
Using the rbambools package

Wolfgang Kaisers, CBiBs HHU Dusseldorf

7. Mai 2018

1 Introduction

BAM files are an important and powerful file format in Bioinformatics. This
package pursues several objectives:

� Provide a technical (reading and writing) access to BAM files from within
R.

� Give an authentic representation of the informational structure inside
BAM files as programming interface.

� Provide a fast, C-based access to special (cumulative) aspects of the stored
information.

These objectives transform into three implementational layers:

� The samtools C-library (written by Heng Li).

� C-based alignment and align-gap and gap-sites container.

� A R S4 class library.

The samtools library is an adapted version of samtools. Samtools version 0.1.18
(last modified 02 Sept 2011) had been downloaded on 07 Sept 2011 from the
samtools homepage 1. The then current version of the samtools file format de-
scription was (v1.4-r985, 0.1.18).

All file interactions are done via samtools. There is C-code which handle ali-
gnment data for whole ranges and C-code for accumulation of information about
splice-sites from gapped alignments. Samtools and container C-structures are
connected to S4 objects by external pointers (EXTPTRSXP)

The R-part of the source code calls C-functions which directly communicate
with the samtools library.
Align-gaps are emphasized here because they are highly informative representa-
tions of genomic splice-sites in RNA-seq data.

1http://sourceforge.net/projects/samtools/files/samtools/0.1.18/

1

http://sourceforge.net/projects/samtools/files/samtools/0.1.18/

2 SAM file format

Data in BAM files is compressed and optionally indexed data in SAM file format.
The current definition of the SAM file format [3] can be found on the samtools
homepage2.

BAM files contain sequence alignment data which is the result of potentially
incomplete matching sequence snippets to a reference sequence. In practice the
snippets are DNA sequences which come from short read sequencing of DNA or
RNA extracted from a biological sample and the reference sequence is a genome
reference.

Usually one BAM file contains alignments data from one biological sample where
the read number is in range of 10 to 100 million. The size of the corresponding
compressed files usually is 1 to 15 Gbyte. A very important feature of BAM files
is that sorted BAM files can be indexed and indexed files allow random access.
This allows very fast access to alignments that are located in arbitrary regions
of the reference genome.

The content of BAM files is divided in a header section and an alignment section.

2.1 The header section

The header section contains the following information:

Tag Description Explanation

HD Header line Format version and sorting
SQ Reference sequence dictionary Indexed reference sequences*
RG Read group Sequencing technology
PG Program Alignment program
CO Comment

*Entries in the reference sequence dictionary usually are Chromosomes (e.g. ’chr1’)

There are accessor functions in this package for reading and writing the listed
fields. The header section is stored and retrieved as binary structure (bamHeader)
which is converted into a tag delimited string representation (bamHeaderText).
All processing steps on BAM-header data work on the string representation.
rbamtools-objects parse and compose strings from and to object slots which
then can be accessed via script code.

2http://samtools.sourceforge.net/SAM1.pdf

2

http://samtools.sourceforge.net/SAM1.pdf

2.1.1 The reference sequence dictionary

The reference sequence dictionary section contains a list of reference sequences
(usually chromosomes). Only two of six fields (declared in the SAM file format
specification) usually only two are used:

Tag Description

SN Reference sequence name
LN Reference sequence length

The reference sequence dictionary section misses an index entry (refid) which is
used in alignment structures and is described below in 2.2.1.

2.2 The alignment section

The align section contains a series of alignments datasets. Each alignment de-
scribes the coordinates of the identified sequence matches in the reference se-
quence. The information for each alignment basically consists of:

Field Content

QNAME alignment name (read identifier)
RNAME Reference sequence identifier
POS Mapping position: 0-based
CIGAR Matching type string
FLAG A set of bitwise flags.

2.2.1 The RNAME identifier: refid

Although RNAME associates with a textual entry, usually this field contains
a number which identifies a sequence in the header section. To make things
complicated, RNAME is a 0-based sequential identifier which is not explicitly
included in the Reference sequence dictionary (SQ). So, RNAME=0 means the
first SQ entry and the ’0’ is not present in the header.
We call this missing value refid throughout this document and there are functi-
ons in this package that automatically generate and use this id. The refid value
is used by the samtools library as sequence identifier in alignment structures
and for defining ranges in index based random access.

2.2.2 Position

The position entry gives the alignment start position. For checking the simila-
rity between query and reference sequence it may be feasible to compare the

3

sequences manually in single cases.

In order to find the exact matching position it’s necessary to notice the base
of the position notation. We distinguish 0-based and 1-based position notati-
ons. They differ by the index of the starting position (and therefore all positions).

The first position in a 0-based notation is 0 whereas the first position in a 1-
based notation is 1:

0-based 0 1 2

1-based 1 2 3

Both notations appear in samtools. The SAM file format specification says (see
[3], section 1.4): ’POS: 1-based leftmost mapping POSition of the first machting
base’“. Samtools source code comments (bam.h, line 164) state the contrary:
’pos 0-based leftmost coordinate’. Experiences with aligners (tophat 2.0.0) and
annotation data (Ensembl and UCSC) indicate that the latter seems to be true
(i.e. position entries are 0-based).
In order to reflect the technical file content, two functions (position on ba-

mAlign objects and as.data.frame on bamRange objects) return the file con-
tained value (which is 0-based). In order to get values that are congruent with
annotation (and IGV genome-browser data) or positions in DNAStringSet (Bio-
conductor Biostrings package) objects, the position values have to be increased
by one.
The bamGapList objects which operate on alignment gaps contain 1-based po-
sitions. So, overlapping with annotation data, can be done without correction.

2.2.3 Navigation on reference sequence

Printing the reference sequence results in characters that are ordered from left
to right in ascending order of their position coordinate (consistent with ordinary
reading succession). We refer to this image when two or more locations are
compared. Lower coordinates are assumed to be on the left side and higher
coordinates are assumed to be on the right side.
So, for genes coding on the (+) strand, left would be synonymous to upstream
and right would be synonymous to downstream.

2.2.4 CIGAR string

Alignment algorithms usually tolerate to some extend inexact matching. The ty-
pe of matching is described in the CIGAR string. For a complete list of CIGAR
operations see [3] 1.4, Nr. 6. The CIGAR string is made up of CIGAR-items. A
CIGAR-item consists of a integer number and a character. The number counts

4

the affected positions (cigar-length). The character describes the type of ope-
ration (cigar-type). The following table shows relevant operations:

Operation Label Description

M Match Exact match of x positions
N Alignment gap Next x positions on ref don’t match
D Deletion Next x positions on ref don’t match
I Insertion Next x positions on query don’t match

(x = cigar-length)

The operations ’N’ and ’D’ are mechanistic identical but they describe biological
different entities: ’D’ means genomic deletions, where few nucleotides on the
genome get lost whereas ’N’ means gaps which occur in RNA-seq alignments.
These gaps are due to DNA-splicing events and their size can achieve magnitude
of 103 − 105.

First example: The shown alignment is an exact match and will give posi-

tion = 2 (0-based!) and CIGAR = 6M:

AAGTCTAGAA (ref)

GTCTAG (query)

Second example: We consider an alignment with two nucleotides (”GA”) in-
serted into the reference. The alignment entries will be position=3 (0-based!)
and CIGAR=3M2I2M:

AAAGTCGATGAA (ref)

GTC TG (query)

Third example: The next exampls contains a deletion on the reference. The
’C’ in the query sequence has no match. The alignment entries will be posi-

tion=3 and CIGAR=2M1D3M:

AAGT TAGAA (ref)

GTCTAG (query)

Fourth example: This is a gapped alignment (due to a splicing event in RNA-
seq). It will give the entries position=3 and CIGAR=3M7N4M:

5

CCCTACGTCCCAGTCAC (ref)

TAC TCAC (query)

We see the alignment gap (GTCCCAG). From the ’GT’ and ’AG’ at the gap
boundaries, it can be assumed that this splice-site is on the (+) strand.

2.3 Gapped alignments

A special focus of functionality inside this package are Alignment gaps. Ali-
gnment gaps in RNA-seq experiments are viewed as phenomenons that rely
on biological splicing mechanisms during protein-biosynthesis and the resulting
exon-intron structure of the genome.

-

CTCCGACAGACAGGACACCAGCTGTATGGCCG

left exon right exon

���
���XXXXXX

2.4 Gap-sites

Gap-sites are alignment gaps (=gap-regions) that are shared by one or more
alignments. The nucleotides on the reference sequence that are skipped in the
alignment (i.e. the reference region which is depicted by ”N”cigar items) form
the gap-region.
Gap-sites are also characterized by the fact that they are bordered by M-
segments on either side. The amount of information about the existence of
gap-site in the alignment is proportional to the number of matching nucleotides
that make up the framing M-segments. The calculated derived values on gap-
sites therefore center on three measures:

� The number of alignments that define the gap-site.

� The Length of the framing M-segments.

� The number of different length values in the framing M-segments.

� The number of alignments (probes, number of BAM-files) in which the
gap-site is found.

6

Gap-sites are of special interest in RNA-seq experiments because they arise from
mRNA sequence which spans a processed splice site (splicing results in remo-
val of intronic sequence ranges from pre-mRNA). Gapped alignments contain
highly specific information about splicing events. One of the central objectives
in RNA-seq experiments is the identification and quantification of splice events.

In order to describe and illustrate the parameters that are calculated and kept
within this package we show the following example:

2.4.1 Example

The following table example shows a short reference sequence and three diffe-
rent alignments that define a gap-site. The reference nucleotides that consitute
the gap-region are printed in red:

qname position CIGAR

AG CCTTGATG align1 3 2M6N8M
CAG CCTTGAT align2 2 3M6N7M
CCAG CCT align3 1 4M6N3M

CCCAGGTCCAGCCTTGATGTCC (reference) (0-based)

For each gapped alignments from which the gap-site is constituted, three values
concerning the number of matching nucleotides are kept:

� lcl (left cigar length) is the length of the left adjacent match in the CIGAR
string.

� rcl (right cigar length) is the length of the right adjacent match in the
CIGAR string.

� mcl (minimum cigar length) is the minimum of the lcl and rcl value
for each alignments.

For these parameters we have values in the example:

qname position CIGAR lcl rcl mcl

align1 3 2M6N8M 2 8 2
align2 2 3M6N7M 3 7 3
align3 1 4M6N3M 4 3 3

2.4.2 Gap-site coordinates

For each gap-site, localisation-coordinates are defines as:

� refid (reference sequence identifier)

7

� lend (left-end) is the (1-based) coordinate of the last matching nucleotide
on the left side: CCCAGGTCCAGCCTTGATGTCC

� rstart (right-start) is the (1-based) coordinate of first matching nucleotide
on the right side: CCCAGGTCCAGCCTTGATGTCC

We call alignments sharing identical gap-localisation-coordintates gap-site-

defining-aligns. In order to derive a lower boundary for the size of the
adjacent exons are calculated:

� lstart (left-start) is the (1-based) coordinate of the leftmost nucleotide
for which a match exsists in the set of left adjacent matching regions:
CCCAGGTCCAGCCTTGATGTCC.
The position is calculated by lstart = lend−max(lcl) + 1.

� rend (right-end) is the (1-based) coordinate of the rightmost nucleotide
for which a match exists in the set of right adjacent matching regions:
CCCAGGTCCAGCCTTGATGTCC.
The position is calculated by rend = rstart+max(rcl)− 1.

As derivative, the number of nucleotides in the gap-region (denoted gaplen)
is calculated as gaplen = rend− lstart− 1. Alltogether, the gap-site and the
adjacent putative matching regions in this example are:

CCCAGGTCCAGCCTTGATGCCTTGATGTCC.

The associated numeric values for the shown example are:

Name value base

refid 0 0 We assume, there is only one reference sequence
lstart 2 1 Leftmost match position (C)
lend 5 1 Last match on left side (G)
rstart 12 1 First match on right side (C)
rend 20 1 Rightmost match position (G)
gaplen 6 Number of nucleotides in gap

2.4.3 Quantification of alignment numbers

The number of gap-site-defining-aligns are quantified in:

� nAligns, the number of alignments that define the gap-site.

� nProbes, the number of alignments (BAM-files) in which this gap-site is
found.

In the present example, the resulting values are nAligns=3 and nProbes=1.

8

2.4.4 Quantification of informational support for gap-site’s

In order to quantify the information content for each gap-site lcl and mcl va-
lues are stored as single byte values inside of an unsigned long long integer. We
define n as the number of bytes they contain.

On a 32-bit operating system there is n = 4 and on a 64-bit operating sys-
tem n = 8. With that, we van view lcl and mcl as n-dimensional vectors:
lcl = (lcli)i=1,...,n and mcl = (mcli)i=1,...,n in which values are placed in de-
scending order.

� nlstart, the number of different match start positions, which equals the
number of different values in the lcl vector.
nlstart := #{lgli : i = 1, . . . , n}.

� lm sum, the number of matching nucleotides on the left side of the gap.
lm sum :=

∑l
i=1 gli.

� qsm, the sum of the four largest mcl values (quartet sum of minimal cigar
length):

∑4
i=1mcli

2.4.5 Gap quality score (gqs)

The gap quality score is calculated as

gqs = 10× nlstart

n

2qsm

4
(1)

= 10× #{lgli : i = 1, . . . , n}
n

×
2
∑4

i=1mcli
4

(2)

The score quantifies number of alignment start positions and matching nucleo-
tides in order to distinguish biological existing splice-sites from alignment phe-
nomenons.

The stored information accumulates with increasing the number of included
alignments (BAM-files). The score is given as a positive integer value and the
maximum reachable number is 10 * read-length.

The higher the score the more likely is the fact that a gap-site represents a
splice-site. gqs is not intended quantify gene expression although the two values
correlate.

3 Object types inside rbamtools package

The description of object types in this section starts with reading and writing
access to BAM files, proceeds to objects which elementary data inside BAM
files and ends with the description of more complex containers.

9

3.1 Included example files within rbamtools

There are two example files included which are located in the ’/inst/extdata’ sub-
directory of the package installation site. The directory contains a sorted BAM
file ’accepted hits.bam’ and the corresponding index file ’accepted hits.bam.bai’.
They were produced (using the extractRanges function) from a RNA-seq ex-
periment. A human probe was sequenced using an Illumina Hiseq sequencer.
Fastq-reads were aligned with tophat against homo sapiens UCSC reference ge-
nome. Complex alignments (i.e. alignments with nCigar > 1) were extracted
for genes KLHL17 (chr1) and SNRNP25 (chr16). The BAM file contains 3333
alignments.

3.2 Reading and writing access

Immediate reading and writing access is provided by bamReader and bamWriter

Objects.

3.3 bamReader

An object of class bamReader is constructed and returnd by the function bam-

Reader in the following way:

> bam <- system.file("extdata",

+ "accepted_hits.bam", package="rbamtools")

> # Open bam file

> reader <- bamReader(bam)

An opened bamReader can be used to access the BAM header section and to
read alignments sequenitally. bamReader can also be used to sort and index
BAM files.
Sorting large BAM files requires some time and produces intermediate files.
So the recommended way of sorting large BAM files is to use the samtools
command line version. Sorting BAM files within R can be done with:

> bamSort(reader, prefix="my_sorted",

+ byName=FALSE, maxmem=1e+9)

Sorted BAM files can be indexed. Indexing results in a second file which is
usually named as the BAM file itself with an added suffix ”.bai”. An index file
can be created with:

> createIndex(reader, idx_filename="index_file_name.bai")

Omitting the idx_filename argument results in adding the ”.baißuffix to the fi-
lename of the BAM file which is then automatically located in the same directory
as the BAM file itself:

> createIndex(reader)

10

The creation of indexes for large BAM files (10 GB) takes some minutes time
but can readily be done with this routine and of course has to be done only
once per file.

The index files must be loaded before they can be used:

> idx <- system.file("extdata", "accepted_hits.bam.bai", package="rbamtools")

> loadIndex(reader, idx)

The reader object can be checked for for loaded index with:

> indexInitialized(reader)

[1] TRUE

A shortcut for opening a BAM file and loading the standard index at the same
time is:

> reader <- bamReader(bam, idx=TRUE)

3.4 Tabled reference sequences: getRefData

A data.frame with the reference sequences contained in the BAM header can
be obtained with:

> getRefData(reader)

ID SN LN

1 0 chr1 249250621

2 1 chr16 90354753

The returned data.frame contains in the first column (ID) the mentioned re-
fid 2.2.1 value which is not part of the header but uses as identifier for alignments
and ranges.

3.5 bamWriter

For creation of a bamWriter object, a bamHeader and a filename must be given.
The most convenient way of obaining a bamHeader class is to obtain one from
an opened bamReader object.

> header <- getHeader(reader)

> writer <- bamWriter(header,"test.bam")

> # Write alignments using bamSave

> bamClose(writer)

alignments can be written to a BAM file either from single instances of bamA-
lign’s or from whole bamRange objects.

11

4 Elementary data structures

The content of BAM files can be divided in header section and alignment

section.

4.1 Structures for header section

The complete header information (in binary representation) can be retrieved
from a BAM file with the function getHeader. An object of this type is needed
for creation of a bamWriter object.

In order to get Access to the data itself, the binary data has to be conver-
ted into a string representation which is maintained inside an object of class
bamHeaderText:

> header <- getHeader(reader)

> htxt <- getHeaderText(header)

The header section is divided into several seqments (as described above) with
data tags that describe the origin of the contained alignments. For each segment
there is a class which can be be obtained by calling the appropriate function on
a bamHeaderText object:

Segment Description S4 class Accessor

HD The header line headerLine headerLine
SQ Reference sequence dictionary refSeqDict refSeqDict
RG Read group
PG Program headerProgram header Program
CO Comment

A complete bamHeader object can be created from scratch with the following
code:

> bh <- new("bamHeaderText")

> headl <- new("headerLine")

> setVal(headl, "SO", "coordinate")

> dict <- new("refSeqDict")

> addSeq(dict, SN="chr1", LN=249250621)

> addSeq(dict, SN="chr16", LN=90354753)

> dict

An object of class "refSeqDict"

SN LN AS M5 SP UR

1 chr1 249250621 0

2 chr16 90354753 0

12

> prog <- new("headerProgram")

> setVal(prog, "ID", "TopHat")

> setVal(prog, "PN", "tophat")

> setVal(prog, "CL",

+ "tophat --library-type fr-unstranded hs_ucsc_index reads.fastq")

> setVal(prog, "DS", "Description")

> setVal(prog, "VN", "2.0.0")

> bh <- bamHeaderText(head=headl, dict=dict, prog=prog)

> header <- bamHeader(bh)

4.2 Structures for alignment section

Single alignments can be retreaved from opened reader via getNextAlign:

> align <- getNextAlign(reader)

The alignment section in BAM files is a series of alignment (align) records. The
data inside of each record is represented by a bamAlign object. Section 1.4 [3]
describes the information content for each alignments in detail. The fields and
the corresponding bamAlign accessors are listed below:

Field Description Accessor

QNAME Name name
FLAG Multiple Flags flag
RNAME refid 2.2.1 refID
POS Mapping position 2.2.2 position (0-based!)
MAPQ Mapping quality mapQuality
CIGAR CIGAR string cigarData

Number of cigar entries nCigar
RNEXT Ref name of mate segment mateRefID
PNEXT Position of mate segment matePosition
SEQ segment sequence alignSeq
QUAL Pred-scaled Quality String alignQual

The accessors can be used in the following way:

> name(align)

> flag(align)

> refID(align)

> position(align)

> mapQuality(align)

> cigarData(align)

> nCigar(align)

> mateRefID(align)

13

> matePosition(align)

> alignSeq(align)

> alignQual(align)

Flag segments: The flag field contains multiple bit-coded flags which are kept
together inside an integer value:

Bit Description Accessor

0x1 Paired alignments paired
0x2 Proper pair properPair
0x4 Unmapped unmapped
0x8 Mate umapped mateUnmapped
0x10 Reverse Strand reverseStrand
0x20 Mate reverse Strand mateReverseStrand
0x40 First in pair firstInPair
0x80 Second in pair secondInPair
0x100 Secondary align secondaryAlign
0x200 Not passing quality control failedQC
0x400 PCR or optical duplicate pcrORopt_duplicate

The following code demonstrates the usage of the flag-accessors:

> paired(align)

> properPair(align)

> unmapped(align)

> mateUnmapped(align)

> reverseStrand(align)

> mateReverseStrand(align)

> firstInPair(align)

> secondInPair(align)

> secondaryAlign(align)

> failedQC(align)

> pcrORopt_duplicate(align)

The same accessors can also be used for setting values:

> unmapped(align) <- TRUE

4.2.1 Creating bamAlign objects from scratch

The bamAlign function can be used to create bamAlign objects from scratch:

> align <- bamAlign("HWUSI-0001", "ATGTACGTCG", "Qual/Strng",

+ "4M10N6M", refid=0, position=100)

> align

14

Class : bamAlign

refId : 0

Position : 100

Cigar Data :

Length Type

0 4 M

1 10 N

2 6 M

> name(align)

[1] "HWUSI-0001"

> alignSeq(align)

[1] "ATGTACGTCG"

> alignQual(align)

[1] "Qual/Strng"

> cigarData(align)

Length Type

0 4 M

1 10 N

2 6 M

> refID(align)

[1] 0

> position(align)

[1] 100

The created bamAlign objects can be added to a bamRange list or be written
to a BAM-file via bamWriter.

5 Complex and cumulative container

5.1 alignments lists for specific reference regions: bamRange

bamRange objects manage a list of bamAlign’s. As BAM files usually contain
alignment results against a reference-genome, bamRange objects contain list of
all alignments that match between a given start and stop position on a given
chromosome. Region coordinates are thereby defined by a refid 2.2.1 and a start
and stop position.

15

5.1.1 Reading bamRange from bamReader

In order to create a bamRange object, an index-initialized bamReader object
and a numeric coordinate-vector of length three are passed to the bamRange

function.

There are several ways to provide genomic coordinates from which the ali-
gnments shall be retrieved. The first way is to specify a circumscribed genomic
region (e.g. where a gene of interest is located). The names for the coordinates
are not required and only added for explanational purposes:

> coords <- c(0, 899000, 900000)

> names(coords) <- c("refid","start","stop")

> range <- bamRange(reader,coords)

> size(range)

[1] 0

The second way is to specify coordinates for a whole reference sequence (chro-
mosome). As can be seen from the output of the getRefData function, the
coordinates for the whole first chromosome should be given as:

> getRefData(reader)

ID SN LN

1 0 chr1 249250621

2 1 chr16 90354753

> coords <- c(0,0,249250621)

> names(coords) <- c("refid","start","stop")

> range <- bamRange(reader,coords)

> size(range)

[1] 2216

The function getRefCoords is used here as shortcut:

> coords <- getRefCoords(reader,"chr1")

> coords

refid start stop

0 0 249250621

> range <- bamRange(reader,coords)

> size(range)

[1] 2216

16

bamRange objects keep a pointer to a current align structure for iteration purpo-
ses. Addidionally there are some summarizing values stored (which are displayed
by show) which describe the range inside the reference from which the bamRan-

ge object was read (seqid, qrBegin, qrEnd, complex) and some statistics (size,
qSeqMinLen, qSeqMaxLen). Most of the values are printed by show:

> range

Class : bamRange

Size : 2.216

Seqid : 0

qrBegin : 0

qrEnd : 249.250.621

Complex : 0

rSeqLen(LN) : 249.250.621

qSeqMinLen : 101

qSeqMaxLen : 101

Refname : chr1

> getCoords(range)

seqid begin end

0 0 249250621

> getSeqLen(range)

min max

101 101

> getParams(range)

seqid qrBegin qrEnd complex rSeqLen

0 0 249250621 0 249250621

qSeqMinLen qSeqMaxLen

101 101

> getRefName(range)

[1] "chr1"

The (0-based) positions of the leftmost and rightmost matching nucleotides in
the align-list are not included by default but can be separately calculated:

> getAlignRange(range)

min_pos max_end

-1 29867

17

5.1.2 Accessing alignments in bamReader

bamReader objects keep a list of bamAlign objects. The objects can sequential-
ly accessed or a data.frame with the alignments data can be retrieved. Therefore
bamRange objects internally keep a pointer to the current alignment.

When no current align object is set, the next call to getNextAlign will set
the current to the first alignment in list. When the last alignment in list is rea-
ched, the next call to getNextAlign will return NULL.

The bamAlign objects in a bamRange container can be sequentially accessed
with the getNextAlign function:

> align <- getNextAlign(range)

After rewinding the bamRange container, the next call to getNextAlign returns
the first stored alignment:

> rewind(range)

> while(!is.null(align))

+ {

+ # Process align data here

+ align <- getNextAlign(range)

+ }

A fast way to get tabled alignment information on bamRange container is to use
as.data.frame:

> rdf <- as.data.frame(range)

5.2 gapList

gapList objects represent a list of align-gaps. They contain one record for sin-
gle each align-gap present in alignment data. Each align-gap can be linked to a
single alignment in the BAM file (via refid and position coordinates).

The function gapList takes an open and indexed instance of bamReader and
a set range coordinates (refid,start,stop). The function will scan all alignments
that are overlap with the given range in the opened BAM file for gapped ali-
gnments.

For every contained align-gap, the refid and the position of the alignment, the
match length on both sides (left_cigar_len, right_cigar_len) and the
(1-based) positions of the last nucleotide the left side of the gap (left_stop)
and the (1-based) position of the first nucleotide on the right side of the gap
(right_start).

18

> coords <- getRefCoords(reader, "chr1")

> gl <- gapList(reader, coords)

> gl

An object of class 'gapList'. size: 2297

nAligns: 2216 nAlignGaps: 2297

> dfr <- as.data.frame(gl)

> dfr[1:6, c(1:3, 5:8)]

refid position left_cigar_len left_stop gaplen

0 0 14729 100 14829 140

1 0 14729 100 14829 140

2 0 14729 100 14829 140

3 0 14729 100 14829 140

4 0 14729 100 14829 140

5 0 14729 100 14829 140

right_start right_cigar_len

0 14970 1

1 14970 1

2 14970 1

3 14970 1

4 14970 1

5 14970 1

The columns 4 and 9 contain the type of the adjacent cigar items (which should
always be ’M’) are omitted.

The size function returns the number of gaps contained in the object. The
functions nAligns and nAlignGaps return the total number of alignments and
the number of gapped alignments in the scanned range respectively:

> size(gl)

> nAligns(gl)

> nAlignGaps(gl)

5.3 gapSiteList

gapSiteList objects contain pooled align-gap information. The single gaps are
condensed by refid, left-stop and right-start. So each combination of coordinates
appears only once in the list. The number of alignments in which each gap has
been found is counted into the value nAligns.

Two gapSitList objects can be merged to one. The basic coordinates of the
contained gap-sites (refid, lend, rstart) are compared. Gap-sites with no coun-
terpart are just copied into the new list whereas gap-sites with couterpart are

19

merged into one record. In this merging process, the core coordinates are just
copied. The following table gives an overview over the calculations which are
done for merging:

Column name Site identificator Resulting value

id New running index will be created
refid + Copied
lstart Minimum
lend + Copied
rstart + Copied
rend Maximum
gaplen Copied
nAligns Sum
nProbes Sum
nlstart (See text)
lm_sum (See text)
lcl (See text)
mcl (See text)

For lm_sum, lcl and mcl, there are specialiced merging operations.

> coords <- getRefCoords(reader, "chr1")

> sl <- siteList(reader, coords)

[gap_site_list_fetch] Fetched list of size 32.

> size(sl)

[1] 32

> nAligns(sl)

[1] 2216

> nAlignGaps(sl)

[1] 2297

> sl

An object of class 'gapSiteList'. size: 32

nAligns: 2216 nAlignGaps: 2297

> df <- as.data.frame(sl)

> head(df)

20

id refid lstart lend rstart rend gaplen nAligns nProbes

1 1 0 14730 14829 14970 15052 140 553 1

2 2 0 14944 15038 15796 15888 757 201 1

3 3 0 15909 15947 16607 16702 659 29 1

4 4 0 15953 16027 16607 16669 579 4 1

5 5 0 16730 16765 16854 16941 88 5 1

6 6 0 16682 16765 16858 16957 92 34 1

nlstart lm_sum lcl mcl

1 8 772 1633837924 842150450

2 8 601 1163550303 757935406

3 8 196 387456295 387456295

4 4 220 640172875 438445608

5 5 108 236198180 236198180

6 8 358 690630740 690563632

5.4 bamGapList

bamGapList Objects are designed to contain information about gap-sites for a
complete BAM file (i.e. for all refid’s). bamGapList’s can be merged, so it’s
possible to cumulate information about gap-sites from a large number of BAM
files (e.g. 50). As the whole collection and merging process is done in C, the
whole process usually runs with a processing rate > 1.000.000 alignments/sec
(on a desktop machine).

> bsl <- bamGapList(reader)

> bsl

An object of class 'bamGapList'. size: 39

nAligns: 3.230 nAlignGaps: 3.443

> size(bsl)

[1] 39

> nAligns(bsl)

[1] 3230

> nAlignGaps(bsl)

[1] 3443

> summary(bsl)

ID SN LN start size nAligns nAlignGaps

1 0 chr1 249250621 0 32 2216 2297

2 1 chr16 90354753 0 7 1014 1146

21

> dfr <- as.data.frame(bsl)

> head(dfr)

id seqid lstart lend rstart rend gaplen nAligns nProbes

0 1 chr1 14730 14829 14970 15052 140 553 1

1 2 chr1 14944 15038 15796 15888 757 201 1

2 3 chr1 15909 15947 16607 16702 659 29 1

3 4 chr1 15953 16027 16607 16669 579 4 1

4 5 chr1 16730 16765 16854 16941 88 5 1

5 6 chr1 16682 16765 16858 16957 92 34 1

nlstart qsm nmcl gqs

0 8 200 8 1000

1 8 181 8 905

2 8 115 8 575

3 4 138 4 345

4 5 95 5 296

5 8 172 8 860

5.4.1 readPooledBamGaps

The two functions

� readPooledBamGaps

� readPooledBamGapDf

provide functionality for extraction and quantification of alignment gap positions
over multiple BAM files.

> bam<-system.file("extdata","accepted_hits.bam",package="rbamtools")

> rpb<-readPooledBamGaps(bam)

> rpdf<-readPooledBamGapDf(bam)

The important part of the resulting information is shown below as example.
The boundaries of the covered alignment ranges are denoted lstart and lend
for the left side and rstart and rend for the right side of the alignmnent gap.
Additionally, the number of alignments (nAligns) and the number of samples
(nProbes) which provide support for the alignment gap position are given.

> xtable(head(rpdf)[, c(1:6, 8, 9, 13)])

Figure 1, although only contains data on 40 gap sites, already shows the gqs
distribution at larger samples sizes: There are many sites with high and low gqs
values and the intermediate range is only sparsely filled.

22

0

1

2

3

4

5

6

7

Distribution of gqs values

gqs

N
um

be
r

of
 g

ap
 s

ite
s

10 116 293 433 528 647 790 905

Abbildung 1: Distribution of gqs values

23

id seqid lstart lend rstart rend nAligns nProbes gqs

0 1 chr1 14730 14829 14970 15052 553 1 1000
1 2 chr1 14944 15038 15796 15888 201 1 905
2 3 chr1 15909 15947 16607 16702 29 1 575
3 4 chr1 15953 16027 16607 16669 4 1 345
4 5 chr1 16730 16765 16854 16941 5 1 296
5 6 chr1 16682 16765 16858 16957 34 1 860

6 Alternative approaches for analyis of splicing events

6.1 Bioconductor alternative to ’readPooledBamGaps’

Using Bioconductor alignment numbers on gap sites as well as number of samp-
les in which gap sites are found can be counted. We show an example imple-
mentation. The function can be evoked by simply providing a vector of BAM file
names (but assumes that associated *.bam.bai BAM index files are present).

> scanGapSites <- function(bam, yieldSize=1e6, mc.cores=2)

+ {

+ require(Rsamtools)

+ require(GenomicAlignments)

+

+ mc.cores <- as.integer(mc.cores)

+

+ # Function will be called by mclapply

+ doScanBam <- function(bamFile)

+ {

+ open(bamFile)

+

+ # Create empty container.

+ gPos <- GRanges()

+

+ # Fill container by processing 'yieldSize' reads at a time

+ while(

+ sum(

+ elementLengths(

+ records <- scanBam(

+ bamFile,

+ param=ScanBamParam(

+ flag=scanBamFlag(isUnmappedQuery=FALSE),

+ what=scanBamWhat()[c(3, 5, 8)]

+)

+)[[1]]

+)

24

+) > 0

+){

+

+ nOps <- cigarRangesAlongReferenceSpace(records$cigar,ops="N")

+ sel <- elementLengths(nOps) != 0

+ gPos <- c(gPos,

+ GRanges(seqnames=rep(records$rname[sel],

+ elementLengths(nOps)[sel]),

+ ranges=unlist(shift(nOps[sel],

+ records$pos[sel]))

+)

+)

+ }

+ close(bamFile)

+ # Return all gap positions

+ return(gPos)

+ }

+

+ cat("[scanGapSites] Processing", length(bam), "Files.\n")

+

+

+ bamFileList <- BamFileList(bam, yieldSize = yieldSize)

+ gList <- mclapply(bamFileList, doScanBam)

+

+ sz <- object.size(gList)

+ bm<-Sys.localeconv()[7]

+ cat("[scanGapSites] Collected object of size",

+ format(as.numeric(object.size(gList)), big.mark=bm),

+ "bytes.\n")

+

+ # - #

+ # Get all unique positions across all samples

+ # - #

+ uPos <- unique(Reduce("c", gList))

+

+ # - #

+ # Create the count table by

+ # transforming the ranges into character strings.

+ # - #

+ ref <- paste(seqnames(uPos), start(uPos), end(uPos), sep="-")

+

+ # Will be called by mclapply

+ doTable <- function(grng, ref)

+ {

25

+ tab <- table(paste(seqnames(grng), start(grng), end(grng),sep="-"))

+ tab[match(ref,names(tab))]

+ }

+

+ count.table <- do.call("cbind",

+ mclapply(gList, doTable, ref, mc.cores=mc.cores))

+ rownames(count.table) <- ref

+

+ cat("[scanGapSites] Number of sites:",

+ format(nrow(count.table), big.mark=bm),

+ ".\n")

+

+ cat("[scanGapSites] Finished.\n")

+ return(count.table)

+ }

The scanGapSites function offers speed enhancement by parallel processing and
by that may reach similar processing times as the readPooledBamGapDf functi-
on. While multiple chunks of alignment data are loaded into the working memory
demand will be in the range of some Gigabyte (depending on yieldSize).
This function does not provide information on the size of the exonic range which
is covered by the alignment. Also, a quality value similar to the gqs can not be
calculated retrospectively.

6.2 Direct import of Junction positions from Aligner

The RNA-seq aligners TopHat and STAR provide information on identified spli-
ce sites in their output files. The Bioconductor GenomicAlignments package
provides functions for direct import of this information.

6.2.1 STAR aligner

The STAR aligner [2] produces a tab separated file where positions of alignment
gaps as well as number of uniquely and multi-mapping reads and a code for the
intron motif is produced (SJ.out.tab file).
The content of these files can directly be imported into R usign the readSTAR-
Junctions method.

6.2.2 TopHat aligner

TopHat [4] produces a junctions.bed file where each junction is represented in
form of two connected BED blocks. The content of the junctions.bed file can
be read using the readTopHatJunctions function.

26

Both tables can be used to obtain candidate locations for splice sites which also
allows fast collection. For further validation of putative splicing events, additio-
nal information may be necessary, e.g. more than just two intronic nucleotide
positions or qualification of the alignment gap postion by the gqs.

7 Miscellaneous functions

7.1 bamCount and bamCountAll

The bamCount counts alignments and CIGAR-items in alignment ranges defined
by coordinates. The function returns a named integer vector of length 10.

The bamCountAll counts alignments and CIGAR-items for whole BAM-files
(represented by a bamReader). The function optionally takes a verbose argu-
ment which controls the textual output during runtime. The function returns
a data.frame. Each line contains counts for one reference sequence, each co-
lumn contains data for one CIGAR-OP type. Columns with total counts, referene
sequence id (ID) and reference sequence length (LN) are added.

> coords <- c(0, 0, 14730)

> count <- bamCount(reader, coords)

> xtable(matrix(count, nrow=1))

1 2 3 4 5 6 7 8 9 10

1 30 0 2 13 0 0 0 0 0 15

> count <- bamCountAll(reader, verbose=TRUE)

[bamCountAll] Counting chr1 [1/2]

[bamCountAll] Counting chr16 [2/2]

[bamCountAll] Finished.

M I D N S H P = X nAligns ID LN

chr1 4577 18 46 2297 0 0 0 0 0 2216 0 249250621
chr16 2164 4 0 1146 0 0 0 0 0 1014 1 90354753

7.2 countNucs

The countNucs counts occurrence of the nucleotides ACGT in bamAlign and
bamRange objects. An integer vector of length 4 is returned. The names give
the nucleotide which is counted at each position. The syntax is identical for
bamAlign

27

> align <- bamAlign("HWUSI-0001", "ACCGGGTTTT","Qual/Strng",

+ "4M10N6M", refid=0, position=100)

> countNucs(align)

A C G T N

1 2 3 4 0

and bamRange

> reader <- bamReader(bam, idx=TRUE)

> coords <- c(0, 0, 14730)

> range <- bamRange(reader, coords)

> countNucs(range)

A C G T N

237 490 533 255 0

objects.

7.3 nucStats

nucStats for bamReader The nucStats function counts occurrence of the
nucleotides ACGT in whole BAM files via opened bamReader objects. Any other
character values are subsumed in the value N. The last two columns contain
values for GC content and AG/GC ratio.

The function returns a data.frame with one row for each reference sequence
which is listed in the BAM-header section.

> ncs <- nucStats(reader)

nAligns A C G T N gcc at gc ratio

chr1 2216 37756 72232 61721 52102 5 0.58 0.71
chr16 1014 28090 25298 31102 17921 3 0.58 0.71

nucStats for BAM file names The nucStats function counts occurrence of
the the nucleotides ACGT for a given list of BAM file names. The last two
columns contain values for GC content and AG/GC ratio. The function returns
a data.frame with one row for each given BAM file name.

> ncs <- nucStats(bam)

28

nAligns A C G T N gcc at gc ratio

1 3230 65846 97530 92823 70023 8 0.58 0.71

7.4 createIdxBatch

The createIdxBatch is intended to create index files for a multiple BAM-files.
The names of the created BAM-index files can optionally be added. The standard
name for BAM-index files is the name of the BAM file plus an added suffix ”.bai”.

The third (optional) argument is rebuild. When rebuild is FALSE the functi-
on will only create not already existing BAM-index files. When rebuild is TRUE
the function will build BAM-index for all given BAM-files.

Sometimes (especially when BAM-files have been copied), they content may
be corrupt. Rebuilding index files is a way to check the integrity of a BAM-file.

> createIdxBatch(bam)

7.5 readerToFastq, rangeToFastq

readerToFastq: The readerToFastq and rangeToFastq take (optionally ran-
dom subsets) of whole BAM-files (via bamReader) or selected ranges (via bam-

Range) and copy alignments to fastq files.

For handling of alignments inside whole BAM-files, use the readerToFastq func-
tion. Alignments are read from BAM files via getNextAlign. For an opened file,
there is a pointer to the last retrieved alignment kept. Multiple calls to getNex-
tAlign will retrieve subsequent alignments.

When a logical vector is given, there will be a call to getNextAlign for every
entry in the vector. The function then returns the number of checked alignments.

When EOF is reached before the vector is processed, the number of checked
alignments is smaller than the length of the given logical vector. When no logical
vector is given, the function returns the number of written alignments.

> reader <- bamReader(bam)

> readerToFastq(reader, "out.fastq")

> bamClose(reader)

> # Reopen in order to point to first alignment

> reader <- bamReader(bam)

> index <- sample(1:100, 20)

> readerToFastq(reader, "out_subset.fastq", which=index)

29

rangeToFastq: The function rangeToFastq writes all alignments in a bam-

Range object into a compressed fastq file. Optionally, a logical vector (where
length must be equal to size of range) can be given. In this case only the de-
picted alignments are copied into the fastq file and the remaining alings are
skipped.

> reader <- bamReader(bam, idx=TRUE)

> coords <- as.integer(c(0,0,249250621))

> range <- bamRange(reader,coords)

> rangeToFastq(range,"rg.fq.gz")

> index <- sample(1:size(range),100)

> rangeToFastq(range,"rg_subset.fq.gz",which=index)

7.6 Functions for reading and displaying Phred quality scores

Phred quality scores Q are defindes as Q = −10log10P where P is the base
calling error probability.

getQualDf takes a bamReader and returns a data.frame. The data.frame

has 94 rows which represent values from 0 to 93 ([1]). The number of columns
equals the maximum sequence length in the given bamRange.

> qdf <- getQualDf(range)

> qdf[32:38,1:10]

1 2 3 4 5 6 7 8 9 10

31 2 2 1 0 1 0 0 1 1 1

32 0 2 0 3 0 2 0 0 0 0

33 0 0 1 1 3 0 2 1 1 1

34 1 3 1 0 0 0 0 0 0 0

35 0 7 7 7 7 8 7 7 7 6

36 0 0 0 0 0 0 0 0 0 0

37 0 0 0 2 2 2 2 3 0 1

> qdr <- getQualDf(range,prob=TRUE)

> qrr <- round(qdr,2)

> qrr[32:38,1:10]

1 2 3 4 5 6 7 8 9 10

32 0.13 0.13 0.07 0.00 0.07 0.00 0.00 0.07 0.07 0.07

33 0.00 0.13 0.00 0.20 0.00 0.13 0.00 0.00 0.00 0.00

34 0.00 0.00 0.07 0.07 0.20 0.00 0.13 0.07 0.07 0.07

35 0.07 0.20 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

36 0.00 0.47 0.47 0.47 0.47 0.53 0.47 0.47 0.47 0.40

37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

38 0.00 0.00 0.00 0.13 0.13 0.13 0.13 0.20 0.00 0.07

30

getQualQuantiles takes a bamReader and a vector of quantiles (must be
between 0 and 1) and returns a data.frame. The data.frame contains one row
for each quantile and also as many columns as the maximum sequence length.

> qt <- getQualQuantiles(range,c(0.25,0.5,0.75))

> qt[,1:10]

1 2 3 4 5 6 7 8 9 10

q_25 23 32 30 32 33 32 30 31 29 27

q_50 24 34 34 35 35 35 35 35 35 35

q_75 30 35 35 36 36 36 36 36 36 36

plotQualQuant takes a bamReader and plots the 0.1, 0.25, 0.5, 0.75 and 0.9
quantiles for all occurring sequence positions.

> plotQualQuant(range)

0 20 40 60 80 100

0

10

20

30

40

50

Phred Quantiles for sequence

sequence position

ph
re

d
sc

or
e

10% 25% 50% 75% 90%

7.7 Functions for calculation and displaying alignment-depth

Alignment depth means quantification of present matches for each nucleotide
position in a given range.

31

The alignDepth member function calculates alignment depth for a given
bamRange object. From the bamRange object, the range is extracted and for
each nucleotide position whithin this range the numbers of alignment matches
are calculated. When alignDepth is called wich gap=TRUE, the function counts
alignments solely for gap-adjacent match regions (cigar-op’s).

Whe extract a bamRange for the WASH7:

> # WASH7P coordinates

> xlim <- c(10000, 30000)

> coords <- c(0,xlim[1], xlim[2])

> range <- bamRange(reader, coords)

> bamClose(reader)

> ad <- alignDepth(range)

> ad

Class : alignDepth

Seqid : 0

qrBegin : 10.000

qrEnd : 30.000

Complex : 0

rSeqLen(LN) : 249.250.621

qSeqMinLen : 101

qSeqMaxLen : 101

refname : chr1

10001 10002 10003 10004 10005 10006

0 0 0 0 0 0

> getParams(ad)

seqid qrBegin qrEnd complex rSeqLen

0 10000 30000 0 249250621

qSeqMinLen qSeqMaxLen gap

101 101 0

> # Identifier

> gene <- "WASH7P"

> ensg_id <- "ENSG00000227232"

> enst_id <- "ENST00000538476"

> # Get exon positions

> start <- c(14411, 15000, 15796, 15904, 16607, 16748, 16858, 17233,

+ 17602, 17915, 18268, 24737, 29534)

> end <- c(14502, 15038, 15901, 15947, 16745, 16765, 17055, 17364,

+ 17742, 18061, 18366, 24891, 29806)

32

> plotAlignDepth(ad, lwd = 2, xlim = xlim,

+ main = paste("Align depth for gene",gene),

+ ylab = "Align depth", start = start,

+ end = end, strand = "-",

+ transcript = paste("Chromosome 1",

+ "\tGene ENSG00000227232", ensg_id,

+ "\tTranscript ",enst_id

+))

1

2

5

10

20

50

100

200

500

Align depth for gene WASH7P
Refname: chr1

A
lig

n
de

pt
h

10000 15000 20000 25000 30000

Position

Chromosome 1 	Gene ENSG00000227232 ENSG00000227232 	Transcript ENST00000538476

7.8 Functions for counting alignmnents in genomic segments

The rangeSegCount class counts alignment numbers in specified genomic seg-
ments. The rangeSegCount function takes three arguements:

� reader: An opened instance of bamReader which must contain an initiali-
zed bam index.

� coords: A numeric vector of length 3 which contains (seqid, start, end)
as specified for bamRange object. As for bamRange’s, this defines the
genetic region from which alignments are read from a BAM file.

� segments: A numeric vector of arbitrary length which should divide the
range defined by coords into segments. In the segments vector, two adja-

33

cent values define a right open interval in which the genomic alignments
are counted.

The function only considers the alignment start postions. This reflects the diffe-
rence to the alignment depth construction where aligned positions are counted
separately for each nucleotide.

> # - #

> # B) Count range segment

> # - #

> reader <- bamReader(bam, idx=TRUE)

> coords <- c(0, 0, 2e4)

> segments <- seq(14000, 20000, 20)

> segcount<-rangeSegCount(reader, coords, segments)

> segcount

An object of class 'rangeSegCount'.

Refname : chr1

Seqid : 0

LN : 249.250.621

qrBegin : 0

qrEnd : 20.000

Complex : FALSE

Size : 301

position count

1 14000 0

2 14020 0

3 14040 0

4 14060 0

5 14080 0

6 14100 0

> dfr<-as.data.frame(segcount)

> sum(dfr$count)

[1] 2112

>

> plot(count~position, dfr, type="l",

+ las=1, bty="n", lwd=1.5, col="dodgerblue2",

+ xlab="Position on Chromosome 1",

+ ylab="Alignment count",

+ main="Number of alignments in genomic segments of 20 nucleotides size")

34

14000 15000 16000 17000 18000 19000 20000

0

20

40

60

80

100

120

Number of alignments in genomic segments of 20 nucleotides size

Position on Chromosome 1

A
lig

nm
en

t c
ou

nt

8 Experimental data from multiple samples

Sequencing is usually done in experimental settings where multiple samples are
distibuted over several groups. Multiple samples in an experimental design can
be handled using the sampleBamFiles class.

The central idea is to be able to plot alignment depth for genetic regions from a
whole experiment, so that different alignement depths over genes or exons can
be visualized.

> bs <- sampleBamFiles(6)

> bamFiles(bs) <- paste("bam",1:6, ".bam", sep="")

> sampleLabels(bs) <- paste(rep(c("wt", "trt"), each=3), 1:6, sep="")

> sampleGroups(bs) <- rep(c("wildtype", "treated"), each=3)

> bs

An object of class "sampleBamFiles"

Number of Files : 6

Groups : treated wildtype

Group table:

treated wildtype

3 3

35

Sample labels are intended as short identifiers used for example in plots.

Using this type of instantiation automatically generates BAM index file names
of type ”*.bai”:

> bamIdxFiles(bs)

[1] "bam1.bam.bai" "bam2.bam.bai" "bam3.bam.bai"

[4] "bam4.bam.bai" "bam5.bam.bai" "bam6.bam.bai"

This default can be overwritten by assignment

> bamIdxFiles(bs)<- paste("index", 1:6, ".bam.bai", sep="")

8.1 Checking BAM files

The check routine verifies crucial prerequisites for sampleBamFiles usage:

� Existing BAM and index files

� Congruent Reference sequence (chromosome) names

8.2 Counting BAM files

Visualization of alignment depth data on single genes requires normalization of
alignment count values to a common sequencing depth. The total alignment
numbers can easily be obtained using the bamCountAll function.

> nAligns(bs) <- bamCountAll(bs)

8.3 geneAlignDepth

Align depth data from BAM files is read and stored in geneAlignDepth ob-
jects. They can be created from sampleBamFiles and geneModel (located in
refGenome) objects.

The construction process is divided in several steps as shown below.

8.3.1 Construction of bamFiles object

> bam<-system.file("extdata", "accepted_hits.bam", package="rbamtools")

> bs <-sampleBamFiles(1)

> bamFiles(bs) <- bam

> sampleLabels(bs) <- "s1"

> sampleGroups(bs) <- "g1"

> checkBamFiles(bs)

36

[checkBamFiles] File check ok

[checkBamFiles] 1 BAM Files OK.

[checkBamFiles] 1 RefData OK.

[checkBamFiles] BAM + RefData content OK.

[checkBamFiles] Check OK.

> nAligns(bs) <- bamCountAll(bs)

> bs

An object of class "sampleBamFiles"

Number of Files : 1

Groups : g1

Group table:

g1

1

8.3.2 Construction of geneModel

A geneModel object can be constructed using reference genome as implemented
in package refGenome. A geneModel object contains data on single genes for
example

� Gene ID (e.g. Ensembl identifier)

� Gene name (e.g. HGNC symbol)

� Genetic coordinates (chromosome, start, end)

� Transcripts

� Positions of exons and CDS

> ## - ##

> # Construct geneModel object

> ucfile<-system.file("extdata", "hs.ucsc.small.RData", package="refGenome")

> uc<-loadGenome(ucfile)

> gt <- getGeneTable(uc)

> gene_id <- as.character(gt$gene_id[1])

> gm <- geneModel(uc, gene_id)

8.3.3 Read alignment depth for a whole gene

Sequencing experiments usually include more than one sample. rbamtools pro-
vides a framework for analysis of alingment depth for a single gene on multiple
BAM files.
Aside from counting alignment depth, the challenge posed by this task arises
from the large proportion of introns in the range of a gene making a visual

37

inspection of raw data impractical.
What needs to be done is to identify as much intronic region as possible while
restricting the search algorithm to traceable criterions.
Relying on annotation data quickly emerges as unfeasible because different tran-
scripts possibly imply conflictive definitions of exonic regions e.g. when exons
are skipped.
Additionally, a groupwise measures for alignemnt depth are required for inter-
pretation. rbamtools performes groupwies loess derived estimates for global
align-depth normalized data.
A central idea is, that cutting out intronic regions can be divided into multiple
consecutive steps allowing the user to direct the removal of regions to a sensible
level.
The algorithms implemented in rbamtools provide multiple consecutive pro-
cessing steps:

� geneAlignDepth

� exonAlignDepth

� exonLoessModel

� cutFlatAlignDepth

geneAlignDepth A geneAlignDepth object can be crated from a sampleB-

amFiles and a geneModel object.
For usage in geneAlignDepth the geneModel can be instantiated using ’interi-
or=FALSE’ option which omits extraction of transcript data. During the creation
process, the align depth data is extracted from the BAM files. The calculated
aling depth can be visualized using a generic plot function.

> gm <- geneModel(uc, gene_id, interior=FALSE)

> gad <- geneAlignDepth(bs, gm)

Reading file 1

> plot(gad, col="gray50")

[plot.geneAlignDepth] Renorming to 3.230

38

12000 12500 13000 13500 14000 14500

0.0

0.2

0.4

0.6

0.8

1.0

DDX11L1

Position on chr1

A
lig

ns
 (

no
rm

al
iz

ed
)

g1

The exonAlignDepth function cuts out intronic regions from geneAlignDepth

data. The intronic regions are identified using exon-intron boundaries. Exon-
intron boundaries are localized by two criterions:

1. Begin or end of an alignment gap

2. A high ratio of alignment depth between adjacent exonic and intronic
nucleotide.

Using the identified exon-intron, the intronic regions are cut out of the using
a segmentize function defined in rbamtools. As the implementation of seg-
mentize uses a logical vector for removal, the removed positions are the union
of the defined intronic segments which is sensible when intronic regions overlap.

> ead <- exonAlignDepth(gad, ratioLim=5, infVal=1000)

> plot(ead)

[plot.geneAlignDepth] Renorming to 3.230

39

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0

DDX11L1

Position on chr1

A
lig

ns
 (

no
rm

al
iz

ed
)

g1

> elm <- exonLoessModel(ead)

> plot(elm)

40

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0

Position (seq=chr1)

A
lig

nm
en

t D
ep

th

g1

DDX11L1

Gene id: uc001aaa.3, (+) − Strand

> celm <- cutFlatAlignDepth(elm, ratio=0.1)

> plot(celm)

> junctionSites(ead)

[1] id refid lend rstart gaplen

[6] nAligns nProbes nlstart lend_rat rstart_rat

[11] rat

<0 rows> (or 0-length row.names)

> groupRatio(celm, lim=1.2, cut=0, order=1)

[1] 1

9 Misalign errors

9.1 Cause of misalign errors

In the samtools C library, alignment data is contained in bam1_t structures.
Cigar data is stored in the data segment of bam1_t structures which has type
unsigned char * (1 byte). The data data segments usually are accessed using
pointers to unsigned char as shown below.

41

bam1_t *align = bam_init1();

unsigned char * data = align->data;

Cigar data has type unsigned int (4 bytes) which differs from the type size
of unsigned char. In order to retrieve cigar data from an alignment structure
a type change has to be performed. On pointers, these type changes are called
pointer casts. The accessor for cigar data bam1_cigar performs an implicit
pointer cast in the following statment:

unsigned int *cigar=align->data + align->core.l_qname;

Because there are usually multiple cigar items for each alignment, a cigar struc-
ture actually contains more than one value. Therefore the value pointed to is
an array rather than a single value. Values inside a C array are accessed via the
index operator ’[x]’ (similar to R). The first value inside a cigar array is accessed
using

unsigned int c = cigar[0];

(unlike R where the first element has index 1). In other words, the index operator
k[x] refers to a memory location x-units away from the base address k. The unit
size is the memory demand of one element of the stored type. By putting the
example together we see that after

bam1_t *align = bam_init1();

unsigned char * data = align->data + align->core.l_qname;

unsigned int *cigar = data;

the two expressions

data[4];

cigar[4];

point to different memory locations due to the implicit conversion during the
assignment from data to cigar.
For this ambiguity, there is no general rule defined in the C language definition,
a so called undefined behaviour (UB) situation. The result may depend on
implementation and may vary between different operating systems for example
between Debian Linux and SPARC.
The accountable structures currently are present in all C implementations of
samtools, for example in the current (Bioconductor) Rsamtools version3 and in
the current htslib version (0.2.0-rc8) on GitHub4.

3http://www.bioconductor.org/packages/release/bioc/html/Rsamtools.html
4https://github.com/samtools/samtools

42

9.2 Correction of misalign errors

In rbamtools, we have corrected these misalign errors by a new cigar data
member into bam1_t structures and maintaining a copy of cigar data there.
The implementation of this workaround requires changes in five functions: The
creator (bam_init1) and destructor (bam_destroy1), the functions for copy-
ing (bam_copy1) and duplication (bam_dup1) and the accessor for cigar data
(bam1_cigar). Additionally, the samtools library has to be corrected at places
where the own creator and destructor routines had not been deployed (e.g. in the
bam_sort_core_ext function in bam sort.c and in the bam_index_core func-
tion in bam index.c). This workaround is associated with a slight speed decrease
of 6.7 % but it does not change file access and the programming interface. It
can be introduced into any current samtools version.

Literatur

[1] PJA Cock, CJ Fields, N Goto, ML Heuer, and Rice PM. The sanger fastq
file format for sequences with quality scores and the solexa/illumina fastq
variants. Nucleic Acids Research, 38:1767–1771, 2010.

[2] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Ba-
tut, M. Chaisson, and T. R. Gingeras. Star: ultrafast universal rna-seq ali-
gner. Bioinformatics, 29(1):15–21, Jan 2013.

[3] The SAM Format Specication Working Group. The sam format specication
(v1.4-r985). http://samtools.sourceforge.net/SAM1.pdf.

[4] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg.
Tophat2: accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biol., 14(4):R36, 2013.

43

http://samtools.sourceforge.net/SAM1.pdf

	Introduction
	SAM file format
	The header section
	The reference sequence dictionary

	The alignment section
	The RNAME identifier: refid
	Position
	Navigation on reference sequence
	CIGAR string

	Gapped alignments
	Gap-sites
	Example
	Gap-site coordinates
	Quantification of alignment numbers
	Quantification of informational support for gap-site's
	Gap quality score (gqs)

	Object types inside rbamtools package
	Included example files within rbamtools
	Reading and writing access
	bamReader
	Tabled reference sequences: getRefData
	bamWriter

	Elementary data structures
	Structures for header section
	Structures for alignment section
	Creating bamAlign objects from scratch

	Complex and cumulative container
	alignments lists for specific reference regions: bamRange
	Reading bamRange from bamReader
	Accessing alignments in bamReader

	gapList
	gapSiteList
	bamGapList
	readPooledBamGaps

	Alternative approaches for analyis of splicing events
	Bioconductor alternative to 'readPooledBamGaps'
	Direct import of Junction positions from Aligner
	STAR aligner
	TopHat aligner

	Miscellaneous functions
	bamCount and bamCountAll
	countNucs
	nucStats
	createIdxBatch
	readerToFastq, rangeToFastq
	Functions for reading and displaying Phred quality scores
	Functions for calculation and displaying alignment-depth
	Functions for counting alignmnents in genomic segments

	Experimental data from multiple samples
	Checking BAM files
	Counting BAM files
	geneAlignDepth
	Construction of bamFiles object
	Construction of geneModel
	Read alignment depth for a whole gene

	Misalign errors
	Cause of misalign errors
	Correction of misalign errors

