
sparseHessianFD: An R Package for Estimating

Sparse Hessian Matrices

Michael Braun
Edwin L. Cox School of Business
Southern Methodist University

Abstract

Sparse Hessian matrices occur often in statistics, and their fast and accurate estimation
can improve efficiency of numerical optimization and sampling algorithms. By exploiting
the known sparsity pattern of a Hessian, methods in the sparseHessianFD package require
many fewer function or gradient evaluations than would be required if the Hessian were
treated as dense. The package implements established graph coloring and linear substitu-
tion algorithms that were previously unavailable to R users, and is most useful when other
numerical, symbolic or algorithmic methods are impractical, inefficient or unavailable.

Keywords: sparse Hessians, sparsity, computation of Hessians, graph coloring, finite differ-
ences, differentiation.

The Hessian matrix of a log likelihood function or log posterior density function plays an
important role in statistics. From a frequentist point of view, the inverse of the negative
Hessian is the asymptotic covariance of the sampling distribution of a maximum likelihood
estimator. In Bayesian analysis, when evaluated at the posterior mode, it is the covariance
of a Gaussian approximation to the posterior distribution. More broadly, many numerical
optimization algorithms require repeated computation, estimation or approximation of the
Hessian or its inverse; see Nocedal and Wright (2006).

The Hessian of an objective function with M variables has M2 elements, of which M(M+1)/2
are unique. Thus, the storage requirements of the Hessian, and computational cost of many
linear algebra operations on it, grow quadratically with the number of decision variables.
For applications with hundreds of thousands of variables, computing the Hessian even once
might not be practical under time, storage or processor constraints. Hierarchical models, in
which each additional heterogeneous unit is associated with its own subset of variables, are
particularly vulnerable to this curse of dimensionality

However, for many problems, the Hessian is sparse, meaning that the proportion of non-zero
elements in the Hessian is small. Consider a log posterior density in a Bayesian hierarchical
model. If the outcomes across units are conditionally independent, the cross-partial derivatives
of heterogeneous variables across units are zero. As the number of units increases, the size
of the Hessian still grows quadratically, but the number of non-zero elements grows only
linearly; the Hessian becomes increasingly sparse. The row and column indices of the non-
zero elements comprise the sparsity pattern of the Hessian, and are typically known in advance,
before computing the values of those elements. R packages such as trustOptim (Braun 2014),
sparseMVN (Braun 2015) and ipoptr (Wächter and Biegler 2006) have the capability to

2 sparseHessianFD: Sparse Hessians

accept Hessians in a compressed sparse format.

The sparseHessianFD package is a tool for estimating sparse Hessians using finite differences
of gradients. Section 1.1 will cover the specifics, but the basic idea is as follows. Con-
sider a function f(x), its gradient ∇f(x), and its Hessian Hf(x), for x ∈ RM . Define the
derivative vector as the transpose of the gradient, and a vector of partial derivatives, so
Df(x) = ∇f(x)> = (D1, . . . ,DM). (Throughout the paper, we will try to reduce notational
clutter by referring to the derivative and Hessian as D and H, respectively, without the f(x)
symbol). Let em be a vector of zeros, except with a 1 in the mth element, and let δ be a
sufficiently small scalar constant. A linear approximation to the mth column of the Hessian
is Hm ≈ (∇f(x+ δem)−∇f(x)) /δ. Estimating a dense Hessian in this way involves at least
M + 1 calculations of the gradient: one for the gradient at x, and one after perturbing each
of the M elements of x, one at a time.1 In a sparse matrix, most of the elements are con-
strained to zero. Depending on the sparsity pattern of the Hessian, those constraints may
let us recover the Hessian with fewer gradient evaluations by perturbing multiple elements of
x together. For some sparsity patterns, estimating a Hessian in this way can be profoundly
efficient. In fact, for the hierarchical models that we consider in this paper, the number of
gradient evaluations does not increase with the number of additional heterogeneous units.

The package defines the sparseHessianFD class, whose initializer requires the user to provide
functions that compute the objective function and the gradient, as well as the sparsity pattern
of the Hessian. Some users may find those requirements burdensome, and we emphasize that
there may be some applications for which sparseHessianFD is not an appropriate package to
use. To extract the maximum benefit from using sparseHessianFD, we need to accept some
conditions and assumptions.

1. Preferred alternatives to computing the Hessian are not available. Finite differencing is
not generally a “first choice” method. Deriving a gradient or Hessian symbolically, and
writing a subroutine to compute it, will give an exact answer, but might be tedious or
difficult to implement. Algorithmic differentiation (AD) is probably the most efficient
method, but requires specialized libraries that, at this moment, are not yet broadly
available in R. sparseHessianFD makes the most sense when the gradient is easy to
compute, but the Hessian is not.

2. The application can tolerate the approximation error in the Hessian that comes with
finite differencing methods.

3. The objective function f(x) is twice differentiable, and can be computed “quickly and
easily,” even for a large number of variables. We leave the definition of “quickly and
easily” intentionally murky, since no method of differentiation can overcome pathologies
in a function that itself is hard to compute.

4. The gradient can be computed quickly, easily and exactly (within machine precision).
We do not recommend using finite differenced gradients when computing finite differ-
enced Hessians. The approximation errors will be compounded, and the time complexity
of computing a gradient grows with the number of variables.

1More accurate approximations require more gradient evaluations. We will consider only forward finite
differences.

Michael Braun 3

5. The sparsity pattern is known in advance, and does not depend on the values of the
variables.

Our perspective on the requirements to use sparseHessianFD is that deriving a vector of first
derivatives, and writing R functions to compute them, is a lot easier than doing the same for a
matrix of second derivatives, and more accurate than computing second-order approximations
from the objective function. Even when we have derived the Hessian symbolically, in practice
it may still be faster to estimate the Hessian using sparseHessianFD than coding it directly.
These are the situations in which sparseHessianFD adds the most value to the statistician’s
toolbox. If AD software is available to compute the gradient, then it is probably available for
sparse Hessians as well, and sparseHessianFD would not be needed. Without AD-computed
or symbolically derived Hessians, sparseHessianFD is the best available option.

The only functions and methods the end user should need to use are the sparseHessianFD
initializer, methods that return the Hessian in a sparse compressed format, and perhaps some
utility functions that simplify the construction of the sparsity pattern. The class also defines
methods that partition the variables into groups that can be perturbed together in a finite
differencing step, and recovers the elements of the Hessian via linear substitution. Those
methods perform most of the work, but should be invisible to the user.

This article proceeds as follows. First, we present some background information about nu-
merical differentiation, and sparse matrices in R, in Section 1. In Section 2, we explain how
to use the package. Section 3 explains the underlying algorithms, and Section 4 demonstrates
the scalability of those algorithms.

1. Background

Before describing how to use the package, we present two short background notes. The first
note is an informal mathematical explanation of numerical estimation of the Hessian matrix,
with an illustration of how the number of gradient estimates can be reduced by exploiting
the sparsity pattern and symmetric structure. This note borrows heavily from, and use the
notation in, Magnus and Neudecker (2007, Chapter 6). The second note is a summary of
some of the sparse matrix classes that are defined in the Matrix package (Bates and Maechler
2015), which are used extensively in sparseHessianFD.

1.1. Numerical differentiation of sparse Hessians

The partial derivative of a scalar-valued function f(x) with respect to xj (the jth component
of x) is defined as

Djf(x) = lim
δ→0

f(x+ δej)− f(x)

δ
(1)

For a sufficiently small δ, this definition allows for a linear approximation to Djf(x). The
derivative of f(x) is the vector of all M partial derivatives.

Df(x) = (D1f(x), . . . ,DMf(x)) (2)

The gradient is defined as ∇f(x) = Df(x)>.

4 sparseHessianFD: Sparse Hessians

We define the second-order partial derivative as

D2
jk = lim

δ→0

Djf(x+ δek)− Djf(x)

δ
(3)

and the Hessian as

Hf(x) =


D2
11 D2

12 . . . D2
1M

D2
21 D2

22 . . . D2
2M

...
...

...
D2
M1 D2

M2 . . . D2
MM

 (4)

The Hessian is symmetric, so D2
ij = D2

ji.

To estimate the mth column of H, we again choose a sufficiently small δ, and compute

Hmf(x) ≈ Df(x+ δem)− Df(x)

δ
(5)

For M = 2, our estimate of a general Hf(x) would be

Hf(x) =

(
D1f(x1 + δ, x2)− D1f(x1, x2) D1f(x1, x2 + δ)− D1f(x1, x2)
D2f(x1 + δ, x2)− D2f(x1, x2) D2f(x1, x2 + δ)− D2f(x1, x2)

)
/δ (6)

This estimate requires three evaluations of the gradient to get Df(x1, x2), Df(x1 + δ, x2), and
Df(x1, x2 + δ).

Now suppose that the Hessian is sparse, and that the off-diagonal elements are zero. That
means that

D1f(x1, x2 + δ)− D1f(x1, x2) = 0 (7)

D2f(x1 + δ, x2)− D2f(x1, x2) = 0 (8)

If the identity in Equation 7 holds for x1, it must also hold for x1 + δ, and if Equation 8 holds
for x2, it must also hold for x2 + δ. Therefore,

Hf(x) =

(
D1f(x1 + δ, x2 + δ)− D1f(x1, x2) 0

0 D2f(x1 + δ, x2 + δ)− D2f(x1, x2)

)
/δ (9)

Only two gradients, Df(x1, x2) and Df(x1 + δ, x2 + δ), are needed. Being able to reduce
the number of gradient evaluations from 3 to 2 depends on knowing that the cross-partial
derivatives are zero.

Curtis, Powell, and Reid (1974) describe a method of estimating sparse Jacobian matrices
by perturbing groups of variables together. Powell and Toint (1979) extend this idea to the
general case of sparse Hessians. This method partitions the decision variables into C mutually
exclusive groups so that the number of gradient evaluations is reduced. Let G be a M × C
matrix, where Gmc = δ if variable m belongs to group c, and zero otherwise. Define Gc as
the cth column of G.

Next, let Y be a M × C matrix, where each column is a difference in gradients.

Yc = ∇f(x+Gc)−∇f(x) (10)

Michael Braun 5

If C = M , then G is a diagonal matrix with δ in each diagonal element. The matrix equation
HG = Y represents the linear approximation Himδ ≈ yim, and we can solve for all elements
of H just by computing Y . But if C < M , there must be at least one Gc with δ in at least two
rows. The corresponding column Yc is computed by perturbing multiple variables at once,
so we cannot solve for any Him without further constraints.

These constraints come from the sparsity pattern and symmetry of the Hessian. Consider an
example with the following values and sparsity pattern.

Hf(x) =


h11 0 h31 0 0
0 h22 0 h42 0
h31 0 h33 0 h53
0 h42 0 h44 0
0 0 h53 0 h55

 (11)

Suppose C = 2, and define group membership of the five variables through the following G
matrix.

G> =

(
δ δ 0 0 δ
0 0 δ δ 0

)
(12)

Variables 1, 2 and 5 are in group 1, while variables 3 and 4 are in group 2.

Next, compute the columns of Y using Equation 10. We now have the following system of
linear equations from HG = Y.

h11 = y11

h22 = y21

h31 + h53 = y31

h42 = y41

h55 = y51

h31 = y12

h42 = y22

h33 = y32

h44 = y42

h53 = y52

(13)

Note that this system is overdetermined. Both h31 = y12 and h53 = y52 can be determined
directly, but h31 + h53 = y31 may not necessarily hold, and h42 could be either y41 or y22.
Powell and Toint (1979) prove that it is sufficient to solve LG = Y instead via a substitution
method, where L is the lower triangular part of H. This has the effect of removing the
equations h42 = y22 and h31 = y12 from the system, but retaining h53 = y52. We can then
solve for h31 = y31 − y52. Thus, we have determined a 5× 5 Hessian with only three gradient
evaluations, in contrast with the six that would have been needed had H been treated as
dense.

The sparseHessianFD algorithms assign variables to groups before computing the values of
the Hessian. This is why the sparsity pattern needs to be provided in advance. If a non-zero
element is omitted from the sparsity pattern, the resulting estimate of the Hessian will be
incorrect. The only problems with erroneously including a zero element in the sparsity pattern
are a possible lack of efficiency (e.g., an increase in the number of gradient evaluations), and
that the estimated value might be close to, but not exactly, zero. The algorithms for assigning
decision variables to groups, and for extracting nonzero Hessian elements via substitution, are
described in Section 3.

6 sparseHessianFD: Sparse Hessians

1.2. Sparse matrices and the Matrix package

The sparseHessianFD package uses the sparse matrix classes that are defined in the Matrix
package (Bates and Maechler 2015). All of these classes are subclasses of sparseMatrix. Only
the row and column indices (or pointers to them), the non-zero values, and some meta-
data, are stored; unreferenced elements are assumed to be zero. Class names, summarized in
Table 1, depend on the data type, matrix structure, and storage format. Values in numeric
and logical matrices correspond to the R data types of the same names. Pattern matrices
contain row and column information for the non-zero elements, but no values. The storage
format refers to the internal ordering of the indices and values, and the layout defines a
matrix as symmetric (so duplicated values are stored only once), triangular, or general. The
levels of these three factors determine the prefix of letters in each class name. For example,
a triangular sparse matrix of numeric (double precision) data, stored in column-compressed
format, has a class dtCMatrix.

Storage Layout Data type
numeric logical pattern

Triplet general dgTMatrix lgTMatrix ngTMatrix
triangular dtTMatrix ltTMatrix ntTMatrix
symmetric dsTMatrix lsTMatrix nsTMatrix

Row-compressed general dgRMatrix lgRMatrix ngRMatrix
triangular dtRMatrix ltRMatrix ntRMatrix
symmetric dsRMatrix lsRMatrix nsRMatrix

Column-compressed general dgCMatrix lgCMatrix ngCMatrix
triangular dtCMatrix ltCMatrix ntCMatrix
symmetric dsCMatrix lsCMatrix nsCMatrix

Table 1: Class names for sparse matrices, as defined in the Matrix package.

Matrix also defines some other classes of sparse and dense matrices that we will not discuss
here. The Matrix package uses the as function to convert sparse matrices from one format
to another, and to convert a base R matrix to one of the Matrix classes.

The distinction among sparse matrix classes is important because sparseHessianFD’s hessian
method returns a dgCMatrix, even though the Hessian is symmetric. Depending on how the
Hessian is used, it might be useful to coerce the Hessian into a dsCMatrix object. Also, the
utility functions in Table 2 expect or return certain classes of matrices, so some degree of
coercion of input and output might be necessary. Another useful Matrix function is tril,
which extracts the lower triangle of a general or symmetric matrix.

2. Using the package

In this section, we demonstrate how to use the sparseHessianFD, using a hierarchical binary
choice model as an example. Then, we discuss the sparsity pattern of the Hessian, and
estimate the Hessian values.

Michael Braun 7

2.1. Example model: hierarchical binary choice

Suppose we have a dataset of N households, each with T opportunities to purchase a partic-
ular product. Let yi be the number of times household i purchases the product, out of the T
purchase opportunities, and let pi be the probability of purchase. The heterogeneous param-
eter pi is the same for all T opportunities, so yi is a binomial random variable. Define each
pi such that it depends on both k continuous covariates xi, and a heterogeneous coefficient
vector βi.

pi =
exp(x′iβi)

1 + exp(x′iβi)
, i = 1...N (14)

The coefficients are distributed across the population of households following a multivariate
normal distribution with mean µ and covariance Σ. Assume that we know Σ, but not µ.
Instead, place a multivariate normal prior on µ, with mean 0 and covariance Ω. Thus, each
βi, and µ are k−dimensional vectors, and the total number of unknown variables in the model
is (N + 1)k.

The log posterior density, ignoring any normalization constants, is

log π(β1:N , µ|Y,X,Σ,Ω) =

N∑
i=1

(
pyii (1− pi)T−yi −

1

2
(βi − µ)>Σ−1 (βi − µ)

)
− 1

2
µ>Ω−1µ

(15)

All of the βi are correlated with µ. Thus, Hβik,µk 6= 0 for all i. Since the βi are independently
distributed, and the yi are conditionally independent, the cross-partial derivatives Hβi,βj =
D2
βi,βj

= 0 for all i 6= j. When N is much greater than k, the Hessian of the log posterior
density will be sparse.

2.2. Sparsity patterns

The sparsity pattern depends on how the variables are ordered within the vector. One such
ordering is to group all of the coefficients for each unit together.

β11, . . . , β1k, β21, . . . , β2k, . . . , βN1, . . . , βNk, µ1, . . . , µk (16)

In this case, the Hessian has a “block-arrow” structure. For example, if N = 5 and k = 2,
then there are 12 total variables, and the Hessian will have the pattern in Figure 1a.

Another possibility is to group coefficients for each covariate together.

β11, . . . , βN1, β12, . . . , βN2, . . . , β1k, . . . , βNk, µ1, . . . , µk (17)

Now the Hessian has an ”banded” sparsity pattern, as in Figure 1b.

In both cases, the number of non-zeros is the same. There are 144 elements in this symmetric
matrix, but only 64 are non-zero, and only 38 values are unique. Although the reduction in
RAM from using a sparse matrix structure for the Hessian may be modest, consider what
would happen if N = 1, 000 instead. In that case, there are 2,002 variables in the problem,
and more than 4 million elements in the Hessian. However, only 12, 004 of those elements are
non-zero. If we work with only the lower triangle of the Hessian we only need to work with
only 7,003 values.

8 sparseHessianFD: Sparse Hessians

[1,] | | | |

[2,] | | | |

[3,] . . | | | |

[4,] . . | | | |

[5,] | | | |

[6,] | | | |

[7,] | | . . | |

[8,] | | . . | |

[9,] | | | |

[10,] | | | |

[11,] | | | | | | | | | | | |

[12,] | | | | | | | | | | | |

(a) A “block-arrow” sparsity pattern.

[1,] | | | |

[2,] . | | . . . | |

[3,] . . | | . . | |

[4,] . . . | | . | |

[5,] | | | |

[6,] | | | |

[7,] . | | . . . | |

[8,] . . | | . . | |

[9,] . . . | | . | |

[10,] | | | |

[11,] | | | | | | | | | | | |

[12,] | | | | | | | | | | | |

(b) A “banded” sparsity pattern.

Figure 1: Two examples of sparsity patterns for a hierarchical model.

Matrix.to.Coord Returns a list of vectors containing row and column indices of the
non-zero elements of a matrix.

Matrix.to.Pointers Returns indices and pointers from a sparse matrix.

Coord.to.Pointers Converts list of row and column indices (triplet format) to a list of
indices and pointers (compressed format).

Table 2: sparseHessianFD matrix conversion functions.

The sparsity pattern required by sparseHessianFD consists of the row and column indices of
the non-zero elements in the lower triangle the Hessian, and it is the responsibility of the
user to ensure that the pattern is correct. In practice, rather than trying to keep track of the
row and column indices directly, it might be easier to construct a pattern matrix first, check
visually that the matrix has the right pattern, and then extract the indices.

The package defines utility functions (Table 2) to convert between sparse matrices, and the
vectors of row and column indices required by the sparseHessianFD initializer.

The Matrix.to.Coord function extracts row and column indices from a sparse matrix. The
following code constructs a logical block diagonal matrix, converts it to a sparse matrix, and
prints the sparsity pattern of its lower triangle.

Michael Braun 9

R> library("sparseHessianFD")

R> bd <- kronecker(diag(3), matrix(TRUE,2,2))

R> Mat <- as(bd, "nMatrix")

R> printSpMatrix(tril(Mat))

[1,] |

[2,] | |

[3,] . . | . . .

[4,] . . | | . .

[5,] | .

[6,] | |

R> mc <- Matrix.to.Coord(tril(Mat))

R> mc

$rows

[1] 1 2 2 3 4 4 5 6 6

$cols

[1] 1 1 2 3 3 4 5 5 6

To check that a proposed sparsity pattern represents the intended matrix visually, use the
Matrix sparseMatrix constructor.

R> pattern <- sparseMatrix(i=mc$rows, j=mc$cols)

R> printSpMatrix(pattern)

[1,] |

[2,] | |

[3,] . . | . . .

[4,] . . | | . .

[5,] | .

[6,] | |

2.3. The sparseHessianFD class

The function sparseHessianFD is an initializer that returns a reference to a sparseHessianFD
object. The initializer determines an appropriate permutation and partitioning of the vari-
ables, and performs some additional validation tests. The arguments to the initializer are
described in Table 3.

To create a sparseHessianFD object, just call sparseHessianFD. Applying the default values
for the optional arguments,

R> obj <- sparseHessianFD(x, fn, gr, rows, cols, ...)

10 sparseHessianFD: Sparse Hessians

x A numeric vector, with length M at which the object will be initialized and
tested.

fn,gr R Functions that return the value of the objective function, and its gradient.
The first argument is the numeric variable vector. Other named arguments
can be passed to fn and gr as well (see the ... argument below).

rows, cols Sparsity pattern: integer vectors of the row and column indices of the non-
zero elements in the lower triangle of the Hessian.

direct This argument is deprecated, and is included only for backwards compatibility
with earlier versions.

delta The perturbation amount for finite differencing of the gradient to compute
the Hessian (the δ in Section 1.1). Defaults to sqrt(.Machine$double.eps).

index1 If TRUE (the default), row and col use one-based indexing. If FALSE, zero-
based indexing is used.

... Additional arguments to be passed to fn and gr.

Table 3: Arguments to the sparseHessianFD initializer.

where ... represents all other named arguments that are passed to fn and gr.

The fn, gr and hessian methods respectively evaluate the function, gradient and Hessian at
a variable vector x. The fngr method returns the function and gradient as a list. The fngrhs
method includes the Hessian as well.

R> f <- obj$fn(x) ## returns numeric

R> df <- obj$gr(x) ## returns numeric vector

R> hess <- obj$hessian(x) ## returns dgCMatrix

R> fngr <- obj$fngr(x) ## returns list

R> fngrhs <- obj$fngrhs(x) ## returns list

2.4. An example

Now we can estimate the Hessian for the log posterior density of the model from Section 2.1.
For demonstration purposes, sparseHessianFD includes functions that compute the value
(binary.f), the gradient (binary.grad) and the Hessian (binary.hess) of this model. We
will treat the result from binary.hess as a “true” value against which we will compare the
numerical estimates.

To start, we load the data, set some dimension parameters, set prior values for Σ−1 and
Ω−1, and simulate a vector of variables at which to evaluate the function. The binary.f and
binary.grad functions take the data and priors as lists. The data(binary) call adds the
appropriate data list to the environment, but we need to construct the prior list ourselves.

R> set.seed(123)

R> data("binary")

R> str(binary)

Michael Braun 11

List of 3

$ Y: int [1:50] 13 1 18 18 19 6 16 6 5 8 ...

$ X: num [1:4, 1:50] -0.07926 -0.23018 1.55871 0.00997 0.01828 ...

$ T: num 20

R> N <- length(binary[["Y"]])

R> k <- NROW(binary[["X"]])

R> T <- binary[["T"]]

R> nvars <- as.integer(N*k + k)

R> priors <- list(inv.Sigma = rWishart(1,k+5,diag(k))[,,1],

+ inv.Omega = diag(k))

This dataset represents the simulated choices for N = 50 customers over T = 20 purchase
opportunties, where the probability of purchase is influenced by k = 4 covariates.

The next code chunk evaluates the “true” value, gradient and Hessian. The order.row argu-
ment tells the function whether the variables are ordered by household (TRUE) or by covariate
(FALSE). If order.row is TRUE, then the Hessian will have a banded pattern. If order.row is
FALSE, then the Hessian will have a block-arrow pattern.

R> P <- rnorm(nvars)

R> order.row <- FALSE

R> true.f <- binary.f(P, binary, priors, order.row=order.row)

R> true.grad <- binary.grad(P, binary, priors, order.row=order.row)

R> true.hess <- binary.hess(P, binary, priors, order.row=order.row)

The sparsity pattern of the Hessian is specified by two integer vectors: one each for the row
and column indices of the non-zero elements of the lower triangule of the Hessian. For this
example, we happen to have a matrix with the same sparsity pattern of the Hessian we are
trying to compute, so we can use the Matrix.to.Coord function to extract the appropriate
index vectors. In practice, it is more likely that we would need to determine the row and
column indices directly, through our knowledge of the structure of the problem. For a hier-
archical model, we can create a block-arrow pattern matrix using either the Matrix::bdiag

or kronecker functions to create a block diagonal matrix, and concatenate dense rows and
columns to the margins.

R> pattern <- Matrix.to.Coord(tril(true.hess))

R> str(pattern)

List of 2

$ rows: int [1:1310] 1 2 3 4 201 202 203 204 2 3 ...

$ cols: int [1:1310] 1 1 1 1 1 1 1 1 2 2 ...

Finally, we create an instance of a sparseHessianFD object, evaluate the function, gradient
and Hessian, and compare the output to the true values.

12 sparseHessianFD: Sparse Hessians

R> obj <- sparseHessianFD(P, fn=binary.f, gr=binary.grad,

+ rows=pattern[["rows"]], cols=pattern[["cols"]],

+ data=binary, priors=priors, order.row=order.row)

R> f <- obj$fn(P)

R> all.equal(f, true.f)

[1] TRUE

R> gr <- obj$gr(P)

R> all.equal(gr, true.grad)

[1] TRUE

R> hs <- obj$hessian(P)

R> all.equal(hs, true.hess)

[1] TRUE

3. Algorithms

In this section, we explain how sparseHessianFD works. The algorithms are adapted from
Coleman, Garbow, and Moré (1985b), who provided Fortran implementations as Coleman,
Garbow, and Moré (1985a). Earlier versions of sparseHessianFD included licensed copies of
the Coleman et al. (1985a) code, on which the current version no longer depends. Although
newer partitioning algorithms have been proposed (e.g., Gebremedhin, Manne, and Pothen
2005; Gebremedhin, Tarafdar, Pothen, and Walther 2009), mainly in the context of automatic
differentiation, we have chosen to implement established algorithms that are known to work
well, and are likely optimal for the hierarchical models that many statisticians will encounter.

3.1. Partitioning the variables

Finding consistent, efficient partitions can be characterized as a vertex coloring problem
from graph theory (Coleman and Moré 1984). In this sense, each variable is a vertex in an
undirected graph, and an edge connects two vertices i and j if and only if Hijf(x) 6= 0. The
sparsity pattern of the Hessian is the adjacency matrix of the graph. By “color,” we mean
nothing more than group assignment; if a variable is in a group, then its vertex has the color
associated with that group. A “proper” coloring of a graph is one in which two vertices with
a common edge do not have the same color. Coleman and Moré (1984) define a “triangular
coloring”as a proper coloring with the additional condition that common neighbors of a vertex
do not have the same color. A triangular coloring is a special case of an “cyclic coloring,” in
which any cycle in the graph uses at least three colors (Gebremedhin, Tarafdar, Manne, and
Pothen 2007).

An “intersection set” contains characteristics that are common to two vertices, and an “inter-
section graph” connects vertices whose intersection set is not empty. In our context, the set in
question is the row indices of the non-zero elements in each column of L. In the intersection

Michael Braun 13

1 2 3 4 5 6 7

1 1
2 1 1
3 0 0 1
4 0 0 1 1
5 0 0 0 0 1
6 1 0 0 0 1 1
7 1 1 1 1 1 1 1

(a) Adjacency matrix.

7 1

23

4

5 6

(b) Sparsity graph.

7 1

23

4

5 6

(c) Intersection graph.

Figure 2: Unpermuted matrix.

graph, two vertices are connected if the corresponding columns in L have at least one non-zero
element in a common row.

Powell and Toint (1979) write that a partitioning is consistent with a substitution method if
and only if no columns of the of lower triangle of the Hessian that are in the same group have
a non-zero element in the same row. An equivalent statement is that no two adjacent vertices
in the intersection graph can have the same color. Thus, we can partition the variables by
creating a proper coloring of the intersection graph of L.

This intersection graph, and the number of colors needed to color it, are not invariant to
permutation of the rows and columns of H. Let π represent such a permutation, and let
Lπ be the lower triangle of πHπ>. Coleman and Moré (1984, Theorem 6.1) show that a
coloring is triangular if and only if it is also a proper coloring of the intersection graph of
Lπ. Furthermore, Coleman and Cai (1986) prove that a partitioning is consistent with a
substitution method if and only if it is an acyclic coloring of the graph of the sparsity pattern
of the Hessian. Therefore, finding an optimal partitioning of the variables involves finding an
optimal combination of a permutation π, and coloring algorithm for the intersection graph of
Lπ.

These ideas are illustrated in Figures 2 and 3. Figure 2a shows the sparsity pattern of the
lower triangle of a Hessian as an adjacency matrix, and Figure 2b is the associated graph with
a proper vertex coloring. Every column (and thus, every pair of columns) in Figure 2a has
a non-zero element in row 7, so there are no non-empty intersection sets across the columns.
All vertices are connected to each other in the intersection graph (Figure 2c), which requires
seven colors for a proper coloring. Estimating a sparse Hessian with this partitioning scheme
would be no more efficient than treating the Hessian as if it were dense.

Now suppose we were to rearrange H so the last row and and column were moved to the front.
In Figure 3a, all columns share at least one non-zero row with the column for variable 7, but
variable groups {2, 4, 6} and {1, 3, 5} have empty intersection sets. The intersection graph in
Figure 3b has fewer edges, and can be colored with only three colors.

The practical implication of all of this is that by permuting the rows and columns of the
Hessian, we may be able to reduce the number of colors needed for a cyclic coloring of the
graph of the sparsity pattern. Fewer colors means fewer partitions of the variables, and that
means fewer gradient evaluations to estimate the Hessian.

The sparseHessianFD class finds a permutation, and partitions the variables, when it is ini-
tialized. The problem of finding a cyclic coloring of the graph of the sparsity pattern is

14 sparseHessianFD: Sparse Hessians

7 1 2 3 4 5 6

7 1
1 1 1
2 1 1 1
3 1 0 0 1
4 1 0 0 1 1
5 1 0 0 0 0 1
6 1 0 0 0 0 1 1

(a) Adjacency matrix.

7 1

23

4

5 6

(b) Sparsity graph.

7 1

23

4

5 6

(c) Intersection graph.

Figure 3: Permuted matrix.

NP-complete (Coleman and Cai 1986), so the partitioning may not be truly optimal. For-
tunately, we just need the partitioning to be reasonably good, to make the effort worth our
while. A plethora of vertex coloring heuristics have been proposed, and we make no claims
that any of the algorithms in sparseHessianFD are even “best available” for all situations.

The first step is to permute the rows and columns of the Hessian. A reasonable choice is the
“smallest-last” ordering that sorts the rows and columns in decreasing order of the number
of elements (Coleman and Moré 1984, Theorem 6.2). To justify this permutation, suppose
non-zeros within a row are randomly distributed across columns. If the row is near the top of
the matrix, there is a higher probability that any non-zero element is in the upper triangle,
not in the lower. By putting sparser rows near the bottom, we do not change the number
of non-zeros in the lower triangle, but we should come close to minimizing the number of
non-zeros in each row. Thus, we would expect the number of columns with non-zero elements
in common rows to be smaller, and the intersection graph to be sparser (Gebremedhin et al.
2007).

The adjacency matrix of the intersection graph of the permuted matrix is the Boolean
crossproduct, L>π Lπ. Algorithm 1 is a “greedy” vertex coloring algorithm, in which vertices
are colored sequentially. The result is a cyclic coloring on the sparsity graph, which in turn
is a consistent partitioning of the variables.

3.2. Computing the Hessian by substitution

The cycling coloring of the sparsity graph defines the G matrix from Section 1.1. We then
estimate Y using Equation 10. Let Cm be the assigned color to variable m. The substitution
method is defined in Coleman and Moré (1984, Equation 6.1).

Hijf(x) = Yi,Cj/δ −
∑

l>i,l∈Cj

Hlif(x) (18)

We implement the substitution method using Algorithm 2. This algorithm completes the
bottom row of the lower triangle, copies values to the corresponding column in the upper
triangle, and advances upwards.

3.3. Software libraries

The coloring and substitution algorithms use the Eigen numerical library (Guennebaud, Jacob

Michael Braun 15

Algorithm 1 Consistent partitioning of variables for a triangular substitution method.

Require: P [i], i = 1, . . . ,M : sets of column indices of non-zero elements in row i.
Require: F [i], i = 1, . . . ,M : sets of “forbidden” colors for vertex i (initially empty)
Require: U : set of used colors (initially empty)
Require: C[i], i = 1, . . . ,M : vector to store output of assigned colors (initially all zero).
k ← 0 {Largest color index used}
Insert 0 in U
for i = 1 to M do

if F [i] is empty (no forbidden colors) then
C[i]← 0

else
V ← U − F [i]{Used colors that are not forbidden}
if V is empty then
k ← k + 1
Insert k into U
C[i]← k

else
C[i]← min(V) {Assign smallest existing non-forbidden color to i}

end if
end if

end for
for j in P [i] do

Insert C[i] into F [j] {Make i’s color forbidden to all of its uncolored neighbors}
end for
return C

Algorithm 2 Triangular substitution method.

Require: P [i], i = 1, . . . ,M : sets of column indices of non-zero elements in row i.
Require: C[i], i = 1, . . . ,M : vector of assigned colors
Require: H, an M ×M Hessian (initialized to zero)
Require: B, a max(C)×M matrix (initialized to zero)
Require: Y, a matrix of finite differences
Require: δ, the small constant used to estimate Y

for i = M to 1 do
for All j in Pi do
z ← Y [i, C[j]]/δ −B[C[j], i]
B[C[i], j]← B[C[i], j] + z
H[i, j]← z
H[j, i]← H[i, j]

end for
end for

16 sparseHessianFD: Sparse Hessians

Hessian time Hessian/Gradient ratio
numDeriv sparseHessianFD numDeriv sparseHessianFD

N k M mean sd mean sd mean sd mean sd

9 2 20 363 6.4 2.8 2.2 871 63 6.5 4.2
12 2 26 629 8.9 2.9 2.1 1469 124 6.5 3.3
9 3 30 819 27.7 3.6 2.2 1974 161 8.4 3.7
15 2 32 973 25.8 3.0 2.2 2191 209 6.5 3.4
12 3 39 1407 39.3 3.5 2.0 3291 285 8.0 3.5
9 4 40 1445 28.8 4.3 2.1 3453 292 9.9 3.1
15 3 48 2138 92.7 3.5 2.0 4861 341 7.8 3.4
12 4 52 2400 98.6 4.3 2.1 5679 503 10.1 3.7
15 4 64 3643 209.0 4.2 2.2 8945 828 10.0 2.8

Table 4: Computation times (milliseconds) for computing Hessians using the numDeriv and
sparseHessianFD packages, across 200 replications. Rows are ordered by the number of vari-
ables.

et al. 2010), and the Rcpp (Eddelbuettel and François 2011) and RcppEigen (Bates and
Eddelbuettel 2013) R packages. The testthat (Wickham 2011), scales (Wickham 2016) and
knitr (Xie 2016) packages were used for testing, and to prepare this article.

4. Speed and scalability

As far as we know, numDeriv (Gilbert and Varadhan 2012) is the only other R package that
computes numerical approximations to derivatives. It differs from sparseHessianFD in some
important ways.

1. It treats all Hessians as dense;

2. It computes each element of the Hessian using a second-order finite differencing approx-
imation that does not require the user to supply the gradient; and

3. It implements iterative algorithms to improve accuracy, at the expense of speed.

Nevertheless, numDeriv is an easy-to-use tool for numerical differentiation, so it is worthwhile
to compare its performance to that of sparseHessianFD. To prepare Table 4, we estimated
Hessians of the log posterior density in Equation 15 with different numbers of heterogeneous
units (N) and within-unit parameters (k). As in the previous section, the total number of
variables is M = (N + 1)k. Table 4 shows the mean and standard deviations (across 20
replications) for the time (in milliseconds) to to compute a Hessian using each package. The
difference in run times is dramatic, especially because the computation time for numDeriv
grows quadratically in the number of variables. The setup time for sparseHessianFD was
about 7 milliseconds for all cases. Times were collected using the microbenchmark package
(Mersmann 2014).

Because numDeriv does not scale, we cannot use it to benchmark sparseHessianFD for larger
sparse Hessians. To help us understand just how scalable sparseHessianFD is, we ran another

Michael Braun 17

Measure Description

Function estimating the objective function
Gradient estimating the gradient
Hessian computing the Hessian (not including initialization or partitioning

time)
Partitioning finding a consistent partitioning of the variables (the vertex coloring

problem)
Initialization total setup time (including the partitioning time)
Hessian/Gradient ratio of the Hessian time to the gradient time

Table 5: Summary of timing tests (see Figure 4).

Function Gradient Hessian

Partitioning Initialization Hessian/Gradient

0.0

2.5

5.0

7.5

0

5

10

15

0

100

200

300

0

50

100

150

200

0

500

1000

1500

2000

10

20

30

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Number of heterogeneous units

C
om

pu
ta

tio
n

tim
e

(m
ill

is
ec

on
ds

)

k

2

4

6

8

Figure 4: Run times for sparse Hessian computation.

set of simulations, for the same hierarchical model, for different values of N and k. We
then recorded the run times for different steps in the sparse Hessian estimation, across 200
replications. The steps are summarized in Table 5.

In the plots in Figure 4, the number of heterogeneous units (N) is on the x-axis, and mean
run time, in milliseconds, is on the y-axis. Each panel shows the relationship between N
and run time for a different measure of time, and each curve in a panel represents a different
number of within-unit parameters (k).

It should not be surprising that run times for the function and gradient, as well as the setup
and partitioning times for the sparseHessianFD object, grow linearly with the number of
heterogenous units. The run time for the Hessian grows linearly as well, and that might
be partially surprising. We saw in Section 3.1 that adding additional heterogeneous units
in a hierarchical model does not increase the number of required gradient evaluations. So
we might think that the time to compute a Hessian should not increase with N at all. The

18 sparseHessianFD: Sparse Hessians

reason it does is that each gradient evaluation takes longer. The plot of the ratio of Hessian-
to-gradient run times is relatively flat as the size of the dataset increases. We can conclude
that the sparseHessianFD algorithms are quite efficient and scalable for hierarchical models.

References

Bates D, Eddelbuettel D (2013). “Fast and Elegant Numerical Linear Algebra Using the
RcppEigen Package.” Journal of Statistical Software, 52(5), 1–24. URL https://www.

jstatsoft.org/v52/i05.

Bates D, Maechler M (2015). Matrix: Sparse and Dense Matrix Classes and Methods. R
package version 12-4, URL http://CRAN.R-project.org/package=Matrix.

Braun M (2014). “trustOptim: An R Package for Trust Region Optimization with Sparse
Hessians.” Journal of Statistical Software, 60(4), 1–16. URL http://www.jstatsoft.org/

v60/i04/.

Braun M (2015). sparseMVN: An R Package for MVN Sampling with Sparse Covariance and
Precision Matrices. R package version 0.2.0, URL http://cran.r-project.org/package=

sparseMVN.

Coleman TF, Cai JY (1986). “The Cyclic Coloring Problem and Estimation of Sparse Hessian
Matrices.” SIAM Journal on Algebraic Discrete Methods, 7(2), 221–235. doi:10.1137/

0607026.

Coleman TF, Garbow BS, Moré JJ (1985a). “Algorithm 636: Fortran Subroutines for Es-
timating Sparse Hessian Matrices.” ACM Transactions on Mathematical Software, 11(4),
378. doi:10.1145/6187.6193.

Coleman TF, Garbow BS, Moré JJ (1985b). “Software for Estimating Sparse Hessian Matri-
ces.” ACM Transactions on Mathematical Software, 11(4), 363–377. doi:10.1145/6187.

6190.

Coleman TF, Moré JJ (1984). “Estimation of Sparse Hessian Matrices and Graph Coloring
Problems.” Mathematical Programming, 28(3), 243–270. doi:10.1007/BF02612334.

Curtis AR, Powell MJD, Reid JK (1974). “On the Estimation of Sparse Jacobian Matrices.”
Journal of the Institute of Mathematics and its Applications, 13, 117–119. doi:10.1093/

imamat/13.1.117.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/i08.

Gebremedhin AH, Manne F, Pothen A (2005). “What Color is your Jacobian? Graph
Coloring for Computing Derivatives.” SIAM Review, 47(4), 629–705. doi:10.1137/

S0036144504444711.

Gebremedhin AH, Tarafdar A, Manne F, Pothen A (2007). “New Acyclic and Star Col-
oring Algorithms with Application to Computing Hessians.” SIAM Journal of Scientific
Computation, 29(3), 1042–1072. doi:10.1137/050639879.

https://www.jstatsoft.org/v52/i05
https://www.jstatsoft.org/v52/i05
http://CRAN.R-project.org/package=Matrix
http://www.jstatsoft.org/v60/i04/
http://www.jstatsoft.org/v60/i04/
http://cran.r-project.org/package=sparseMVN
http://cran.r-project.org/package=sparseMVN
http://dx.doi.org/10.1137/0607026
http://dx.doi.org/10.1137/0607026
http://dx.doi.org/10.1145/6187.6193
http://dx.doi.org/10.1145/6187.6190
http://dx.doi.org/10.1145/6187.6190
http://dx.doi.org/10.1007/BF02612334
http://dx.doi.org/10.1093/imamat/13.1.117
http://dx.doi.org/10.1093/imamat/13.1.117
http://www.jstatsoft.org/v40/i08
http://dx.doi.org/10.1137/S0036144504444711
http://dx.doi.org/10.1137/S0036144504444711
http://dx.doi.org/10.1137/050639879

Michael Braun 19

Gebremedhin AH, Tarafdar A, Pothen A, Walther A (2009). “Efficient Computation of Sparse
Hessians Using Coloring and Automatic Differentiation.” INFORMS Journal on Computing,
21(2), 209–223. doi:10.1287/ijoc.1080.0286.

Gilbert P, Varadhan R (2012). numDeriv: Accurate Numerical Derivatives. R package
version 2014.2-1, URL http://cran.r-project.org/package=numDeriv.

Guennebaud G, Jacob B, et al. (2010). Eigen. Version 3, URL http://eigen.tuxfamily.

org.

Magnus JR, Neudecker H (2007). Matrix Differential Calculus with Applications in Statistics
and Econometrics. URL http://www.janmagnus.nl/misc/mdc2007-3rdedition.

Mersmann O (2014). microbenchmark: Accurate Timing Functions. R package version
1.4-2, URL http://cran.R-project.org/package=microbenchmark.

Nocedal J, Wright SJ (2006). Numerical Optimization. 2nd edition. Springer-Verlag.

Powell MJD, Toint PL (1979). “On the Estimation of Sparse Hessian Matrices.” SIAM Journal
on Numerical Analysis, 16(6), 1060–1074. doi:10.1137/0716078.

Wächter A, Biegler LT (2006). “On the Implementation of a Primaldual Interior Point Filter
Line Search Algorithm for Large-scale Nonlinear Programming.” Mathematical Program-
ming, 106(1), 25–57.

Wickham H (2011). “testthat: Get Started with Testing.” The R Journal, 3, 5–10. URL
http://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf.

Wickham H (2016). scales: Scale Functions for Visualization. R package version 0.4.0, URL
https://CRAN.R-project.org/package=scales.

Xie Y (2016). knitr: A General-Purpose Package for Dynamic Report Generation in R. R
package version 1.12.3, URL https://CRAN.R-project.org/package=knitr.

Affiliation:

Michael Braun
Edwin L. Cox School of Business
Southern Methodist University
6212 Bishop Blvd.
Dallas, TX 75275
E-mail: braunm@smu.edu
URL: http://www.smu.edu/Cox/Departments/FacultyDirectory/BraunMichael

http://dx.doi.org/10.1287/ijoc.1080.0286
http://cran.r-project.org/package=numDeriv
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://www.janmagnus.nl/misc/mdc2007-3rdedition
http://cran.R-project.org/package=microbenchmark
http://dx.doi.org/10.1137/0716078
http://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=knitr
mailto:braunm@smu.edu
http://www.smu.edu/Cox/Departments/FacultyDirectory/BraunMichael

	Background
	Numerical differentiation of sparse Hessians
	Sparse matrices in R

	Using the package
	Example: hierarchical binary choice
	Sparsity patterns
	The sparseHessianFD class
	An example

	Algorithms
	Partitioning the variables
	Computing the Hessian by substitution
	Software libraries

	Speed and scalability

