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1 Motivation

Current efforts in systems genetics have focused on the development of statistical approaches that
aim to disentangle causal relationships among molecular phenotypes in segregating populations.
Model selection criterions, such as the AIC and BIC, have been widely used for this purpose,
in spite of being unable to quantify the uncertainty associated with the model selection call. In
this tutorial we illustrate the use of software implementing the causal model selection hypothesis
tests proposed by Chaibub Neto et al. (2012).

2 Overview

This tutorial illustrates the basic functionality of the CMST routines in the qtlhot R package
using few simulated toy examples. The analysis of a yeast genetical genomics data-set presented
in Chaibub Neto et al. (2012) is reproduced in a separate package, R/qtlyeast. The R/qtlhot
package depends on R/qtl (Broman et al. 2003), and we assume the reader is familiar with it.

3 Basic functionality

Here, we illustrate the basic functionality of the CMST routines in the R/qtlhot package in a
toy simulated example.

> library(qtlhot)

We first use the SimCrossCausal function to simulate a cross object with 3 phenotypes, y1,
y2 and y3, where y1 has a causal effect on both y2 and y3. The simulated cross data set, Cross, is
composed of: 100 individuals (n.ind = 100); 3 chromosomes of length 100cM (len = rep(100,
3)); 101 unequally spaced markers per chromosome (n.mar = 101 and eq.spacing = FALSE);
additive genetic effect set to 1 (add.eff = 1); dominance genetic effect set to 0 (dom.eff =
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0); residual variances for y1 (sig2.1) and the other phenotypes (sig2.2) set to 0.4 and 0.1,
respectively; backcross cross type (cross.type = "bc"); and phenotype data transformed to
normal scores (normalize = TRUE). The argument beta = rep(0.5, 2), represents the causal
effect of y1 on the other phenotypes (i.e., coefficients of the regressions of y2 = 0.5 y1 + ε and
y3 = 0.5 y1 + ε). The length of beta controls the number of phenotypes to be simulated.

> set.seed(987654321)

> Cross <- SimCrossCausal(n.ind = 100,

+ len = rep(100, 3),

+ n.mar = 101,

+ beta = rep(0.5, 2),

+ add.eff = 1,

+ dom.eff = 0,

+ sig2.1 = 0.4,

+ sig2.2 = 0.1,

+ eq.spacing = FALSE,

+ cross.type = "bc",

+ normalize = TRUE)

We compute the genotype conditional probabilities using Haldane’s map function, genotype
error rate of 0.0001, and setting the maximum distance between positions at which genotype
probabilities were calculated to 1cM.

> Cross <- calc.genoprob(Cross, step = 1)

We perform QTL mapping using Haley-Knott regression (Haley and Knott 1992), and sum-
marize the results for the 3 phenotypes. Figure 1 presents the LOD score profiles for all 3
phenotypes. The black, blue and red curves represent the LOD profiles of phenotypes y1, y2 and
y3, respectively.

> Scan <- scanone(Cross, pheno.col = 1 : 3, method = "hk")

> summary(Scan[, c(1, 2, 3)], thr = 3)

chr pos y1
c1.loc55 1 55 12.6

> summary(Scan[, c(1, 2, 4)], thr = 3)

chr pos y2
c1.loc55 1 55 5.27

> summary(Scan[, c(1, 2, 5)], thr = 3)

chr pos y3
D1M50 1 55.5 7.58
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> plot(Scan, lodcolumn = 1 : 3, ylab = "LOD")
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Figure 1: LOD score profiles for phenotypes y1 (black curve), y2 (blue curve) and y3 (red curve).

Phenotypes y1 and y2 map to exactly same QTL at position 55 cM on chromosome 1.
Phenotype y3 maps to a QTL at position 55.5 cM. Whenever two phenotypes map to close, but
not exactly identical, positions we are faced with the question of which QTL to use as causal
anchor. Instead of making a (sometimes) arbitrary choice, our approach is to compute the joint
LOD profile of both phenotypes and use the QTL detected by this joint mapping approach as the
causal anchor. The function GetCommonQtls performs the joint QTL mapping for phenotypes
whose marginal LOD peak positions are higher than a certain LOD threshold (thr), and are
less than a fixed distance apart (peak.dist). The function can also handle separate additive
and interacting covariates for each phenotype (addcov1, intcov1, addcov2, intcov2). In this
simulated example the QTL detected by the joint analysis agreed with phenotype’s y1 QTL.
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> commqtls <- GetCommonQtls(Cross,

+ pheno1 = "y1",

+ pheno2 = "y3",

+ thr = 3,

+ peak.dist = 5,

+ addcov1 = NULL,

+ addcov2 = NULL,

+ intcov1 = NULL,

+ intcov2 = NULL)

> commqtls

Q Q.chr Q.pos
1 c1.loc55 1 55

Now, we fit our causal model selection tests for phenotypes y1 and y2 using the CMSTtests
function. The Q.chr and Q.pos arguments specify the chromosome and position (in cM) of the
QTL to be used as a causal anchor. The argument method specify which version of the CMST
test should be used. The options "par", "non.par" and "joint" represent, respectively, the
parametric, non-parametric, joint parametric versions of the CMST test. The option "all" fits
all three versions. The penalty argument specifies whether we should test statistics based on
the AIC ("aic"), BIC ("bic"), or both ("both") penalties. In this particular call we computed
all 3 versions using both penalties fitting 6 separate CMST tests.

> nms <- names(Cross$pheno)

> out1 <- CMSTtests(Cross,

+ pheno1 = nms[1],

+ pheno2 = nms[2],

+ Q.chr = 1,

+ Q.pos = 55,

+ addcov1 = NULL,

+ addcov2 = NULL,

+ intcov1 = NULL,

+ intcov2 = NULL,

+ method = "all",

+ penalty = "both")

The output of the CMSTtests function is composed of a list with 17 elements. It returns the
names of the phenotypes and number of individuals (n.ind):

> out1[1:3]

$pheno1
[1] "y1"

$pheno2
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[1] "y2"

$n.ind
[1] 100

The log-likelihood scores (loglik) of models M1, M2, M3, and M4 (see Chaibub Neto et al.
2012 for details):

> out1[4]

$loglik
[1] -123.5318 -140.4604 -141.5803 -123.4834

The dimensions of the models (model.dim):

> out1[5]

$model.dim
[1] 6 6 6 7

The R2 values (R2) relative to the regression of phenotypes 1 and 2 on the causal anchor:

> out1[6]

$R2
[1] 0.4407170 0.2153583

The covariance matrix (S.hat) with the variances and covariances of the penalized log-likelihood
ratios of models M1 ×M2, M1 ×M3, M1 ×M4, M2 ×M3, M2 ×M4, and M3 ×M4:

> out1[7]

$S.hat
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.26221327 -0.01323094 0.010924311 -0.275444212 -0.251288963 0.02415525
[2,] -0.01323094 0.36275299 0.012080993 0.375983930 0.025311930 -0.35067200
[3,] 0.01092431 0.01208099 0.001115354 0.001156681 -0.009808958 -0.01096564
[4,] -0.27544421 0.37598393 0.001156681 0.651428142 0.276600893 -0.37482725
[5,] -0.25128896 0.02531193 -0.009808958 0.276600893 0.241480006 -0.03512089
[6,] 0.02415525 -0.35067200 -0.010965639 -0.374827248 -0.035120888 0.33970636

The BIC scores (BICs):

> out1[8]

$BICs
[1] 274.6946 308.5518 310.7917 279.2030
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The BIC-based penalized log-likelihood test statistics (Z.bic):

> out1[9]

$Z.bic
[,1] [,2] [,3] [,4]

[1,] NA 3.305926 2.9966507 6.749745
[2,] NA NA 0.1387598 -2.986200
[3,] NA NA NA -2.709873
[4,] NA NA NA NA

The BIC-based model selection p-values for the parametric CMST (pvals.p.BIC), non-parametric
CMST (pvals.np.BIC) and joint parametric CMST (pvals.j.BIC):

> out1[10:12]

$pvals.p.BIC
[1] 0.001364817 0.999526684 0.998635183 1.000000000

$pvals.np.BIC
[1] 6.289575e-06 9.999977e-01 9.999999e-01 1.000000e+00

$pvals.j.BIC
[1] 0.003779474 0.999946885 0.999669186 1.000000000

The analogous AIC-based quantities:

> out1[13:17]

$AICs
[1] 259.0636 292.9208 295.1606 260.9668

$Z.aic
[,1] [,2] [,3] [,4]

[1,] NA 3.305926 2.9966507 2.849429
[2,] NA NA 0.1387598 -3.251273
[3,] NA NA NA -2.933361
[4,] NA NA NA NA

$pvals.p.AIC
[1] 0.002189889 0.999526684 0.998635183 0.997810111

$pvals.np.AIC
[1] 6.289575e-06 9.999977e-01 1.000000e+00 9.999977e-01

$pvals.j.AIC
[1] 0.005993868 0.999946885 0.999669186 1.000000000
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The function CMSTtests can also computes CMST tests of a single phenotype against a list
of phenotypes. Its output is less detailed though. In this particular call we test y1 against y2

and y3.

> out2 <- CMSTtests(Cross,

+ pheno1 = nms[1],

+ pheno2 = nms[-1],

+ Q.chr = 1,

+ Q.pos = 55.5,

+ addcov1 = NULL,

+ addcov2 = NULL,

+ intcov1 = NULL,

+ intcov2 = NULL,

+ method = "all",

+ penalty = "both")

> out2

$R2s
R2.Y1 ~ Q R2.Y2 ~ Q

y1_y2 0.4286585 0.2112760
y1_y3 0.4286585 0.2945801

$AIC.stats
AIC.1 AIC.2 AIC.3 AIC.4 z.12 z.13 z.14 z.23

y1_y2 261.1967 293.4397 297.8127 263.0819 3.136952 3.034372 2.6436961 0.2659898
y1_y3 256.9466 278.0272 311.4368 258.2783 2.177343 3.876750 0.8229369 2.0030490

z.24 z.34
y1_y2 -3.084095 -2.975873
y1_y3 -2.329987 -4.023391

$BIC.stats
BIC.1 BIC.2 BIC.3 BIC.4 z.12 z.13 z.14 z.23

y1_y2 276.8278 309.0707 313.4437 281.3181 3.136952 3.034372 6.297065 0.2659898
y1_y3 272.5777 293.6583 327.0678 276.5145 2.177343 3.876750 2.432884 2.0030490

z.24 z.34
y1_y2 -2.819431 -2.752652
y1_y3 -2.022629 -3.826214

$pvals.j.BIC
pval.1 pval.2 pval.3 pval.4

y1_y2 0.003366319 0.9998806 0.9997017 1
y1_y3 0.035842249 0.9974573 0.9999900 1

$pvals.p.BIC
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pval.1 pval.2 pval.3 pval.4
y1_y2 0.001205187 0.9991464 0.9987948 1.0000000
y1_y3 0.014727493 0.9852725 0.9999471 0.9925105

$pvals.np.BIC
pval.1 pval.2 pval.3 pval.4

y1_y2 2.346206e-06 0.9999992 1 1.0000000
y1_y3 1.758821e-03 0.9991050 1 0.9999607

$pvals.j.AIC
pval.1 pval.2 pval.3 pval.4

y1_y2 0.01109575 0.9998806 0.9997017 1
y1_y3 0.38662933 0.9985143 0.9999950 1

$pvals.p.AIC
pval.1 pval.2 pval.3 pval.4

y1_y2 0.004100312 0.9991464 0.9987948 0.9958997
y1_y3 0.205271925 0.9900966 0.9999713 0.7947281

$pvals.np.AIC
pval.1 pval.2 pval.3 pval.4

y1_y2 1.608001e-05 0.9999992 1 0.9999937
y1_y3 4.431304e-02 0.9991050 1 0.9715560

4 Other Functions

There are several other functions involved in simulation and in data analysis that are not well doc-
umented yet. They are in fact hidden behind the NAMESPACE. See for instance the R/qtlyeast
for some analysis routines.
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