefficient (see Wakker| (2008] p. 1336) for a review of the power utility family).

2.6 Subjectively weighted average utility (SWAU)

Birnbaum| (1999, p. 35) describes the SWAU model (Karmarkar, [1978| [1979; [Viscusi, [1989; [Lattimore et al., [1992), where
the relative weight of an outcome probability in a gamble G depends on the other outcome probabilities in the gamble. The
SWAU is given by

n

Z w(pi)u(z;)
SWAU(G) = =

Zw(pi)

i=1

(10)

When w(p;) = p;, SWAU reduces to EU.



2.7 Rank-affected multiplicative weights utility (RAMU)

Given a set of ranked outcomes z1 > x3 > ... > xz,, the RAMU is given by Birnbaum| (2008) as
S aliyn, )t (pule)
RAMU(G) = = . (11)
> a(i,n, si)t(p:)

i=1

Here the a(i,n,s;) are the rank and augmented sign branch weights. The branch probability weighting function ¢(p) is
usually approximated by a power function ¢(p) = p7. If vy =1 and a(i,n, s;) = 1 then RAMU reduces to EU.

2.8 (Special) transfer of attention exchange utility (TAXU)
The general TAX formula is given by Birnbaum! (2008]) as

n n i
t(pi)u(z;) + [u(xi) - U(l“k)] w(pis pr,n)
TAXU(G) = =2 =Lkl (12)
> tp)
i=1
If w = 0 then this reduces to SWAU. The special TAX case occurs with the assumption
O-tlpk)
“n+ 1 H0>0
w(piapka n) = (13)
6-tp) .
o 11 , ifé <.

If t(p) = p and 6 = 0 then TAX reduces to EU. If 6 = 0 then TAX reduces to SWAU. PT, RAM and TAX are special
cases of a general configural weighting model discussed in [Birnbaum) (2004, p. 91-92), given by

w(pi, G)u(w;)

s.
I M:
I

CWU(G) = : (14)

I

Il
—

w(pi7 G)

I

where the objective consequences are ranked z; > x2 > ... > x, and w(p;, G) is the branch configural weight of objective
consequence x;. This theory in turn is a specific case of the configurally weighted, average configural value utility model
(Birnbaum), (1999, p. 40) given by

> w(@i, Gu(zs, G)
CWACVU(G) = = . (15)

n

Zw(xi,G)

=1

Configural value models occur when w(z;, G) = w(p;) in Eq. and are given by

n

> w(p)u(zi, G)
cvU(G) = = . (16)
w(p;)

i=1

The lottery-dependent utility of |Becker and Sarin| (1987)) occurs when w(p;) = p; in Eq. and is given by

n

Zpiu(ﬂﬁz‘, G)
LDUG) =" (17)

n
D _pi
i=1



Weighted averaging models occur when u(z;, G) = u(z;) in Eq. and are given by
Z w(z;, G)u(x;)
WAU(G) = = : (18)
w(z;, G)

i=1

3

Differentially weighted averaging models occur when w(z;, G) = w(z;, p;) and u(z;, G) = u(z;) in Eq. (I8):

n

w(z;, G)u(x;)

DWAU(G) = =1

Zw(xi,G)

i=1

The constant weighting or SWAU model of Eq. occurs when w(z;, G) = w(z;, p;) = w(p;) in (L9).

2.9 Prospective reference theory utility (PRTU)
The [Viscusi| (1989) PRT is the sum of a weighted EU term and a weighted average of the outcome utilities and is given by

n

~ uU\T;
PRTU(G) = ’sziu(fﬁi) +(1=7) Z (T> (20)
i=1 i=1

PRT is a special case of RAM, when a(i,n) = 1¥i,n and 6(p) = vp + (1;—7) PRT is also a special case of TAX, when

d=0and t(p) =p+ =% When v =1, PRT reduces to EU. In PRT, the probability weightings are unaffected by rank.

n

2.10 (Lower) gains decomposition utility (GDU)

Luce| (2000, p. 202) devised a process to iteratively decompose a multi-branch gamble into a series of binary gambles (see
also Marley and Luce/ (2001}, [2005)); [Luce and Marley]| (2005))), and provided an induction formula to compute the utility of a
gamble G = (x1,p1; T2, p2;- - - Tn, Pr) With n outcomes as

n—j—1 -

n—i—1
n—1 Z Y23 j—1 Z Pk

GDU(G) = Z GDU(z1,p1;- - ;%n—j,Pn—j) [1 —w <7‘l__17>] H w <i> . (21)

=0 Sop 70 Pk

i=1 1

o
—

3
-

=
Il

For binary gambles, this induction formula reduces to

GDU(G) = w(pr)u(1) + w(l = pr)u(zz), (22)

which is equivalent to binary RDU (Marley and Luce| [2001, p. 143). RDU is a special case of GDU where the GDU
weights take on a specific form.

As the pt package has an object-oriented design, it would be straightfoward to incorporate other risky decision making
theories for comparison.

3 The R package pt

This package contains six classes: Utility, ProbWeight, Outcome, Gamble, Gambles and Choices. Only Utility, ProbWeight
and Choices are directly modifiable. These classes have been designed to capture risky decision making structure. Outcome,
Gamble, Gambles and Choices are arranged hierarchically. At the highest level sits the Choices class, which is a container
for the Gambles class. A Choices object can be used to compare the results of different decision making scenarios. For
instance one can use a Choices object to explore the Allais paradoxes. The paradoxes involve two separate situations, with
each situation involving a decision between gambles. The Gambles class is a container for Gamble class objects. The Gambles
class can be used as an input for calculating the utilities and certainty equivalents of gambles under different decision making
theories. Each Gamble class object in turn contains a vector of Outcome class objects. Each Outcome class object stores
information such as probabilities, objective outcomes and calculational variables for risky decision making theories.

The Utility and ProbWeight classes generate utility and probability weighting objects with different functional forms
and parameterisations. These objects can be used to explore the parameter spaces of different risky decision making theories.



Choices class objects can be created dynamically or read from external text files. They can also be saved to external
text files for refererence.

The package has extensive visualisation capabilities. Choices class objects can be visualised as decision nodes leading to
one-stage decision trees.

Individual probability weighting functions and families of probability weighting functions can be plotted. Individual utility
functions can also be plotted. Certainty equivalents and risk premiums can be plotted. Finally the probability simplex can
be plotted along with indifference curves.

The decision making theories currently implemented are EV, EU, SWU, RDU, PT, SWAU, RAM, TAX, PRT and GDU.

Some key features of the package include the capability to input a practically unlimited number of choices, and also the
capability to compute ranks of gamble outcomes. The computation of ranks has historically made it difficult for many people
to work with PT, however these issues have been addressed in the pt package. At its most basic level, the pt package can
be used to compute nothing more than the PT utilities for general gambles, alleviating a major problem for students of PT.
Students can concentrate on the psychological concepts introduced by Kahneman and Tversky rather than being caught up
in performing intricate mathematical calculations.

Finally the Birnbaum| (1997) recipe for generating gambles violating stochastic dominance has been implemented.

4 Validation tests

Published literature was used to validate the pt package. The calculations in [Birnbaum| (1999)), [Birnbaum et al (1999),
[Wakker| (2003)), Birnbaum| (2005b), Birnbaum)| (2007), Birnbaum and Bahra/ (2007)), Birnbaum| (2008), Birnbaum and Schmidt]
(2008), Birnbaum) (2010) and Wakker| (2010) were used to validate the methods. These examples have been included as tests in
the pt package. Calculations were also cross checked for consistency against the basic RAM, TAX and PT calculators available
at Birnbaum’s website (http://psych.fullerton.edu/mbirnbaum/calculators/)), Kobberling’s basic PT calculator at
Wakker’s website http://people.few.eur.nl/wakker/miscella/calculate.cpt.kobb/index.htm and Sewell’s basic PT
calculators available at http://prospect-theory.behaviouralfinance.net/.

5 The Allais paradoxes

To illustrate the usage of the pt package the Allais paradoxes will be presented. Prospect theory gained widespread atten-
tion as it was the first theory to explain the Allais paradoxes. EU cannot explain these paradoxes. These paradoxes are
examples of critical tests (Birnbaum, |[2011)) as no functional forms or parameterisations need to be estimated to show internal
inconsistencies in EU.

5.1 Common consequence paradox

First load the pt library. In the remainder of the paper all R code is highlighted with a background.

library("pt")

Consider problems 1 and 2 from [Kahneman and Tversky| (1979, p. 265-266), representing the common consequence
paradox. This can be modelled using pt as follows.

choice_ids <- c(1, 1, 1, 1, 2, 2, 2, 2)
gamble_ids <- c(1, 1, 1, 2, 1, 1, 2, 2)
outcome_ids <- c(1, 2, 3, 1, 1, 2, 1, 2)
objective_consequences <- c(2500, 2400, 0, 2400,
2500, 0, 2400, 0)
probability_strings <- c("0.33", "0.66", "0.01", "1.0",
"0.33", "0.67", "0.34", "0.66")
my_choices <- Choices(choice_ids=choice_ids,
gamble_ids=gamble_ids,
outcome_ids=outcome_ids,
objective_consequences=objective_consequences,
probability_strings=probability_strings)
my_choices

> >

#Hi#t cid gid oid pr oc
## 1 1 1 1 0.33 2500
## 2 1 1 2 0.66 2400


http://psych.fullerton.edu/mbirnbaum/calculators/
http://people.few.eur.nl/wakker/miscella/calculate.cpt.kobb/index.htm
http://prospect-theory.behaviouralfinance.net/

## 3 1 1 3 0.01 0
## 4 1 2 1 1.0 2400
## 5 2 1 1 0.33 2500
## 6 2 1 2 0.67 0
## 7 2 2 1 0.34 2400
# 8 2 2 2 0.66 0

drawChoices(my_choices,
decision_square_x=0.2, decision_square_edge_length=0.05,
circle_radius=0.025, y_split_gap=0.1, x_split_offset=0.03,
probability_text_digits=4, y_probability_text_offset=0.015,
y_value_text_offset=0.005, x_value_text_offset=0.025,
probability_text_font_colour="red", probability_text_font_size=11,
objective_consequence_text_font_colour="blue",
objective_consequence_text_font_size=11, label=c("A","B","C", "D"),
label_font_colour=c("orange", "magenta","green","blue"),
label_font_size=c(11,11,11,11),
label_positions=1ist(c(0.26,0.85),c(0.26,0.55),

c(0.26,0.4),c(0.26,0.1)))

033 500
A
0.66
2400
/
001
L0 2400
\_/
B
. 033,500
067
034 400
5 066

In a group of 72 subjects, 82% preferred B > A and 83% preferred C > D, with 61% of the individuals making the
majority (modal) choices across both conditions. Compare the EV for each gamble in the two choices.



compareEV (my_choices, digits=4)

## cid gid ev
# 1 1 1 2409

## 2 1 2 2400
## 3 2 1 825
## 4 2 2 816

Here cid represents the choice id (cid 1 represents the upper decision tree and cid 2 represents the lower decision tree),
gid is the gamble id (in the upper decision tree gid 1 represents gamble A and gid 2 represents gamble B, while in the
lower decision tree gid 1 represents gamble C and gid 2 represents gamble D), and ev is the expected value of each gamble.
Gambles A and C have the highest EV| but empirically people are preferring the certainty of B to the uncertainty of A (the
certainty effect). Compute the EU using a hypothetical concave utility function.

my_utility <- Utility(fun="power", par=c(alpha=0.63, beta=0.63, lambda=2.25))
compareEU(my_choices, utility=my_utility, digits=4)

## cid gid ev eu ce rp
# 1 1 1 2409 134.6 2395 14.34
# 2 1 2 2400 134.8 2400 0.0000000000009095
# 3 2 1 825 45.63 430.2 394.8
#® 4 2 2 816 45.82 433 383

EU predicts the preferences B > A and D > C. Here eu is the expected utility of the gamble, ce is the certainty
equivalent (quantifying the degree of risk aversion or seeking exhibited by a decision maker) and rp is the risk premium (the
difference between the expected value and certainty equivalent). Intuitively, p- 248) defines the risk premium as
“the amount of expected value the decision maker is willing to “give up”, perhaps to avoid the risk entailed by the prospect
[gamble]”. Risk averse decision makers have a positive risk premium, risk neutral decision makers have a risk premium of
zero (they are indifferent to risk) and risk seeking decision makers have a negative risk premium. In EU risk aversion is
modelled using concave utility functions, representing diminishing marginal utility. However, in other theories such as RDU,
risk aversion can arise using convex utility functions and probability weightings (e.g. see p. 52-53, 71-3,
175-176)). With a hypothetical convex utility function, EU predicts the preferences A > B and C' > D.

my_utility <- Utility(fun="power", par=c(alpha=1.2, beta=1.2, lambda=2.25))
compareEU(my_choices, utility=my_utility, digits=4)

#i#t cid gid ev eu cE rp
## 1 1 1 2409 11458 2413 -4.129
## 2 2 2400 11383 2400 0

1
## 3 2 1 825 3945 992.4 -167.4
2 2 816 3870 976.7 -160.7

With a hypothetical linear utility function u(z) = x, EU reduces to EV.

my_utility <- Utility(fun="power", par=c(alpha=1.0, beta=1.0, lambda=1.0))
compareEU(my_choices, utility=my_utility, digits=4)

#Hi#t cid gid ev eu ce rp
## 1 1 1 2409 2409 2409 O
## 2 1 2 2400 2400 2400 O
## 3 2 1 825 825 825 O
# 4 2 2 816 816 816 O

In choice 1 if decision makers are preferring B > A, this implies (applying the expected utility formula of Eq. ) that
EU(B) > EU(A)

1.0 x u(2400) > 0.33 x u(2500) 4 0.66 x u(2400) + 0.01 x u(0) (23)
0.34 x u(2400) > 0.33 x u(2500) + 0.01 x u(0),

subtracting 0.66 x u(2400) from both sides of the inequality. In choice 2 if decision makers are preferring C' > D, this
implies that



EU(C) > EU(D)
0.33 x u(2500) + 0.67 x u(0) > 0.34 x u(2400) + 0.66 x u(0) (24)
0.33 x u(2500) + 0.01 x u(0) > 0.34 x u(2400),

subtracting 0.66 x u(0) from both sides of the inequality. The inequalities are reversed across the two choice situations,
no matter what functional form and parameterisation is used for the expected utility function u. Expected utility predicts
that people will either choose A > B and C > D or choose B > A and D > C if the independence axiom holds. It does
not predict the empirically observed pattern of choices. This pattern has been replicated in a number of studies (e.g. see
MacCrimmon and Larsson, [1979)). In contrast compute the PTU.

tk_1992_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))
linear_in_log_odds_prob_weight <- ProbWeight(fun="linear_in_log_odds", par=c(alpha=0.61, beta=0.724))
comparePT (my_choices,

prob_weight_for_positive_outcomes=linear_in_log_odds_prob_weight,

prob_weight_for_negative_outcomes=linear_in_log_odds_prob_weight,

utility=tk_1992_utility, digits=4)

## cid gid ev pt ce rp
## 1 1 1 2409 881.3 2222 187
## 2 1 2 2400 943.2 2400 -0.000000000001819
## 3 2 1 825 312.6 684.2 140.8
# 4 2 2 816 307.2 670.9 145.1

PT predicts the preferences B > A and C > D, in line with the empirical data. Given there are three objective
consequences in this example {0,2400,2500}, they can be displayed in the probability simplex (Marschak, [1950; Machinal,

1987) as follows.

my_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))

drawSimplex (x1=0, x2=2400, x3=2500,
line_dot_density=3000,
draw_ev_flag=TRUE, ev_colour="black",
draw_pt_flag=TRUE, alpha=0.61, beta=0.724, pt_colour="red",
draw_utility_flag=TRUE, utility=my_utility, eu_colour="purple",
start_points=1ist(c(0.1,0.9),c(0.2,0.8),c(0.3,0.7),c(0.4,0.6),
c(0.5,0.5),c(0.6,0.4),c(0.7,0.3),c(0.8,0.2),c(0.9,0.1)),
labels=c("A","B","C","D","increasing preference"),
label_positions=1ist(c(0.05,0.38),c(0.05,0.05),c(0.7,0.38),
c(0.7,0.05),c(0.7,0.7)),
label_colours=c("orange","magenta","green","blue","red"),
label_font_sizes=c(12,12,12,12,16),
label_font_faces=c("plain","plain","plain","plain","bold"),
label_rotations=c(0,0,0,0,-45),
circle_radii=c(0.01,0.01,0.01,0.01),
circle_outline_colours=c("black","black","black","black"),
circle_fill_colours=c("orange","purple","orange","purple"),
circle_positions=1list(c(0.01,0.33),c(0,0),
c(0.67,0.33),c(0.66,0)),
lines=1ist(c(0.01,0.33,0,0),c(0,0,0.66,0),
c(0.66,0,0.67,0.33),c(0.67,0.33,0.01,0.33)),
line_widths=c(1, 1, 1, 1),
line_styles=c("dashed", "dashed", "dashed", "dashed"),
line_colours=c("blue","blue","blue","blue"),
arrows=1ist(c(0.8,0.5,0.5,0.8)),
arrow_widths=c(2), arrow_styles=c("solid"), arrow_colours=c("red"))

10



0.9+

0.8+

0.7

0.6+

Ps 0.5+

0.4+

0.3

0.2

0.1

0 4
p,=1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X, = 2400 P1 X, =0

The iso-expected value lines are shown in black, the expected utility indifference curves (lines) in purple and the prospect
theory indifference curves in red. The probability of z5 is 1.0 at the bottom left hand corner. North-east movement along each
iso-expected value line increases the probabilities of x3 and x; relative to xo. North-west movement increases the probability
of the higher outcome x3. The Allais paradoxes arise due to the assumption of linear probabilities in the EU formula Eq.
. Linear probabilities generate indifference curves that are parallel lines in the triangle. Line slopes capture the degree of
risk aversion/seeking. Risk neutrality for decision makers is represented by the iso-expected value lines. Risk averse expected
utility decision makers have indifference lines that are steeper than the iso-expected value lines. Expected utility risk seekers
have indifference lines that are flatter than the iso-expected value lines. In the first choice, decision makers exhibit risk
aversion, opting for the sure gain, so the indifference line running through A is steep. In the second choice, decision makers
lean more toward risk neutrality, opting for C, so the indifference line running through C' is less steep than the line running
through A. However in expected utility, lines with different steepnesses are impossible in the same triangle diagram. These
paradoxes disappear when non-linear probabilities are allowed, as in theories such as PT, resulting in a “fanning out” of the
indifference curves. This means that an indifference curve running through C' can be flatter than one running through A.

Note that PT is not unique in predicting the empirically observed results. For instance TAX also predicts this pattern of
decision making (using fewer parameters and a linear utility function).

my_utility <- Utility(fun="linear", par=c(lambda=1))
power_prob_weight <- ProbWeight (fun="power", par=c(alpha=0.7, beta=1))
compareTAX (my_choices, prob_weight=power_prob_weight, utility=my_utility, delta=-1, digits=4)

## cid gid ev tax ce rp
## 1 1 1 2409 1761 1761 648
## 2 1 2 2400 2400 2400 0
# 3 2 1 825 630.9 630.9 194.1
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## 4 2 2 816 617.5 617.5 198.5

For illustrative purposes, the fanning out effect shows more clearly in the original formulation of the Allais common
consequence paradox involving objective consequences of millions. Create choice problems 9.1 and 9.2 from (2008
Table 2 p. 480) to show the choices.

choice_ids <- c(1, 1, 1, 1, 2, 2, 2, 2)

gamble_ids <- c(1, 2, 2, 2, 1, 1, 2, 2)

outcome_ids <- c(1, 1, 2, 3, 1, 2, 1, 2)

objective_consequences <- c(1000000, 2000000, 1000000, 2,
1000000, 2, 2000000, 2)

probability_strings <- c("1.0", "0.1", "0.89", "0.01",
"0.11", "0.89", "0.1", "0.9")

my_choices <- Choices(choice_ids=choice_ids,
gamble_ids=gamble_ids,
outcome_ids=outcome_ids,
objective_consequences=objective_consequences,
probability_strings=probability_strings)

my_choices

]

## cid gid oid pr oc
## 1 1 1 1 1.0 1000000
## 2 1 2 1 0.1 2000000
## 3 1 2 2 0.89 1000000
## 4 1 2 30.01 2
## 5 2 1 1 0.11 1000000
## 6 2 1 20.89 2
## 7 2 2 1 0.1 2000000
## 8 2 2 2 0.9 2

drawChoices(my_choices,
decision_square_x=0.2, decision_square_edge_length=0.05,
circle_radius=0.025, y_split_gap=0.1, x_split_offset=0.03,
probability_text_digits=4, y_probability_text_offset=0.015,
y_value_text_offset=0.005, x_value_text_offset=0.025,
probability_text_font_colour="red", probability_text_font_size=11,
objective_consequence_text_font_colour="blue",
objective_consequence_text_font_size=11, label=c("A","B","C", "D"),
label_font_colour=c("orange","magenta","green","blue"),
label_font_size=c(11,11,11,11),
label_positions=1ist(c(0.26,0.95),c(0.26,0.65),

c(0.26,0.4),c(0.26,0.1)))
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Now show the simplex.

my_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))

drawSimplex(x1=2, x2=1000000, x3=2000000,
line_dot_density=1000,
draw_ev_flag=TRUE, ev_colour="black",
draw_pt_flag=TRUE, alpha=0.61, beta=0.724, pt_colour="red",
draw_utility_flag=TRUE, utility=my_utility, eu_colour="purple",
start_points=1ist(c(0.1,0.9),c(0.2,0.8),c(0.3,0.7),c(0.4,0.6),
c(0.5,0.5),c(0.6,0.4),c(0.7,0.3),c(0.8,0.2),c(0.9,0.1)),
labels=c("A","B","C","D","increasing preference"),
label_positions=1ist(c(0.05,0.02),c(0.05,0.12),c(0.92,0.02),
c(0.95,0.10),c(0.7,0.7)),
label_colours=c("orange","purple","orange","purple","red"),
label_font_sizes=c(12,12,12,12,16),
label_font_faces=c("plain","plain","plain","plain","bold"),
label_rotations=c(0,0,0,0,-45),
circle_radii=c(0.01,0.01,0.01,0.01),
circle_outline_colours=c("black","black","black","black"),
circle_fill_colours=c("orange","purple","orange","purple"),
circle_positions=1list(c(0,0),c(0.01,0.1),c(0.89,0),c(0.9,0.1)),
lines=1ist(c(0,0,0.01,0.1),c(0.89,0,0.9,0.1),
c(0.01,0.1,0.9,0.1),c(0,0,0.89,0)),
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line_widths=c(1, 1, 1, 1),

line_styles=c("dashed", "dashed", "dashed", "dashed"),
line_colours=c("blue","blue","blue","blue"),
arrows=1ist(c(0.8,0.5,0.5,0.8)),

arrow_widths=c(2), arrow_styles=c("solid"), arrow_colours=c("red"))
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5.2 Common ratio paradox

Create choices problems 3 and 4 from [Kahneman and Tversky| (1979, p. 266) to illustrate the common ratio paradox.

choice_ids <- c(1, 1, 1, 2, 2, 2, 2)
gamble_ids <- c(1, 1, 2, 1, 1, 2, 2)
outcome_ids <- c(1, 1, 2, 1, 2, 1, 2)
objective_consequences <- c(4000, 0, 3000,
4000, 0, 3000, 0)
probability_strings <- c("0.8", "0.2", "1.0",
"0.2", "0.8", "0.25", "0.75")
my_choices <- Choices(choice_ids=choice_ids,
gamble_ids=gamble_ids,
outcome_ids=outcome_ids,
objective_consequences=objective_consequences,
probability_strings=probability_strings)
my_choices
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## cid gid oid pr oc

## 1 1 1 1 0.8 4000
## 2 1 1 1 0.2 0
## 3 1 2 2 1.0 3000
## 4 2 1 1 0.2 4000
## 5 2 1 2 0.8 0
#e6e 2 2 1 0.25 3000
## 7 2 2 20.75 0

drawChoices(my_choices,
decision_square_x=0.2, decision_square_edge_length=0.05,
circle_radius=0.025, y_split_gap=0.1, x_split_offset=0.03,
probability_text_digits=4, y_probability_text_offset=0.015,
y_value_text_offset=0.005, x_value_text_offset=0.025,
probability_text_font_colour="red", probability_text_font_size=11,
objective_consequence_text_font_colour="blue",
objective_consequence_text_font_size=11, label=c("A","B","C", "D"),
label_font_colour=c("orange","magenta","green", "blue"),
label_font_size=c(11,11,11,11),
label_positions=1ist(c(0.26,0.85),c(0.26,0.6),

c(0.26,0.4),c(0.26,0.1)))

A 08 4000

\ O 10 3000

B
C 02 4000
08 |
025 3000
5 0.75

In a sample of 95 people, 80% preferred B > A and 656% preferred C > D. EU predicts either the preferences A > B
and C' > D or the preferences B > A and D > C. Following the reasoning of the previous common consequence example, if
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decision makers are preferring B > A, this implies (again applying the expected utility formula of Eq. ) that

EU(B
1.0 x u(3000

1(3000
2(1000) > 0.8 x +

(4000)
u(3000) _ 0.5

(4000

~—

> EU(A)
> 0.8 x u(4000) + 0.2 x u(0)

0.2 x u(0) (25)
(4000)

= =

~

dividing both sides of the inequality by «(4000) and setting u(0) = 0. If decision makers are preferring C' > D, this
implies that

EU(C) > EU(D)

0.2 x u(4000) + 0.8 x u(0) > 0.25 x u(3000) + 0.75 x u(0)
0.8 x u(0) _ 0.25 X u(3000)  0.75 x u(0)
1(4000) 1(4000) 1(4000)
0.25 x u(3000)
1(4000)

4(3000)

08> 500"

0.2 +

0.2 >

The inequalities are reversed across the two choice situations. Expected utility predicts that people will either choose
A > Band C > D or choose B > A and D > C' if the independence axiom holds. It does not predict the empirically observed
pattern. pt can be used to show the comparative theoretical predictions of all the decision making theories implemented in
the package. Firstly show the EV.

compareEV (my_choices, digits=4)

## cid gid ev
# 1 1 1 3200

## 2 1 2 3000
## 3 2 1 800
## 4 2 2 750

Gambles A and C have the highest expected values. However, they are also the riskier choices. Compute the EU with a
hypothetical concave utility function, and show the risk premium.

my_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=1))
eu_df <- compareEU(my_choices, utility=my_utility, digits=4)

eu_df

## cid gid ev eu ce rp
## 1 1 1 3200 1183 3104 95.91
## 2 1 2 3000 1148 3000 -0.000000000001819
## 3 2 1 800 295.7 642.4 157.6
## 4 2 2 750 287 620.8 129.2

ev <- as.numeric(eu_df$ev[1])

eu <- as.numeric(eu_df$eul1])

ce <- as.numeric(eu_df$ce[1])

plotRP(my_title = "risk premium",
my_title_colour="black", my_title_font_size=4,
my_x_label = "objective consequence",
my_y_label = "subjective value", xmin = 2500, xmax = 3500,
my_color="violet",
fun=power_uf,
par=c(alpha=0.88, beta=0.88, lambda=1),
ev=ev, eu=eu, ce=ce,
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my_labels=c(expression(paste(U(x)==x"alpha, ", "o x>=0)),
expression(paste(plain()==-lambda * (-x) beta, ", ", x<0)),
"ev","eu","ce","rp"),

my_label_colors=c("violet","violet","black","red","orange","blue"),

my_label_positions=1ist(c(2700,1275),c(2740,1250),c(3250,1075),
c(2800,1170),c(3050,1075),c(3150,1170)),

font_scaling=1)

risk premium

1150 1200 1250 1300
|

subjective value

1100

ev

1050

1000

I I I
2600 2800 3000 3200 3400

objective consequence

For this parameterisation A > B and C' > D. pt can be used to perform a sensitivity analysis to determine critical values
for risk tolerances. The parameters for which the EU preferences are reversed so that B > A and D > C can be identified
using the code below. Note that both these parameterisations use concave utility functions.

my_utility <- Utility(fun="power", par=c(alpha=0.78, beta=0.78, lambda=1))
compareEU(my_choices, utility=my_utility, digits=4)

#H# cid gid ev eu ce rp
## 1 1 1 3200 516.1 3005 195.2
## 2 1 2 3000 515.4 3000 0.000000000001364
## 3 2 1 800 129 508.1 291.9
## 4 2 2 750 128.9 507.3 242.7

17



my_utility <- Utility(fun="power", par=c(alpha=0.77, beta=0.78, lambda=1))
compareEU(my_choices, utility=my_utility, digits=4)

## cid gid ev eu ce rp
## 1 1 1 3200 475 2994 206.3
## 2 2 3000 475.8 3000 0

1
## 3 2 1 800 118.7 494.7 305.3
2 2 750 118.9 495.7 254.3

Note the reversal in preferences. Using a linear utility function u(z) = x gives the same result as EV.

my_utility <- Utility(fun="power", par=c(alpha=1, beta=1, lambda=1))
compareEU(my_choices, utility=my_utility, digits=4)

## cid gid ev eu ce rp
# 1 1 1 3200 3200 3200 O
1 2 3000 3000 3000 O
## 3 2 1 800 800 800 O
2 2 750 750 750 O

Compute the predictions for RDU.

tk_1992_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))
tk_1992_positive_prob_weight <- ProbWeight (fun="Tversky_Kahneman_1992", par=c(alpha=0.61))
compareRDU(my_choices, prob_weight=tk_1992_positive_prob_weight, utility=tk_1992_utility, digits=4)

## cid gid ev rdu ce rp
## 1 1 1 3200 898.1 2270 929.9
# 2 1 2 3000 1148 3000 -0.000000000001819
## 3 2 1 800 385.5 868.4 -68.37
## 4 2 2 750 333.7 737 12.99

In contrast, RDU predicts the preferences B > A and C' > D. PT reduces to RDU if all outcomes are strictly positive so
its predictions are identical to RDU.

tk_1992_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))
tk_1992_positive_prob_weight <- ProbWeight (fun="Tversky_Kahneman_1992", par=c(alpha=0.61))
tk_1992_negative_prob_weight <- ProbWeight (fun="Tversky_Kahneman_1992", par=c(alpha=0.69))
comparePT (my_choices,
prob_weight_for_positive_outcomes=tk_1992_positive_prob_weight,
prob_weight_for_negative_outcomes=tk_1992_negative_prob_weight,
utility=tk_1992_utility, digits=4)

## cid gid ev pt ce rp
# 1 1 1 3200 898.1 2270 929.9
## 2 1 2 3000 1148 3000 -0.000000000001819
## 3 2 1 800 385.5 868.4 -68.37
## 4 2 2 750 333.7 737 12.99

PT explains the common ratio paradox using a curved probability weighting function. This can be depicted using pt.

plotProbW(my_title=expression(paste("Tversky & Kahneman (1992), ",
alpha==0.61)),
my_title_colour="black", my_title_font_size=4,
my_x_label = "p", my_y_label = "w(p)",
pwf=kt_pwf, par=c(alpha=0.61),
draw_reference_line_flag=TRUE, reference_line_colour="red",
reference_line_style="dotted",
my_labels=c(expression(paste(w(italic(p)) == frac(italic(p) “alpha,

(italic(p)~alpha + (1-italic(p))~alpha)~(1/alpha))))),

my_label_positions=1list(c(0.4,0.8)),
font_scaling=1.0)
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Tversky & Kahneman (1992), a =0.61
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This function is only strictly increasing for o > 0.28. A family of « values can be plotted (see e.g. (Wakker| 2010, p. 207
Figure 7.2.1)). The lower the o parameter, the more the decision maker exhibits likelihood insensitivity.

plotOneParProbWFam(my_title="Tversky & Kahneman (1992) family",
my_title_colour="black", my_title_font_size=4,
my_x_label = "p", my_y_label = "w(p)", pwf=kt_pwf,
par=c(0.3, 0.61, 0.8, 1.0, 1.3),
draw_reference_line_flag=TRUE, reference_line_colour="red",
reference_line_style="dotted",
my_labels=c(expression(paste(alpha == 0.3)),
expression(paste(alpha == 0.61)),
expression(paste(alpha == 0.8)),
expression(paste(alpha == 1.0)),
expression(paste(alpha == 1.3)),
expression(paste(w(italic(p)) == frac(italic(p)~alpha,
(italic(p)~alpha + (1-italic(p))~alpha)~(1/alpha))))),
my_label_positions=1list(c(0.9,0.15),c(0.7,0.45),c(0.15,0.5),
c(0.31,0.62),c(0.5,0.7),c(0.42, 0.9)),
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font_scaling=1.0,
arrow_positions = 1ist(c(0.3,0.5,0.39,0.41),c(0.42,0.58,0.52,0.51),
c(0.59,0.66,0.66,0.66)))
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Rather than use the single parameter probability weighting functional form of [Tversky and Kahneman| (1992)), Gonzalez|
and Wu have proposed the use of a two-parameter “linear in log odds” probability weighting function to model
probability discriminability and gamble attractiveness (Gonzalez and Wul |1999, Figure 4 p. 140). The parameter + controls
curvature and 0 controls elevation. pt can be used to show the effects of varying J on the elevation. Lower values of ¢
decrease the elevation.

plotTwoParProbWFam(my_title=expression(paste("linear in log odds, ",
gamma == 0.6)),
my_title_colour="black", my_title_font_size=4,
my_x_label = "p", my_y_label = "w(p)", pwf=linear_in_log_odds_pwf,
par=list(a_list=c(0.6), b_list=seq(from=0.2, to=1.8, by=0.06)),
draw_reference_line_flag=TRUE, reference_line_colour="red",
reference_line_style="dotted",

my_labels=c(expression(paste(delta == 0.2)),
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expression(paste(delta == 1.8)),
expression(paste(w(italic(p)) == frac(delta * italic(p) gamma,
delta * italic(p) gamma + (1-italic(p)) gamma)))),
my_label_positions=1ist(c(0.7,0.09),c(0.2,0.6),c(0.42, 0.9)),
font_scaling=1.0,
arrow_positions = list(c(0.28,0.56,0.35,0.53),c(0.7,0.23,0.75,0.35)))

linear in log odds, y=0.6

1.0

op"
opY+(1-p)
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0.9
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Likewise, pt can be used to show the effects of varying v on the curvature. Lower values of 7 increase the curvature.

plotTwoParProbWFam(my_title=expression(paste("linear in log odds, ",
delta == 0.6)),
my_title_colour="black", my_title_font_size=4,
my_x_label = "p", my_y_label = "w(p)", pwf=linear_in_log_odds_pwf,
par=list(a_list=seq(from=0.2, to=1.8, by=0.06), b_list=c(0.6)),
draw_reference_line_flag=TRUE, reference_line_colour="red",
reference_line_style="dotted",
my_labels=c(expression(paste(gamma == 0.2)),
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expression(paste(gamma == 1.8)),
expression(paste(w(italic(p)) == frac(delta * italic(p) gamma,
delta * italic(p) gamma + (1-italic(p)) gamma)))),
my_label_positions=1ist(c(0.8,0.25),c(0.5,0.1),c(0.42, 0.9)),
font_scaling=1.0, arrow_positions = list(c(0.5,0.25,0.45,0.3),
c(0.78,0.36,0.8,0.47)))

linear in log odds, 6=0.6
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Repeating the PT calculations using the Gonzalez and Wul (1999) probability weighting function gives a similar prediction
to before.

tk_1992_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))
linear_in_log_odds_prob_weight <- ProbWeight (fun="linear_in_log_odds", par=c(alpha=0.61, beta=0.724))
comparePT (my_choices,

prob_weight_for_positive_outcomes=linear_in_log_odds_prob_weight,

prob_weight_for_negative_outcomes=linear_in_log_odds_prob_weight,

utility=tk_1992_utility, digits=4)

## cid gid ev pt ce rp
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## 1 1 1 3200 928.1 2357 843.4
## 2 1 2 3000 1148 3000 -0.000000000001819
## 3 2 1 800 350.6 779.4 20.58
## 4 2 2 750 310.2 678.4 71.6

Next, SWU predicts the preferences B > A and C > D.

my_utility <- Utility(fun="power", par=c(alpha=0.4, beta=0.4, lambda=1))
my_pwf <- ProbWeight(fun="linear_in_log_odds", par=c(alpha=0.4, beta=0.4))
compareSWU(my_choices, prob_weight=my_pwf, utility=my_utility, digits=4)

## cid gid ev swu ce rp
## 1 1 1 3200 11.33 431.9 2768
## 2 1 2 3000 24.6 3000 -0.000000000001819
## 3 2 1 800 5.155 60.34 739.7
## 4 2 2 750 5.04 57.04 693

SWAU predicts the preferences B > A and C > D.

my_utility <- Utility(fun="power", par=c(alpha=0.4, beta=0.4, lambda=1))
my_pwf <- ProbWeight(fun="linear_in_log_odds", par=c(alpha=0.4, beta=0.4))
compareSWAU(my_choices, prob_weight=my_pwf, utility=my_utility, digits=4)

## cid gid ev swau Ce) rp
## 1 1 1 3200 18.96 1566 1634
## 2 1 2 3000 24.6 3000 -0.000000000001819
## 3 2 1 800 8.63 218.8 581.2
## 4 2 2 750 8.573 215.2 534.8

RAM predicts the preferences B > A and C > D.

branch_weight_list <- list(c(1), c(0.3738, 0.6262))

my_utility <- Utility(fun="linear", par=c(lambda=1))

power_prob_weight <- ProbWeight (fun="power", par=c(alpha=0.7, beta=1))

compareRAM(my_choices, branch_weight_list=branch_weight_list,
prob_weight=power_prob_weight, utility=my_utility, digits=4)

## cid gid ev ramu ce rp
## 1 1 1 3200 2447 2447 753.2
## 2 2 3000 3000 3000 0

1
## 3 2 1 800 737.9 737.9 62.12
2 2 750 650.1 650.1 99.89

GDU predicts the preferences B > A and C > D.
my_pwf <- ProbWeight (fun="compound_invariance", par=c(alpha=0.542, beta=1.382))
my_utility <- Utility(fun="power", par=c(alpha=1, beta=1, lambda=1))
compareGDU(my_choices, prob_weight=my_pwf, utility=my_utility, digits=4)
## cid gid ev gdu ce rp
## 1 1 1 3200 2167 2167 1033
2 3000 3000 3000 0

1
## 3 2 1 800 668.7 668.7 131.3
2 2 750 576.3 576.3 173.7

PRT predicts the preferences B > A and C' > D.

my_utility <- Utility(fun="power", par=c(alpha=0.631, beta=0.631, lambda=1))
comparePRT (my_choices, utility=my_utility, gamma=0.676, digits=4)

## cid gid ev prtu ce rp
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## 1 1 1 3200 131.7 2287 912.7
## 2 1 2 3000 156.3 3000 -0.0000000000004547
## 3 2 1 800 55.71 584.7 215.3
## 4 2 2 750 51.75 520.2 229.8

TAX predicts the preferences B > A and C > D.

my_utility <- Utility(fun="linear", par=c(lambda=1))
power_prob_weight <- ProbWeight (fun="power", par=c(alpha=0.7, beta=1))
compareTAX (my_choices, prob_weight=power_prob_weight, utility=my_utility, delta=-1, digits=4)

## cid gid ev tax ce rp
# 1 1 1 3200 1934 1934 1266
12 3000 3000 3000 0
## 3 2 1 800 732.8 732.8 67.2
2 2 750 633.4 633.4 116.6

Note that this TAX example uses a linear probability weighting function. TAX explains the Allais paradoxes through
the increased branch weighting given to the lowest branches of a choice. Given there are three objective consequences
{0,3000, 4000}, we can show the gambles in the probability simplex. The iso-expected value lines are shown in black, the
expected utility indifference lines in purple and the prospect theory indifference curves in red.

my_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=1))

drawSimplex (x1=0, x2=3000, x3=4000,

line_dot_density=1000,

draw_ev_flag=TRUE, ev_colour="black",

draw_pt_flag=TRUE, alpha=0.61, beta=0.724, pt_colour="red",

draw_utility_flag=TRUE, utility=my_utility, eu_colour="purple",

start_points=1ist(c(0.1,0.9),c(0.2,0.8),c(0.3,0.7),c(0.4,0.6),
c(0.5,0.5),c(0.6,0.4),c(0.7,0.3),c(0.8,0.2),c(0.9,0.1)),

labels=c("A","B","C","D","increasing preference"),

label_positions=1ist(c(0.03,0.04),c(0.21,0.75),
c(0.79,0.04),c(0.85,0.18),c(0.7,0.7)),

label_colours=c("orange","purple","orange","purple","red"),

label_font_sizes=c(12,12,12,12,16),

label_font_faces=c("plain","plain","plain","plain","bold"),

label_rotations=c(0,0,0,0,-45),

circle_radii=c(0.01,0.01,0.01,0.01),

circle_outline_colours=c("black","black","black","black"),

circle_fill_colours=c("orange","purple","orange","purple"),

circle_positions=1list(c(0,0),c(0.2,0.8),c(0.75,0),c(0.8,0.2)),

lines=1ist(c(0,0,0.2,0.8),c(0.2,0.8,0.8,0.2),
c(0.8,0.2,0.75,0),c(0.75,0,0,0)),

line_widths=c(1, 1, 1, 1),

line_styles=c("dashed", "dashed", "dashed", "dashed"),

line_colours=c("blue","blue","blue","blue"),

arrows=1ist(c(0.8,0.5,0.5,0.8)),

arrow_widths=c(2), arrow_styles=c("solid"), arrow_colours=c("red"))
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The introduction of a reference point allowed PT to generated novel predictions such as the four-fold pattern of risk
attitudes and loss aversion. These successes will be described in the following sections.

6 Four-fold pattern of risk attitudes

One of the most distinctive predictions of prospect theory has been the four-fold pattern of risk attitudes within individual
decision makers. Although EU could predict both risk aversion and risk seeking using different utility curves, it could not do
this simultaneously in the same decision maker. The combination of reference points, curvature of the probability weighting
function and kinked utility function allows PT to model this pattern. A key concept in PT is outcomes are regarded as losses
or gains relative to a reference point defined via a framing event. The reference point is generally taken to be the “status
quo”. Put very roughly, people don’t mind winning, but are averse to losing. To capture this effect, losses are weighted
more than gains. Small probability outcomes are overestimated relative to the actual probability of the outcome happening.
Middle and high probability outcomes are underweighted relative to the actual probabilities of these outcomes. Negative

outcomes are given more weight (loss aversion). The weight of rare events is increased. The predictions are given in Table

Table 1: Four-fold pattern of risk attitudes.
medium to high probability event low probability event
loss risk seeking risk averse
gain risk averse risk seeking

Consider problems 11, 12. 14 and 14’ from Kahneman and Tversky| (1979, p. 273, 281) which illustrate the four-fold
pattern.
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choice_ids <- c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4)
gamble_ids <- c(1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2)
outcome_ids <- c(1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1)
objective_consequences <- c(1000, 0, 500, -0, -1000, -500,
5000, 0, 5, -5000, -0, -5)
probability_strings <- c("1/2", "1/2", "1i", "1/2", "1/2",
"i", "0.001", "0.999", "1", "0.001", "0.999", "1")
my_choices <- Choices(choice_ids=choice_ids,
gamble_ids=gamble_ids,
outcome_ids=outcome_ids,
objective_consequences=objective_consequences,
probability_strings=probability_strings)
my_choices

## cid gid oid pr oc

## 1 1 1 1 1/2 1000
## 2 1 1 2 1/2 0
## 3 1 2 1 1 500
## 4 2 1 1 1/2 0
## 5 2 1 2 1/2 -1000
## 6 2 2 1 1 -500
## 7 3 1 1 0.001 5000
## 8 3 1 2 0.999 0
## 9 3 2 1 1 5
## 10 4 1 1 0.001 -5000
## 11 4 1 2 0.999 0
## 12 4 2 1 1 -5

drawChoices (my_choices,
decision_square_x=0.2, decision_square_edge_length=0.03,
circle_radius=0.02, y_split_gap=0.07, x_split_offset=0.03,
probability_text_digits=4, y_probability_text_offset=0.015,
y_value_text_offset=0.005, x_value_text_offset=0.025,
probability_text_font_colour="red", probability_text_font_size=10,
objective_consequence_text_font_colour="blue",
objective_consequence_text_font_size=10,
label=c("A","B","C","D","E","F","G","H"),
label_font_colour=c("orange","magenta","green","blue",
"purple","pink","grey","violet"),
label_font_size=c(11,11,11,11,11,11,11,11),
label _positions=1list(c(0.26,0.94),c(0.26,0.78),c(0.26,0.69),
c(0.26,0.53),c(0.26,0.44),c(0.26,0.28),c(0.26,0.2),
c(0.26,0.03)))
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The PT predictions can be calculated as follows.

tk_1992_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))
linear_in_log_odds_prob_weight <- ProbWeight (fun="linear_in_log_odds", par=c(alpha=0.61, beta=0.724))
comparePT (my_choices,
prob_weight_for_positive_outcomes=linear_in_log_odds_prob_weight,
prob_weight_for_negative_outcomes=linear_in_log_odds_prob_weight,
utility=tk_1992_utility, digits=4)

Hit
##
##
##
#i#t
##
##
##
##

O ~NO O WN -

cid gid
1 1
1 2
2 1
2 2
3 1
3 2
4 1
4 2

ev
500
500
-500
-500

pt ce
183.3 373.1
237.2 500
-412.5 -373.1
-533.7  -500
19.08 28.52
4.122 5
-42.92 -28.52
-9.274 -5

rp
126.9
~0.0000000000002842
-126.9
0.0000000000002842
-23.52
~0.0000000000000008882
23.52
0.0000000000000008882

Kahneman and Tversky| (1979) found empirical support for the PT predictions. These results are illustrated in Table
The first two choices are exactly the same choices but are framed differently. A sample of 70 subjects were given 1000

in choice 1 and 68 different subjects were given 2000 in choice 2. They were then asked to make two choices. In choice
1 84% preferred B > A. In choice 2 69% preferred C' > D. However, the end states are the same in both choices: 1500
for certain for options B and D and an equal chance gamble to gain 1000 or 2000 for options A and C. In the first choice
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Table 2: Reflection effect patterns (from [Kahneman and Tversky, 1979).

Problem 11. (p. 273)
Risk averse for potential large gains under medium to high probability (B > A) 84% N =70
Problem 12. (p. 273)

Risk seeking to avoid potential large losses

Problem 14. (p. 281)

Risk seeking for highly unlikely large gains (Gambling)

Problem 14’. (p. 281)

Risk averse for highly unlikely large losses (Insurance)

(C>D) 69% N =68
E>F) 7% N=T12

H>G) 8% N=T12

(a gains frame), people exhibited risk aversion while in the second choice (a loss frame) they exhibited risk seeking. These
patterns have been empirically supported by other researchers, however the patterns may be sensitive to different elicitation
procedures. [Harbaugh et al| (2010) found more complex choice elicitation procedures led to greater support for the four-fold
pattern compared to simpler procedures, and suggest increased cognitive load may be responsible for the four-fold pattern.
Prospect theory can also predict the (M4) Markowitz (1952) four-fold pattern of risk preferences for outcome magnitudes
using decreasingly elastic utility functions (Scholten and Read, 2014) (see Table [3).

Table 3: (M4) Markowitz four-fold pattern for outcome magnitudes.

large outcome small outcome

loss

risk seeking

risk averse

gain

risk averse

risk seeking

To illustrate, consider the following choices from |Hershey and Schoemaker]| (1980)).

choice_ids <- c(1, 1, 1, 2,
gamble_ids <- c(1, 2, 2, 1

B > > >

2, 2, 3, 3, 3, 4, 4, 4
Dy By Ly By By iy, 2

,» 2)

B

outcome_ids <- c(1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2)
objective_consequences <- c(1, 0, 100, 10000, O, 1000000,

-1, 0, -100, -10000, O, -1000000)

probability_strings <- c("1", "0.99", "0.01", "1", "0.99", "0.01",

||1||, "0.99", "0.01", "1", "0,99",

"0.01")

my_choices <- Choices(choice_ids=choice_ids,

gamble_ids=gamble_ids,
outcome_ids=outcome_ids,

objective_consequences=objective_consequences,

probability_strings=probability_strings)

my_choices

#i#t cid gid oid pr oc
# 1 1 1 1 1 1
## 2 1 2 10.99 0
## 3 1 2 20.01 100
# 4 2 1 1 1 10000
## 5 2 2 10.99 0
## 6 2 2 20.01 1000000
w7 3 1 1 1 -1
## 8 3 2 10.99 0
## 9 3 2 20.01 -100
# 10 4 1 1 1 -10000
# 11 4 2 10.99 0
# 12 4 2 2 0.01 -1000000

drawChoices (my_choices,

decision_square_x=0.2, decision_square_edge_length=0.03,
circle_radius=0.02, y_split_gap=0.07, x_split_offset=0.03,
probability_text_digits=4, y_probability_text_offset=0.015,
y_value_text_offset=0.005, x_value_text_offset=0.025,

probability_text_font_colour="red", probability_text_font_size=10,
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objective_consequence_text_font_colour="blue",

objective_consequence_text_font_size=10, label=c("A","B","C","D","E","F","G","H"),
label_font_colour=c("orange","magenta","green","pink","orange", "magenta","green","pink"),
label_font_size=c(11,11,11,11,11,11,11,11),
label_positions=1ist(c(0.26,0.98),c(0.26,0.8),c(0.26,0.73),c(0.26,0.56),

c(0.26,0.48),c(0.26,0.31),c(0.26,0.23),c(0.26,0.06)))
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. 001 140
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! 10000
099
001 " 1000000
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0
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001 " _1000000

A sample of 36 people were asked to consider the first choice between gambles A and B, with 81% choosing the risky
option B (see (Hershey and Schoemakerl, [1980, p. 406 Table 3, Experiment 1, Question 13)). For small outcome gains, people
were risk seeking. In the second choice situation between gambles C' and D, 88% of 37 people chose C, the safe option.
For large outcome gains, people were risk averse. In the third choice situation between gambles E and F', 63% of 36 people
chose F, the safe option. For small outcome losses, people were risk averse. Finally, in the fourth choice situation between
gambles G and H, 68% of 37 people chose H, the risky option. For large outcome losses, people were risk seeking. The PT
predictions using parameterisations from [Scholten and Read| (2014) can be calculated as follows.

norm_log_utility <- Utility(fun="normalized_logarithmic", par=c(alpha=0.032, beta=0.0031, lambda=2.25))
tk_1992_positive_prob_weight <- ProbWeight (fun="Tversky_Kahneman_ 1992", par=c(alpha=0.4496))
tk_1992_negative_prob_weight <- ProbWeight (fun="Tversky_Kahneman_ _1992", par=c(alpha=0.6704))
comparePT (my_choices,
prob_weight_for_positive_outcomes=tk_1992_positive_prob_weight,
prob_weight_for_negative_outcomes=tk_1992_negative_prob_weight,
utility=norm_log_utility, digits=4)

## cid gid ev pt ce rp
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## 1 1 1 1 0.9843 11.86 -10.86
## 2 1 2 1 4.382 13.23 -12.23
## 3 2 1 10000 180.4 3690 6310
#* 4 2 2 10000 31.67 31.68 9968
## 5 3 1 -1 -2.247 1 -2
# 6 3 2 -1 -8.447 3.776 -4.776
# 7 4 1 -10000 -2515 10000 -20000
# 8 4 2 -10000 -251.5 133.6 -10134

The predicted preferences are B > A, C' > D, E > F and H > G, in line with the empirical data.

7 Loss aversion

[Birnbaum)| (2008, p. 466) defines loss aversion as “the behavioral finding that people show risk aversion for mixed gambles”.
Prospect theory explains loss aversion through a kinked utility function centred around a reference point (which usually but
not always represents the status quo). This construct underpins the famous quote from [Kahneman and Tversky| (1979, p.
279) that “losses loom larger than gains”. It extends the EU utility function into the domain of losses and embodies the
conceptual advance that decision makers consider changes in wealth states relative to the reference point of their current
wealth (rather than only final wealth states), developing a line of thought from [Markowitz| (1952)). Kahneman (2011, p.
269-277) offers an account of how this idea came about.

Consider the choice from Table 5 p. 221) consisting of the option of maintaining the status quo or the option
of taking a symmetrical gamble where the absolute value of the loss is the same as the gain. Assume the units of the gambles
are of high nominal value and that real money is involved. pt can model this choice.

choice_ids <- c(1, 1, 1)

gamble_ids <- c(1, 2, 2)

outcome_ids <- c(1, 1, 2)

objective_consequences <- c(0, -100, 100)

probability_strings <- c("1", "1/2", "1/2")

my_choices <- Choices(choice_ids=choice_ids,
gamble_ids=gamble_ids,
outcome_ids=outcome_ids,
objective_consequences=objective_consequences,
probability_strings=probability_strings)

my_choices

#i#t cid gid oid pr oc
## 1 1 1 1 1 0
## 2 1 2 1 1/2 -100
## 3 1 2 21/2 100

drawChoices(my_choices,
decision_square_x=0.2, decision_square_edge_length=0.05,
circle_radius=0.025, y_split_gap=0.15, x_split_offset=0.03,
probability_text_digits=4, y_probability_text_offset=0.015,
y_value_text_offset=0.005, x_value_text_offset=0.025,
probability_text_font_colour="red", probability_text_font_size=10,
objective_consequence_text_font_colour="blue",
objective_consequence_text_font_size=10, label=c("A","B"),
label_font_colour=c("orange","magenta"), label_font_size=c(11,11),
label_positions=1ist(c(0.26,0.7),c(0.26,0.36)))
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In the study, 88% of the 46 undergraduate students respondents in the study were risk averse and chose
the status quo, supporting prospect theory’s absolute loss aversion hypothesis. There is further empirical support for this
phenomenon (see, e.g. Brooks and Zank| [2005; Birnbaum and Bahra) [2007; |[Ert and Erev, [2008; [McGraw et al., [2010}
[Redelmeier and Tverskyl [1992)). However, a number of experimental manipulations such as introducing the presence of status
quo framing effects seem to enhance its presence (Erevl [2013). [Rabin/ (2000) provided a proof that with the assumption of a
concave utility function, an expected utility maximizer would reject an extremely favourable 50—50 gamble with large nominal
value (e.g. (—100,0.5;2.5 x 10%,0.5)) if they rejected a 50 — 50 gamble with small nominal value (e.g. (—100,0.5;110,0.5)).
[Rabin and Thaler| (2001) suggests a combination of loss aversion and mental accounting explains risk averse behaviour for
small nominal value gambles rather than expected utility. From an evolutionary psychology perspective, |de Martino et al.|
(2010) suggest the amygdala regulates loss aversion.

[Erev| (2013) tabled the loss aversion coefficient A across a number of studies such as [Kobberling and Wakker| (2005));
[Abdellaoui et al.| (2007), and found it fell within in the range [0.78,2.61], with a strong positive correlation between the
magnitude of A\ and the absolute value of the objective consequences. Expressed very roughly, decision makers require gains
to be at least twice the absolute value of the losses in an equal chance binary gamble before they will consider taking on the
gamble (see [Tversky and Kahneman| 1991, p. 1053-1054). Calculations for PT can be performed via the following code.

tk_1992_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))
linear_in_log_odds_prob_weight <- ProbWeight (fun="linear_in_log_odds", par=c(alpha=0.61, beta=0.724))
comparePT (my_choices,

prob_weight_for_positive_outcomes=linear_in_log_odds_prob_weight,

prob_weight_for_negative_outcomes=linear_in_log_odds_prob_weight,

utility=tk_1992_utility, digits=4)

## cid gid ev pt ce rp
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## 1 1 1 0 0 0 0
## 2 1 2 0 -30.21 -19.13 19.13

Prospect theory gives a negative value of —30.2 for gamble B, less than the 0 of the certain gamble A. Thus the riskless
choice is preferred. Note that loss aversion can be explained by other theories such as TAX, without the use of a kinked
utility function . In the following example a linear utility function is used in the TAX calculation. In the
internal calculations for TAX, branch weights of 2/3 and 1/3 are given to the —100 and 100 outcomes, respectively.

my_utility <- Utility(fun="linear", par=c(lambda=1))
power_prob_weight <- ProbWeight (fun="power", par=c(alpha=0.7, beta=1))
compareTAX (my_choices, prob_weight=power_prob_weight, utility=my_utility, delta=-1, digits=4)

##  cid gid ev tax ce rp
#1 1 1 0 0 0 0
# 2 1 2 0 -33.33 -33.33 33.33

The value is —33.3 for gamble B, less than the 0 of gamble A. Thus the riskless choice is preferred as well.

8 Ciritical tests of prospect theory

PT assumes transitivity, coalescing, first-order stochastic dominance, restricted branch independence, upper tail indepen-
dence, lower cumulative independence, upper cumulative independence and gain-loss separability . However,
empirical research has detected violations of some of these assumptions to various extents. Violations of gain-loss separability
and coalescing will first be discussed as these seem fundamental issues. Violations of first-order stochastic dominance will
also be discussed to demonstrate the implementation of the [Birnbaum| (1997] p. 74) stochastic dominance violation recipe in

pt.

8.1 Violations of gain-loss separability

A PT assumption is the separability of gains and losses, implicit in the kinked shape of the utility function around a reference
point. The PT utility function of Eq. @D can be plotted as follows.

plotUtility(my_x_label = "objective consequence",
my_y_label = "subjective value",
xmin = -10, xmax = 10, fun=power_uf,
par=c(alpha = 0.88, beta = 0.88, lambda = 2.25),
fun_colour = "purple",
draw_reference_line_flag = TRUE,
reference_line_colour = "red",
reference_line_style = 1)

32



subjective value
5

-10

-10 -5 0 5 10

objective consequence

At present very little empirical research has been conducted on gain-loss separability. The limited research available
has generated evidence where gain-loss separability is violated (Birnbaum and Bahraj, 2007; Wu and Markle, |2008} [Por and|
2013)). Consider tests 15, 13 and 11 from Birnbaum and Bahral (2007, Table 4 p. 1021).

choice_ids <- c¢(1, 1, 1, 1, 1, 1
gamble_ids <- c(1, 1, 1, 2, 2, 2, 1,1, 1, 2, 2, 2, 1, 1, 1, 2,
outcome_ids <- c(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1,
objective_consequences <- c¢(100, 0, 0, 50, 50, O,
-0, -50, -50, -0, -0, -100,
100, 0, -50, 50, -0, -100)
probability_strings <- c("0.25", "0.256", "0.5", "0.25", "0.25", "0.5",
"0.5", "0.25", "0.25", "O.5", "O0.25", "0O.25",
"0.25", "0.25", "0.5", "0.5", "0.25", "0.25")
my_choices <- Choices(choice_ids=choice_ids,
gamble_ids=gamble_ids,
outcome_ids=outcome_ids,
objective_consequences=objective_consequences,
probability_strings=probability_strings)
my_choices

> >

o By By By By By By 8y 8y 3y 8y &y 3
1y, by iy By By By 1L, iy iy, B, 2

N -

i cid gid oid pr oc
# 1 1 1 10.25 100
## 2 1 1 20.25 0
## 3 1 1 3 0.5 0
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#it 4 1 2 1 0.25 50
## 5 1 2 20.25 50
## 6 1 2 3 0.5 0
## 7 2 1 1 0.5 0
## 8 2 1 2 0.25 -50
## 9 2 1 3 0.25 -50
## 10 2 2 1 0.5 0
## 11 2 2 2 0.25 0
## 12 2 2 3 0.25 -100
## 13 3 1 1 0.25 100
## 14 3 1 2 0.25 0
## 15 3 1 3 0.5 -5b0
## 16 3 2 1 0.5 50
## 17 3 2 2 0.25 0
## 18 3 2 3 0.25 -100

drawChoices (my_choices,
decision_square_x=0.2, decision_square_edge_length=0.03,
circle_radius=0.02, y_split_gap=0.04, x_split_offset=0.03,
probability_text_digits=4, y_probability_text_offset=0.015,
y_value_text_offset=0.005, x_value_text_offset=0.025,
probability_text_font_colour="red", probability_text_font_size=10,
objective_consequence_text_font_colour="blue",
objective_consequence_text_font_size=10,
label=c("A","B","C", "D","E","F"),
label_font_colour=c("orange","magenta","green",

"blue" s "purple" s Ilpinkll) s
label_font_size=c(11,11,11,11,11,11),
label_positions=1ist(c(0.26,0.93),c(0.26,0.74),

c(0.26,0.6),c(0.26,0.4),c(0.26,0.28),c(0.26,0.05)))
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In a sample of 178 participants 71% preferred B > A, 65% preferred D > C and 76% preferred E > F. The calculations
for PT can be run as follows.

tk_1992_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))
tk_1992_positive_prob_weight <- ProbWeight (fun="Tversky_Kahneman_1992", par=c(alpha=0.61))
tk_1992_negative_prob_weight <- ProbWeight (fun="Tversky_Kahneman_ 1992", par=c(alpha=0.69))
comparePT (my_choices,
prob_weight_for_positive_outcomes=tk_1992_positive_prob_weight,
prob_weight_for_negative_outcomes=tk_1992_negative_prob_weight,
utility=tk_1992_utility, digits=4)

#i#t cid gid ev pt ce rp
## 1 1 1 25 16.73 24.57 0.433
## 2 1 2 25 13.15 18.69 6.311
## 3 2 1 -25 -31.94 -20.38 -4.618
# 4 2 2 -25 -38 -24.83 -0.1664
## 5 3 1 0 -15.21 -8.771 8.771
# 6 3 2 0 -24.85 -15.33 15.33

PT incorrectly predicts the preferences A > B and C' > D but correctly predicts £ > F'. |Por and Budescul (2013) suggest
violations of gain-loss separability could limit the ability of PT to generalise from purely positive or negative domain gambles
to mixed gambles.

In contrast, TAX explains loss aversion through the increased weighting provided to negative choice branches rather than
through using a kinked utility function. Note the linear utility u(x) = z and loss aversion coefficient A = 1 used in the
following TAX calculation.
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my_utility <- Utility(fun="linear", par=c(lambda=1))
power_prob_weight <- ProbWeight (fun="power", par=c(alpha=0.7, beta=1))
compareTAX (my_choices, prob_weight=power_prob_weight, utility=my_utility, delta=-1, digits=4)

## cid gid ev tax ce rp
# 1 1 1 25 13.79 13.79 11.21
# 2 1 2 25 20.69 20.69 4.308
## 3 2 1 -25 -20.69 -20.69 -4.308
## 4 2 2 -25 -13.79 -13.79 -11.21
## 5 3 1 0 -15.51 -15.51 15.51
## 6 3 2 0 -34.49 -34.49 34.49

In this case TAX successfully predicts B > A, D > C and E > F, in line with the empirical results. However, this is not
true for other cases. Consider test 7 from [Wu and Markle| (2008, Table 1 p. 1326). These choices can be modelled as follows.

choice_ids <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)
gamble_ids <- c(1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2)
outcome_ids <- c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2)
objective_consequences <- c(4200, -3000, 3000, -6000,
4200, 0, 3000, O,
0, -3000, 0, -6000)
probability_strings <- c("0.5", "0.5", "0.75", "0.25",
"0.5", "0.5", "0.75", "0.25",
"0.5", "0.5", "0.75", "0.25")
my_choices <- Choices(choice_ids=choice_ids,
gamble_ids=gamble_ids,
outcome_ids=outcome_ids,
objective_consequences=objective_consequences,

>

probability_strings=probability_strings)
my_choices

## cid gid oid pr oc

## 1 1 1 1 0.5 4200
## 2 1 1 2 0.5 -3000
## 3 1 2 1 0.75 3000
#it 4 1 2 2 0.25 -6000
## 5 2 1 1 0.5 4200
## 6 2 1 2 0.5 0
## 7 2 2 1 0.75 3000
## 8 2 2 20.25 0
## 9 g 1 1 0.5 0
## 10 3 1 2 0.5 -3000
## 11 3 2 1 0.75 0
## 12 3 2 2 0.25 -6000

drawChoices (my_choices,
decision_square_x=0.2, decision_square_edge_length=0.03,
circle_radius=0.02, y_split_gap=0.06, x_split_offset=0.03,
probability_text_digits=4, y_probability_text_offset=0.015,
y_value_text_offset=0.005, x_value_text_offset=0.025,
probability_text_font_colour="red", probability_text_font_size=10,
objective_consequence_text_font_colour="blue",
objective_consequence_text_font_size=10,
label=c("A","B","C", "D","E","F"),
label_font_colour=c("orange","magenta","green",

"blue", "purple","pink"),
label_font_size=c(11,11,11,11,11,11),
label_positions=1ist(c(0.26,0.93),c(0.26,0.74),

c(0.26,0.6),c(0.26,0.4),c(0.26,0.28),c(0.26,0.05)))
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With 81 participants, 51.9% preferred A > B, 85.2% preferred D > C and 63% preferred F' > E. The PT predictions
can be generated via the following code.

tk_1992_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))
tk_1992_positive_prob_weight <- ProbWeight (fun="Tversky_Kahneman_1992", par=c(alpha=0.61))
tk_1992_negative_prob_weight <- ProbWeight (fun="Tversky_Kahneman_1992", par=c(alpha=0.69))
comparePT (my_choices,
prob_weight_for_positive_outcomes=tk_1992_positive_prob_weight,
prob_weight_for_negative_outcomes=tk_1992_negative_prob_weight,
utility=tk_1992_utility, digits=4)

##  cid gid ev pt ce rp
# 1 1 1 600 -523.3 -488.9 1089
#2 1 2 750 -742.8 -728 1478
# 3 2 1 2100 649.2 1570 530.1
## 4 2 2 22560 652.3 1578 671.6
# 5 3 1 -1500 -1172 -1223 -277.1
## 6 3 2 -1500 -1395 -1490 -9.982

With the parameterisations from Tversky and Kahneman! (1992), PT correctly predicts the preferences A > B and D > C,
but incorrectly predicts £ > F. The predictions for TAX are generated via the following code.

my_utility <- Utility(fun="linear", par=c(lambda=1))
power_prob_weight <- ProbWeight (fun="power", par=c(alpha=0.7, beta=1))
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compareTAX (my_choices, prob_weight=power_prob_weight, utility=my_utility, delta=-1, digits=4)

##  cid gid ev  tax ce rp
## 1 1 1 600 -600 -600 1200
## 2 1 2 750 -1900 -1900 2650
## 3 2 1 2100 1400 1400 700
# 4 2 2 2250 1367 1367 883.4
# 5 3 1 -1500 -1000 -1000  -500
# 6 3 2 -1500 -1267 -1267 -233.2

TAX correctly predicts A > B and E > F, but incorrectly predicts C' > D.

8.2 Violations of coalescing

PT assumes gamble outcomes with the same objective consequences can be coalesced without affecting choice preferences.
Birnbaum)| (2004), however, identified situations where this was not true for the majority of decision makers. Consider
problems 14 and 8 from [Birnbaum| (2004, Table 3 p. 95) which are tests of coalescing.

choice_ids <- c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2)
gamble_ids <- c(1, 1, 1, 2, 2, 2, 1, 1, 2, 2)
outcome_ids <- c(1, 2, 3, 1, 2, 3, 1, 2, 1, 2)

objective_consequences <- c(100, 50, 50,
100, 100, 7,
100, 50, 100, 7)
probability_strings <- ¢("0.85", "0.1", "0.05",
"0.85", "0.1", "0.05",
"0.85", "0.15", "0.95", "0.05")
my_choices <- Choices(choice_ids=choice_ids,
gamble_ids=gamble_ids,
outcome_ids=outcome_ids,
objective_consequences=objective_consequences,
probability_strings=probability_strings)
my_choices

## cid gid oid pr oc

## 1 1 1 1 0.85 100
## 2 1 1 2 0.1 50
## 3 1 1 3 0.05 50
## 4 1 2 1 0.85 100
## 5 1 2 2 0.1100
## 6 1 2 30.065 7
## 7 2 1 1 0.85 100
## 8 2 1 2 0.15 50
## 9 2 2 1 0.95 100
# 10 2 2 20.05 7

drawChoices(my_choices,
decision_square_x=0.2, decision_square_edge_length=0.03,
circle_radius=0.02, y_split_gap=0.07, x_split_offset=0.03,
probability_text_digits=4, y_probability_text_offset=0.015,
y_value_text_offset=0.005, x_value_text_offset=0.025,
probability_text_font_colour="red", probability_text_font_size=10,
objective_consequence_text_font_colour="blue",
objective_consequence_text_font_size=10,
label=c("A","B","C","D"),
label_font_colour=c("orange","magenta","green", "blue"),
label_font_size=c(11,11,11,11),
label_positions=1ist(c(0.26,0.9),c(0.26,0.6),

c(0.26,0.37),c(0.26,0.13)))
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In a sample of 100 participants, 63% preferred B > A and 75% preferred C > D (Birnbauml| 2004, Table 3 p. 95
(unframed condition)). However, PT incorrectly predicts the preferences A > B and C' > D.

tk_1992_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))
tk_1992_positive_prob_weight <- ProbWeight (fun="Tversky_Kahneman_1992", par=c(alpha=0.61))
tk_1992_negative_prob_weight <- ProbWeight (fun="Tversky_Kahneman_1992", par=c(alpha=0.69))
comparePT (my_choices,
prob_weight_for_positive_outcomes=tk_1992_positive_prob_weight,
prob_weight_for_negative_outcomes=tk_1992_negative_prob_weight,
utility=tk_1992_utility, digits=4)

#i#t cid gid ev pt ce rp
## 1 1 1 92.5 48.44 82.23 10.27
1 2 95.35 46.79 79.05 16.3
## 3 2 1 92.5 48.44 82.23 10.27
2 2 95.35 46.79 79.05 16.3

For these choices TAX correctly predicts the preferences B > A and C > D.
my_utility <- Utility(fun="linear", par=c(lambda=2.25))
power_prob_weight <- ProbWeight (fun="power", par=c(alpha=0.7, beta=1))

compareTAX (my_choices, prob_weight=power_prob_weight, utility=my_utility, delta=-1, digits=4)

##  cid gid ev  tax ce rp

39



1 1 1 92.5 68.37 68.37 24.13
2 1 2 95.35 69.7 69.7 25.65
3 2 1 92.5 75.7 75.7 16.8
4 2 295.35 62 62 33.35

8.3 Violations of first-order stochastic dominance

[Birnbaum| (20054}, p. 263-264) defines first-order stochastic dominance for two different gambles A and B with A stochastically

dominating B as “the probability of winning prize x or greater given gamble A is greater than or equal to the probability
to win x or more in gamble B, for all x, and if this probability is strictly higher for at least one value of x”.
p. 221) provides an intuitive definition of dominance as follows: “One alternative is said to dominate another if it is just as
good on all the pertinent aspect dimensions and better on at least one”. Prospect theory assumes decision makers satisfy
first-order stochastic dominance at all times, if it is detected. (1997, p. 74) created a recipe for gambles where first
order stochastic dominance is systematically violated in choices between the gambles. These were empirically investigated in

Birnbaum and Navarrete| (1998]). pt can be used to create choices using this recipe.

my_
my_

##
##
##
##
#Hit
Hit
##
##
##
#it
##
##
##
##
#i#t
##
it
##
##
##
#Hi#
Hit
##
##

list <- vsdChoices(x=12, y=96, p="0.1", g="0.9", x_plus=14, y_minus=90, r="0.05")
list

$g0

cid gid oid pr oc
1 1 1 10.112
2 1 1 20.996

$gplusminus

cid gid oid pr oc
1 1 1 1 0.05 12
2 1 1 2 0.05 14
3 1 1 3 0.9 96
4 1 2 1 0.1 12
5 1 2 2 0.05 90
6 1 2 3 0.85 96
$gsplusminus

cid gid oid pr oc
1 1 1 1 0.05 12
2 1 1 2 0.05 14
3 1 1 30.05096
4 1 1 4 0.85 96
5 1 2 1 0.05 12
6 1 2 2 0.05 12
7 1 2 3 0.05 90
8 1 2 4 0.85 96

drawChoices (my_list[[2]],

decision_square_x=0.2, decision_square_edge_length=0.05,
circle_radius=0.025, y_split_gap=0.1, x_split_offset=0.03,
probability_text_digits=4, y_probability_text_offset=0.015,
y_value_text_offset=0.005, x_value_text_offset=0.025,
probability_text_font_colour="red", probability_text_font_size=11,
objective_consequence_text_font_colour="blue",
objective_consequence_text_font_size=11, label=c("A","B"),
label_font_colour=c("orange","magenta"), label_font_size=c(11,11),
label_positions=1ist(c(0.26,0.7),c(0.26,0.3)))
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In this case gamble A stochastically dominates gamble B. This can be seen by calculating the probability of receiving an
amount greater than or equal to each objective consequence of A and B, depicted in Table [d] For the amounts 96 and 14, A
dominates B. For the amounts 90 and 12, A has probabilities at least the same as B.

Table 4: Gamble A stochastically dominates gamble B.
A B
oc pr oc pr
9 0.9 > 9 0.85
90 09 same 90 0.9
14 095 > 14 09
12 1.0 same 12 1.0

However, Birnbaum and Navarrete| (1998, Table 1 p. 61) found in 100 participants, 73% preferred B > A. For any set of
functional forms and parameterisations, PT predicts A > B.

tk_1992_utility <- Utility(fun="power", par=c(alpha=0.88, beta=0.88, lambda=2.25))
linear_in_log_odds_prob_weight <- ProbWeight(fun="linear_in_log_odds", par=c(alpha=0.61, beta=0.724))
comparePT (my_list[[2]],

prob_weight_for_positive_outcomes=linear_in_log_odds_prob_weight,

prob_weight_for_negative_outcomes=linear_in_log_odds_prob_weight,

utility=tk_1992_utility, digits=4)

## cid gid ev pt ce rp

41



## 1 1 1 87.7 43.24 72.27 15.43
## 2 1 2 87.3 42.96 71.73 15.57

However TAX predicts B > A.

my_utility <- Utility(fun="linear", par=c(lambda=1.0))
power_prob_weight <- ProbWeight (fun="power", par=c(alpha=0.7, beta=1))
compareTAX (my_list[[2]], prob_weight=power_prob_weight, utility=my_utility, delta=-1, digits=4)

## cid gid ev  tax ce rp
## 1 1 1 87.7 45.77 45.77 41.93
## 2 1 287.3 63.1 63.1 24.2

Whereas under PT stochastic dominance is always obeyed, other theories such as TAX can predict violations of stochastic
dominance under certain conditions with stochastic dominance being obeyed most of the time. |Levy| (2008) explains these
violations as effects of bounded rationality. In his experiments the more transparent he made the first-order stochastic
dominance, the fewer violations he detected.

9 Summary

As new risky decision making theories are developed, they can be incorporated into the R package pt for comparison with
the currently implemented theories. This will allow a computational library to be developed to support decision making
research. The package can be used to facilitate Gedanken experiments for developing new critical tests of decision making.
The intention is to provide computational insights to develop theories of risky decision making that can more accurately
account for empirical data than current theories, and to generate ideas for novel predictions.

Acknowledgments

The author would like to thank Peter Wakker for comments on an earlier manuscript and calling attention to the basic
prospect theory calculator available on his homepage at http://people.few.eur.nl/wakker/miscella/calculate.cpt.
kobb/index.htm, and Vitalie Spinu for helpful discussions around the package design and suggesting improvements to the R
code.

References

Abdellaoui, M., Bleichrodt, H., and Paraschiv, C. (2007). Loss aversion under prospect theory: A parameter-free measure-
ment. Management Science, 53(10):1659-1674.

Allais, M. (1953). Le comportement de ’homme rationnel devant le risque: Critique des postulats et axiomes de 1’école
Américaine. Econometrica, 21(4):503-546.

Allais, M. (1979). The foundations of a positive theory of choice involving risk and a criticism of the postulates and axioms
of the American School. In Allais, M. and Hagen, O., editors, Expected utility hypothesis and the Allais paradox, pages
27-145. Reidel, Dordrecht: The Netherlands.

Becker, J. L. and Sarin, R. K. (1987). Lottery dependent utility. Management Science, 33(11):1367-1382.

Bernoulli, D. (1738/1954). Exposition of a new theory on the measurement of risk. Econometrica, 22(1):23-36. Translation of
Bernoulli, D. Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae,
5, 175-192 (1738).

Birnbaum, M. H. (1997). Violations of monotonicity in judgment and decision making. In Marley, A. A. J., editor, Choice,
decision, and measurement: Essays in honor of R. Duncan Luce, pages 73—100. Erlbaum, Mahwah, NJ.

Birnbaum, M. H. (1999). Paradoxes of allais, stochastic dominance, and decision weights. In Shanteau, J., Mellers, B. A., and
Schum, D. A., editors, Decision science and technology: Reflections on the contributions of Ward Edwards, pages 27-52.
Kluwer Academic Publishers, Norwell, MA.

Birnbaum, M. H. (2004). Causes of Allais common consequence paradoxes: An experimental dissection. Journal of Mathe-
matical Psychology, 48(2):87-106.

42


http://people.few.eur.nl/wakker/miscella/calculate.cpt.kobb/index.htm
http://people.few.eur.nl/wakker/miscella/calculate.cpt.kobb/index.htm

Birnbaum, M. H. (2005a). A comparison of five models that predict violations of first-order stochastic dominance in risky
decision making. Journal of Risk and Uncertainty, 31(3):263-287.

Birnbaum, M. H. (2005b). Three new tests of independence that differentiate models of risky decision making. Management
Science, 51(9):1346-1358.

Birnbaum, M. H. (2006). Evidence against prospect theories in gambles with positive, negative, and mixed consequences.
Journal of Economic Psychology, 27(6):737-761.

Birnbaum, M. H. (2007). Tests of branch splitting and branch-splitting independence in Allais paradoxes with positive and
mixed consequences. Organizational Behavior and Human Decision Processes, 102(2):154-173.

Birnbaum, M. H. (2008). New paradoxes of risky decision making. Psychological Review, 115(2):463-501.

Birnbaum, M. H. (2010). Testing lexicographic semiorders as models of decision making: Priority dominance, integration,
interaction, and transitivity. Journal of Mathematical Psychology, 54(4):363-386.

Birnbaum, M. H. (2011). Testing theories of risky decision making via critical tests. Frontiers in Psychology, 2(315):1-3.

Birnbaum, M. H. and Bahra, J. P. (2007). Gain-loss separability and coalescing in risky decision making. Management
Science, 53(6):1016-1028.

Birnbaum, M. H. and Navarrete, J. B. (1998). Testing descriptive utility theories: Violations of stochastic dominance and
cumulative independence. Journal of Risk and Uncertainty, 17(1):49-79.

Birnbaum, M. H., Patton, J. N., and Lott, M. K. (1999). Evidence against rank-dependent utility theories: Tests of cumulative
independence, interval independence, stochastic dominance, and transitivity. Organizational Behavior and Human Decision
Processes, 77(1):44-83.

Birnbaum, M. H. and Schmidt, U. (2008). An experimental investigation of violations of transitivity in choice under uncer-
tainty. Journal of Risk and Uncertainty, 37(1):77-91.

Brooks, P. and Zank, H. (2005). Loss averse behavior. Journal of Risk and Uncertainty, 31(3):301-325.

Colbert, G., Murray, D., and Nieschwietz, R. (2009). The use of expected value in pricing judgment. Journal of Risk Research,
12(2):199-208.

de Martino, B., Camerer, C. F., Adolphs, R., and Purves, D. (2010). Amygdala damage eliminates monetary loss aversion.
Proceedings of the National Academy of Sciences of the United States of America, 107(8):3788-3792.

Edwards, W. (1954). The theory of decision making. Psychological Bulletin, 51(4):380-417.

Erev, I. (2013
Making, 8(3

On the descriptive value of loss aversion in decisions under risk: Six clarifications. Judgment and Decision

(
Edwards, W. (1962). Subjective probabilities inferred from decisions. Psychological Review, 69:109-135.
).
):214-235.

Ert, E. and Erev, I. (2008). The rejection of attractive gambles, loss aversion, and the lemon avoidance heuristic. Journal of
Economic Psychology, 29:715-723.

Gilboa, 1. (1987). Expected utility with purely subjective non-additive probabilities. Journal of Mathematical Economics,
16(1):65-88.

Gonzalez, R. and Wu, G. (1999). On the shape of the probability weighting function. Cognitive Psychology, 38:129-166.

Harbaugh, W. T., Krause, K., and Vesterlund, L. (2010). The fourfold pattern of risk attitudes in choice and pricing tasks.
Economic Journal, 120:595-611.

Hastie, R. (2001). Problems for judgment and decision making. Annual Review of Psychology, 52:653-683.

Hershey, J. C. and Schoemaker, P. J. H. (1980). Prospect theory’s reflection hypothesis: A critical examination. Organizational
Behavior and Human Performance, 25(3):395-418.

Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux, New York, NY.

Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2):263-291.

Karmarkar, U. S. (1978). Subjectively weighted utility: A descriptive extension of the expected utility model. Organizational
Behavior and Human Performance, 21(1):61-72.

43



Karmarkar, U. S. (1979). Subjectively weighted utility and the Allais Paradox. Organizational Behavior and Human Perfor-
mance, 24(1):67-72.

Kobberling, V. and Wakker, P. P. (2005). An index of loss aversion. Journal of Economic Theory, 122:119-131.

Lattimore, P. K., Baker, J. R., and Witte, A. D. (1992). The influence of probability on risky choice: A parametric
examination. Journal of Economic Behavior and Organization, 17(3):377-400.

Levy, H. (2008). First degree stochastic dominance violations: Decision weights and bounded rationality. Economic Journal,
118:759-774.

Li, S. (2003). The role of expected value illustrated in decision-making under risk: Single-play vs multiple-play. Journal of
Risk Research, 6(2):113-124.

Lichtenstein, S., Slovic, P., and Zink, D. (1969). Effect of instruction in expected value on optimality of gambling decisions.
Journal of Experimental Psychology, 79(2, Pt.1):236-240.

Luce, R. D. (2000). Utility of gains and losses: Measurement-theoretical and experimental approaches. Lawrence Erlbaum
Associates, Mahwah, NJ.

Luce, R. D. and Marley, A. A. J. (2005). Ranked additive utility representations of gambles: Old and new axiomatizations.
Journal of Risk and Uncertainty, 30(1):21-62.

MacCrimmon, K. R. and Larsson, S. (1979). Utility theory: Axioms versus “paradoxes”. In Allais, M. and Hagen, O., editors,
Expected Utility Hypotheses and the Allais Paradox, pages 333—409. Reidel, Dordrecht, The Netherlands.

Machina, M. J. (1987). Choice under uncertainty: Problems solved and unsolved. Journal of Economic Perspectives,
1(1):121-154.

Markowitz, H. (1952). The utility of wealth. Journal of Political Economy, 60:151-158.

Marley, A. A. J. and Luce, R. D. (2001). Ranked-weighted utilities and qualitative convolution. Journal of Risk and
Uncertainty, 23(2):135-163.

Marley, A. A. J. and Luce, R. D. (2005). Independence properties vis-a-vis several utility representations. Theory and
Decision, 58(1):77-143.

Marschak, J. (1950). Rational behavior, uncertain prospects, and measurable utility. Econometrica, 18(2):111-141.

McGraw, A. P., Larsen, J. T., Kahneman, D., and Schkade, D. (2010). Comparing gains and losses. Psychological Science,
21(10):1438-1445.

Montgomery, H. and Adelbratt, T. (1982). Gambling decisions and information about expected value. Organizational
Behavior and Human Performance, 29(1):39-57.

Por, H.-H. and Budescu, D. V. (2013). Revisiting the gain-loss separability assumption in prospect theory. Journal of
Behavioral Decision Making, 26(4):385-396.

Post, T., van den Assem, M. J., Baltussen, G., and Thaler, R. H. (2008). Deal or no deal? decision making under risk in a
large-payoff game show. American Economic Review, 98(1):38-71.

Preston, M. G. and Baratta, P. (1948). An experimental study of the auction-value of an uncertain outcome. American
Journal of Psychology, 61:183-193.

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and Organization, 3(4):324-343.

Quiggin, J. (1985). Subjective utility, anticipated utility, and the Allais paradox. Organizational Behavior and Human
Decision Processes, 35(1):94-101.

Quiggin, J. (1993). Generalized expected utility theory: The rank dependent model. Kluwer, Boston, MA.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria.

Rabin, M. (2000). Risk aversion and expected-utility theory: A calibration theorem. Econometrica, 68(5):1281-1292.
Rabin, M. and Thaler, R. H. (2001). Anomalies: Risk aversion. Journal of Economic Perspectives, 15(1):219-232.

Redelmeier, D. A. and Tversky (1992). On the framing of multiple prospects. Psychological Science, 3(3):191-193.

44



Savage, L. J. (1954). The foundations of statistics. Wiley, New York, NY.
Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Econometrica, 57(3):571-587.

Scholten, M. and Read, D. (2014). Prospect theory and the “forgotten” fourfold pattern of risk preferences. Journal of Risk
and Uncertainty, DOI 10.1007/s11166-014-9183-2.

Tversky, A. and Kahneman, D. (1991). Loss aversion in riskless choice: A reference-dependent model. Quarterly Journal of
Economics, 106(4):1039-1061.

Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of
Risk and Uncertainty, 5(4):297-323.

Viscusi, W. K. (1989). Prospective reference theory: Toward an explanation of the paradoxes. Journal of Risk and Uncertainty,
2(3):235-263.

von Neumann, J. and Morgenstern, O. (1947). Theory of games and economic behavior. Princeton University Press, Princeton,
NJ, second edition.

Wakker, P. P. (2003). The data of Levy and Levy (2002) “Prospect theory: Much ado about nothing?” actually support
prospect theory. Management Science, 49(7):979-981.

Wakker, P. P. (2008). Explaining the characteristics of the power (CRRA) utility family. Health Economics, 17(12):1329-1344.
Wakker, P. P. (2010). Prospect theory: For risk and ambiguity. Cambridge University Press, Cambridge, UK.

Wu, G. and Markle, A. B. (2008). An empirical test of gain-loss separability in prospect theory. Management Science,
54(7):1322-1335.

Yates, J. F. (1990). Judgment and decision making. Prentice Hall, Englewood Cliffs, NJ.

45



	Introduction
	Theories of risky decision making
	Expected value (EV)
	Expected utility (EU)
	Subjective weighted utility (SWU)
	Rank-dependent utility (RDU)
	Prospect theory utility (PTU)
	Subjectively weighted average utility (SWAU)
	Rank-affected multiplicative weights utility (RAMU)
	(Special) transfer of attention exchange utility (TAXU)
	Prospective reference theory utility (PRTU)
	(Lower) gains decomposition utility (GDU)

	The R package pt
	Validation tests
	The Allais paradoxes
	Common consequence paradox
	Common ratio paradox

	Four-fold pattern of risk attitudes
	Loss aversion
	Critical tests of prospect theory
	Violations of gain-loss separability
	Violations of coalescing
	Violations of first-order stochastic dominance

	Summary

