texreg: Conversion of Statistical Model Output in R to IXTEX
and HTML Tables*

Philip Leifeld <philip.leifeld@uni-konstanz.de>
April 15, 2013

1 Motivation

The texreg package for the statistical computing environment R was designed to convert regression
model output from multiple models into tables for inclusion in IXTEX or HTML documents. It is
an alternative to packages like xtable, apsrtable, outreg, stargazer and memisc, which can
also convert R tables to IATEX tables. Only a subset of these packages is able to merge multiple
regression models in a single table. Those packages which can do this do not support important
model types such as 1me or mer (linear mixed effects models) and ergm objects (exponential random
graph models from the statnet suite of packages), or are not customizable and extendable. texreg,
in contrast, accepts these model types and can also merge multiple models in a single table.
Currently supported model types are listed in table 1. New model types can be easily implemented
(see section 6). texreg can be used within Sweave and knitr. I4TEX packages for creating fancy
tables, like dcolumn or booktabs, are supported.

Beside IXTEX output, texreg can also export nicely formatted tables to MS Word files, HTML
files (which can be viewed in any web browser), or it can print nicely formatted regression tables
directly to the screen (that is, to the R console) for easier model comparison.

2 Installation

It should be possible to install texreg using a simple command:
> install.packages("texreg")

The most recent version can always be installed with this command (usually more recent than the
CRAN version in the previous command):

> install.packages("texreg", repos="http://R-Forge.R-project.org")

If this is not possible for some reason, the source files and binaries can be downloaded from http:
//r-forge.r-project.org/projects/texreg/ (click on “R packages”). To load the package in R
once it has been installed, enter the following command:

> library(texreg)
The package can be updated to the most recent version by typing:
> update.packages ("texreg", repos="http://R-Forge.R-project.org")

If the file is not available on the R-Forge repository, you can try to download it from the R-Forge
project homepage (http://r-forge.r-project.org/projects/texreg/; click on “R packages”)
and install it manually by entering something like R CMD INSTALL texreg_1.xx.tar.gz (replace
xx by the current version number) on the terminal (not the R terminal, but the normal command
line of your operating system).

*The author would like to thank S.(Q. Chang, Skyler Cranmer, Sebastian Daza, Christopher Gandrud, Lena
Koerber, Johannes Kutsam, Fabrice Le Lec, Francesco Sarracino, Matthieu Stigler, Sebastian Ugbaje, Gabor Uhrin,
Yanghao Wang, and Yihui Xie for valuable input.

mailto:philip.leifeld@uni-konstanz.de
http://www.statnet.org
http://r-forge.r-project.org/projects/texreg/
http://r-forge.r-project.org/projects/texreg/
http://r-forge.r-project.org/projects/texreg/

Class Package Added Description

aftreg eha 2013-03-23 Accelerated failure time regression

betareg betareg 2013-03-13 Beta regression for rates and proportions
clm ordinal 2012-10-12 Cumulative link models

clogit survival 2012-09-30 Conditional logistic regression

coxph survival 2012-10-14 Cox proportional hazard models
coxph.penal survival 2012-12-04 Cox proportional hazard models with penalty splines
dynml dynlm 2013-02-14 Time series regression with “ts” data

ergm ergm 2012-06-18 Exponential random graph models

gam mgcv 2013-03-13 Generalized additive models

gee gee 2012-10-14 Generalized estimation equation

glm stats 2012-06-19 Generalized linear models

glmerMod lmed (new) 2012-10-09 Generalized linear mixed models

gls nlme 2012-06-19 Generalized least squares

gmm gmm 2013-02-06 Generalized method of moments estimation
ivreg AER 2013-03-13 Instrumental-variable regression using 2SLS
hurdle pscl 2013-03-13 Hurdle regression models for count data

Im stats 2012-06-19 Ordinary least squares

lme nlme 2012-06-19 Linear mixed-effects models

lmerMod lme4 (new) 2012-10-08 Linear mixed-effects models

lmrob robustbase 2012-11-12 MDM-type estimators for linear models

lnam sna 2012-10-07 Linear network autocorrelation models

mer lme4 (old) 2012-10-08 Linear mixed-effects models

multinom nnet 2013-03-13 Multinomial log-linear models

negbin MASS 2012-10-15 Negative binomial generalized linear models
nlmerMod lme4 (new) 2012-10-09 Nonlinear mixed-effects models

lrm rms, Design 2012-07-04 Logistic regression models

phreg eha 2013-03-23 Parametric proportional hazards regression
plm plm 2012-08-01 Linear models for panel data

pmg plm 2012-08-01 Linear panel models with heterogeneous coefficients
polr MASS 2012-10-12 Ordered logistic or probit regression
Relogit Zelig 2012-10-14 Rare events logistic regression

rem.dyad relevent 2013-02-28 Relational event model for dyadic data

rlm MASS 2012-11-12 Robust fitting of linear models

rq quantreg 2012-08-01 Quantile regression models

sclm ordinal 2012-10-12 Cumulative link models

simex simex 2012-10-15 SIMEX algorithm for measurement error models
stergm tergm 2012-10-23 Separable temporal exponential random graph models
survreg survival 2013-03-13 Parametric survival regression models
survreg.penal survival 2013-03-13 Frailty survival models

svyglm survey 2012-10-14 Survey-weighted generalized linear models
systemfit systemfit 2012-10-03 Linear structural equations

tobit AER 2012-10-15 Tobit regression models for censored data
weibreg eha 2013-03-23 Weibull regression

zeroinfl pscl 2013-03-13 Zero-inflated regression models

Table 1: List of currently supported model types

3 Getting help

This R package vignette is part of the texreg package. It can be displayed in R by entering the
command:

> vignette("texreg")
The help page of the package can be displayed as follows:
> help(package="texreg")

More specific help on the texreg command can be obtained by entering the following command
once the package has been loaded:

> help(texreg)

If all else fails, more help can be obtained from the homepage of the texreg package. Questions
can be posted to a public forum at http://r-forge.r-project.org/projects/texreg/.

4 texreg examples

Suppose you fit two simple OLS models. The following example was taken from the 1m() help file.

ctl <- ¢(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- g1(2,10,20, labels = c("Ctl","Trt"))

weight <- c(ctl, trt)

ml <- Im(weight ~ group)

m2 <- Ilm(weight ~ group - 1) # omitting intercept

vV V.V VVvyVv

The coefficients, standard errors, p values etc. can be displayed as follows:
> summary (m2)

Call:
Im(formula = weight ~ group - 1)

Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4938 0.0685 0.2462 1.3690

Coefficients:
Estimate Std. Error t value Pr(>|tl)
groupCtl 5.0320 0.2202 22.85 9.5be-15 **x
groupTrt 4.6610 0.2202 21.16 3.62e-14 *xx*
Signif. codes: O “**%*’ 0.001 ‘%%’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.9818, Adjusted R-squared: 0.9798
F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16

Now it is fairly tedious to copy every single coefficient and standard error to a IATEX table when
you design your academic paper. To improve the situation, the following commands can do this
automatically (the WTEX output code is shown below the R code, and the resulting table is shown
in table 2):

> library(texreg)
> texreg(m2, booktabs = TRUE, dcolumn = TRUE)

http://r-forge.r-project.org/projects/texreg/

\usepackage{booktabs}

\usepackage{dcolumn}
\begin{table}
\begin{center}
\begin{tabular}{l D{.}{.}{2.5}e{} }
\toprule
& \multicolumn{i}{c}{Model 1} \\
\midrule
groupCtl & 5.037{**x} \\
& (0.22) \\
groupTrt & 4.667{*x**} \\
& (0.22) \\
\midrule
R$"2$ & 0.98 \\
Adj. R$"28 & 0.98 \\
Num. obs. & 20 \\
\bottomrule

\multicolumn{2}{1}{\scriptsize{***$p<0.001$,
**$p<0.01$,
*$p<0.05$}}

\end{tabular}

\caption{Statistical models}

\label{table:coefficients}

\end{center}

\end{table}

Note that the booktabs and dcolumn arguments were used to create more fancy tables than the
default behavior using the booktabs and the dcolumn IXTEX packages (for nicer top and bottom
rules, and for decimal point alignment of coefficients and standard errors). The resulting table is
printed directly to the R console for easy copy & paste. It can also be returned as a character
string and saved in an object, say tab, by adding the return.string=TRUE argument. This way,
it can be later printed again using the cat () function:

> tab <- texreg(m2, return.string = TRUE)
> cat(tab)

The texreg command also accepts multiple models as a 1ist and merges them in a table. The
output of the following command is shown in table 3. Note the additional caption argument to
set the caption of the table.

> texreg(list(ml, m2), booktabs = TRUE, dcolumn = TRUE,
+ caption = "Multiple models")

Tables™2 and™3 consume more horizontal space than is actually necessary. This is due to the long
note regarding significance thresholds for the p values. To avoid this problem, the note can be
replaced by a shorter note using the custom.note argument.

The texreg package contains many customizations. Among other options, the use.packages
argument can be used to switch off package loading at the beginning of the table code. Using
the label argument, the label of the table can be set. In a similar way, the caption argument
takes care of the caption. Activating the scriptsize option prints the table in a smaller font size.
The sideways argument rotates the table by 90 degrees and uses the rotating package and the
sidewaystable environment. The position of the table on the page or in the document can be
specified using the float.pos argument. The custom.names and model.names arguments can be
used to specify the names of the model terms and the models, respectively. An example:

> texreg(list(ml, m2), booktabs = TRUE, dcolumn = TRUE,
+ use.packages = FALSE, label = "tab:3",

Model 1

groupCtl 5.03***
(0.22)
groupTrt 4.66"**
(0.22)
R? 0.98
Adj. R? 0.98
Num. obs. 20

p < 0.001, p < 0.01, "p < 0.05

Table 2: Statistical models

Model 1 Model 2

(Intercept) 5.03***

(0.22)
groupTrt —0.37 4.66%**
(0.31) (0.22)
groupCtl 5.03***
(0.22)
R? 0.07 0.98
Adj. R? 0.02 0.98
Num. obs. 20 20

*

"p < 0.001, 7"p < 0.01, "p < 0.05

Table 3: Multiple models

caption = "Custom coefficient and model names",
custom.coef.names = c("(Intercept)", "Treatment", "Control"),
custom.model .names = c("First model", "Second model"),
float.pos = "p")

+ + + +

The output of this command is shown as table 4. Another argument is table. By deactivating it,
the plain tabular environment is printed, and the whole table environment and header is omitted
from the output. This may be useful for integrating tables in Sweave, or for tweaking the floating
environment of the table. The no.margin argument can be used to control the cell spacing of the
table. If set to TRUE, regular margins are used. By default, no margins are used in order not to
waste any horizontal space on the page.

The texreg package can also handle ergm objects (that is, exponential random graph models,
which are used in social network analysis). Here is an example: the following code creates a network
matrix.

> mat <- rbinom(400, 1, 0.16) #create a matrix
> mat <- matrix(mat, nrow = 20)

Using the network package, the matrix can be converted into a network object. The ergm()
command from the ergm package can be used to fit some models:

library (network)

library(ergm)

nw <- network(mat)

m4 <- ergm(nw ~ edges)

m5 <- ergm(nw ~ edges + mutual)

mé6 <- ergm(nw ~ edges + mutual + twopath)

vV V.V Vv VYV

The texreg command can then be used to create a table with the coefficients. The summary
function for ergm objects attaches centered dots to weakly significant model terms by default (that
is, a - is used to denote p values between 0.05 and 0.1). This behavior can be imitated by modifying
the stars argument and adding a fourth significance level as follows:

> texreg(list(m4, m5, m6), use.packages = FALSE, label = "tab:4",

+ booktabs = TRUE, dcolumn = TRUE, float.pos = "p",
+ caption = "Centered dots for weak significance",
+ stars = ¢(0.001, 0.01, 0.05, 0.1))

Table 5 shows the result of this command. Note that the legend under the table is now extended,
but the model terms do not feature any p values between 0.05 and 0.1 in this case.

Most academic journals require tables where the coefficient and the standard error are stored
in two separate rows of the table, as shown in tables 2 to 5. In some situations, however, it makes
sense to accommodate them in a single row. The single.row argument can take care of this:

> texreg(list(m4, m5, m6), use.packages = FALSE, label = "tab:5",
+ booktabs = TRUE, dcolumn = TRUE, single.row = TRUE,
+ float.pos = "p", caption = "In a single row")

The result is shown in table 6. Note the difference between tables 5 and 6.

The texreg command can also combine the output of different model types in a single table.
Consider the following example of an 1m object, an lme (linear mixed-effects) model and an ergm
object:

> library(nlme)
> m3 <- Ime(distance ~ age + Sex, data = Orthodont, random = ~ 1)

> texreg(list(m3, m2, m6), label = "tab:6", use.packages = FALSE,
+ booktabs = TRUE, dcolumn = TRUE,
caption = "Mixing different kinds of models")

+

First model Second model

(Intercept) 5.03***
(0.22)
Treatment —0.37 4.66***
(0.31) (0.22)
Control 5.03***
(0.22)
R? 0.07 0.98
Adj. R? 0.02 0.98
Num. obs. 20 20

*

"*p <0.001, 7"p < 0.01, "p < 0.05

Table 4: Custom coefficient and model names

Model 1 Model 2 Model 3

edges —1.60*** —1.49*** —1.28*
(0.14) (0.16) (0.55)

mutual —0.78 —0.78
(0.64) (0.64)

twopath —0.04
(0.09)

AIC 346.56 346.86 348.62
BIC 350.50 354.74 360.44
Log Likelihood —172.28 —171.43 —171.31

T p < 0.001, 7p < 0.01, *p < 0.05, p<0.1

Table 5: Centered dots for weak significance

Model 1 Model 2 Model 3
edges —1.60 (0.14)""" —1.49 (0.16)"" —1.28 (0.55)"
mutual —0.78 (0.64) —0.78 (0.64)
twopath —0.04 (0.09)
AIC 346.56 346.86 348.62
BIC 350.50 354.74 360.44
Log Likelihood —172.28 —171.43 —171.31

p < 0.001, p < 0.01, "p < 0.05

Table 6: In a single row

Model 1 Model 2 Model 3

(Intercept) 17.71%**
(0.83)
age 0.66***
(0.06)
SexFemale —2.32%*
(0.76)
groupCtl 5.03***
(0.22)
groupTrt 4.66***
(0.22)
edges —1.28*
(0.55)
mutual —-0.78
(0.64)
twopath —0.04
(0.09)
AlC 447.51 348.62
BIC 460.78 360.44
Log Likelihood —218.76 —171.31
Num. obs. 108 20
R? 0.98
Adj. R? 0.98

*p < 0.001, p < 0.01, "p < 0.05

Table 7: Mixing different kinds of models

The output is shown in table 7. Note that different model types may report different kinds of
goodness-of-fit statistics at the bottom of the table. These can be switched on or off (see 7extract
for details).

Many people use robust standard errors. To include include them in a texreg table, the
original standard errors can be replaced and new, custom values can be handed over. To do
this, the argument override.se can be used. The argument expects a list of vectors, with one
vector of standard errors for each model (which means that there should be as many elements
in the list as there are models). Beside standard errors, there are similar arguments for p values
(override.pval) and coeflicients (override.coef).

5 htmlreg and screenreg

Tables can also be converted into HTML code instead of IATEX code using the following command:
> htmlreg(list(m3, m2, m6))

The output of either of the two commands can be written directly to a file by adding the file
argument. This is especially handy because HTML files can be read by MS Word. So it is possible
to use the texreg package not only with IXTEX, but also with MS Office. If the table is exported
to a file, it is advisable to include the full header information of the HTML file. An example:

> htmlreg(list(m3, m2, m6), file = "mytable.doc", inline.css = FALSE,
+ doctype = TRUE, html.tag = TRUE, head.tag = TRUE,
+ body.tag = TRUE)

The htmlreg() function works well with the knitr package for dynamic HTML report generation.
The default arguments should work well with knitr and HTML. In addition to HTML, knitr is
also compatible with Markdown, a simplified markup language. texreg can work with Markdown

as well, but an additional argument should be provided to make it work: the star.symbol="*"
argument makes sure that Markdown does not interpret the significance stars as special Markdown
syntax. The additional (and optional) center=TRUE argument centers the table horizontally on
the page. Here is an example:

> htmlreg(list(m3, m2, m6), star.symbol = "*", center = TRUE)

Finally, there is another function, which can print tables to the R console. The command
will nicely arrange the spaces etc. of your tables and will greatly facilitate model comparison (as
a substitute of the default summary function). To show the three models side-by-side in your R
console, type the following code:

> screenreg(list(m3, m2, m6))

Model 1 Model 2 Model 3
(Intercept) 17.71 **x
(0.83)
age 0.66 **¥x
(0.06)
SexFemale -2.32 *x
(0.76)
groupCtl 5.03 *x*x
(0.22)
groupTrt 4.66 **x
(0.22)
edges -1.28 *
(0.55)
mutual -0.78
(0.64)
twopath -0.04
(0.09)
AIC 447 .51 348.62
BIC 460.78 360.44
Log Likelihood -218.76 -171.31
Num. obs. 108 20
R™2 0.98
Adj. R™2 0.98

% p < 0.001, ** p < 0.01, * p < 0.05

This is especially useful to prepare a table on screen and eventually export it to BTEX or HTML.

6 Creating templates for new model types

Implementing new kinds of statistical models is fairly easy (if you know how to modify R func-
tions). For any model type, there exists a function which extracts the relevant information from
a model. For example, extract.1lm() provides coefficients and goodness-of-fit statistics for 1m
objects, extract.ergm() provides this information for ergm objects, etc.

You can get an overview of the model type you are interested in by fitting a model and ex-
amining the resulting object using the str(model) command, the summary(model) command, the
summarymodel$coef command, and related commands. Any new extract function must retrieve
the following data from a statistical model:

coef.names The names of the independent variables or coefficients.

coef The actual coefficients. These values must be in the same order as the coef .names.

se The standard errors, which will later be put in parentheses. These values must be in the same
order as the coef .names.

pvalues The p values (optional). They are used to add significance stars. These values must be
in the same order as the coef .names.

gof.names The names of some goodness-of-fit statistics to be added to the table. For example,
the extract.1m() function extracts R?, Adj. R? and Num. obs.

gof A vector of goodness-of-fit statistics to be added to the table. These values must be in the
same order as the gof .names.

gof.decimal A vector of logical (boolean) values indicating for every GOF value whether the value
should have decimal places in the output table (optional). This is useful to avoid decimal
places for the number of observations and similar count variables.

Once you have located all these data, you can create a texreg object and return it to the
texreg() function. The following code provides an example. It shows the extract.1lm() function:

extract.lm <- function(model, include.rsquared = TRUE, include.adjrs = TRUE,

include.nobs = TRUE, ...) {
s <- summary(model, ...) # save the summary statistics
names <- rownames (s$coef) # extract coefficient names
co <- s$coef[, 1] # extract the coefficient values
se <- s$coef[, 2] # extract the standard errors
pval <- s$coef[, 4] # extract the p-values
rs <- s$r.squared # extract R-squared
adj <- s$adj.r.squared # extract adjusted R-squared
n <- nobs(model) # extract number of observations
gof <- numeric() # create a vector for the GOFs
gof .names <- character() # create a vector for the GOF names
gof .decimal <- logical() # should the GOFs have dec. places?
if (include.rsquared == TRUE) { # if the user wants r-squared...
gof <- c(gof, rs) # add it to the GOF list
gof .names <- c(gof.names, "R$"23%") # add its name to the list
gof.decimal <- c(gof.decimal, TRUE) # and make sure it has dec. places
}
if (include.adjrs == TRUE) { # same for adjusted r-squared
gof <- c(gof, adj)
gof .names <- c(gof.names, "Adj.\ R$"2$")
gof.decimal <- c(gof.decimal, TRUE)
}
if (include.nobs == TRUE) { # same for number of observations
gof <- c(gof, n)
gof .names <- c(gof.names, "Num.\ obs.")
gof.decimal <- c(gof.decimal, FALSE) # but these are integer numbers
}
tr <- createTexreg(# create a texreg object
coef .names = names,
coef = co,
se = se,
pvalues = pval, # p-values are only needed when

10

gof .names = gof.names, # signif. stars shall be printed

gof = gof,
gof .decimal = gof.decimal # (optional)
)
return(tr) # return texreg object to texreg

}

After writing a custom function, the function has to be registered. In other words, you have to tell
the more general extract function that objects of the new class should be handled by using your
custom function. In the above example, this is achieved with the following code:

setMethod ("extract", signature = className("1lm", "stats"),
definition = extract.lm)

Let’s say you have written an extension for clogit objects called extract.clogit(). The clogit
command (and the corresponding class definition) can be found in the survival package. Then
you would have to adjust the code above as follows:

setMethod("extract", signature = className("clogit", "survival"),
definition = extract.clogit)

After executing the definition of the function and the adjusted setMethod command, texreg can
be used with your models.

If you write a new extract function and a setMethod configuration, it would be very helpful to
post them in the forum (see section 3) in order to let other users profit from it. If it works and
if you can provide a self-contained example, the code can be implemented in a future version of
texreg. Please make sure that you do not modify anything else in the code, and that you stick
to the formatting rules used in the remaining file; otherwise comparison with the original may be
difficult. Please send an inquiry if you are interested in joining the texreg project and working
directly on the code.

7 How to obtain the source code

If you would like to inspect the texreg source code in order to develop your own extensions, you
can download the .tar.gz file from the repository homepage. To do this, you can either search
the list of R-Forge contributions (http://download.r-forge.r-project.org/src/contrib/) for
texreg, or click on the “R packages” link on the texreg package homepage at R-Forge (http:
//r-forge.r-project.org/projects/texreg/). Make sure you download the texreg file with
the .tar.gz extension, open this compressed file (e.g., using 7Zip if you are on Windows), and
open the texreg.R file in the R/ directory.

11

http://download.r-forge.r-project.org/src/contrib/
http://r-forge.r-project.org/projects/texreg/
http://r-forge.r-project.org/projects/texreg/

	1 Motivation
	2 Installation
	3 Getting help
	4 texreg examples
	5 htmlreg and screenreg
	6 Creating templates for new model types
	7 How to obtain the source code

