A collection of tools for working with time series in R
The time series signature is a collection of useful features that describe the time series index of a time-based data set. It contains a wealth of features that can be used to forecast time series that contain patterns. In this vignette, the user will learn methods to implement machine learning to predict future outcomes in a time-based data set. The vignette example uses a well known time series dataset, the Bike Sharing Dataset, from the UCI Machine Learning Repository. The vignette follows an example where we’ll use timetk
to build a basic Machine Learning model to predict future values using the time series signature. The objective is to build a model and predict the next six months of Bike Sharing daily counts.
Before we get started, load the following packages.
We’ll be using the Bike Sharing Dataset from the UCI Machine Learning Repository.
Source: Fanaee-T, Hadi, and Gama, Joao, ‘Event labeling combining ensemble detectors and background knowledge’, Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg
# Read data
bike_transactions_tbl <- bike_sharing_daily %>%
select(dteday, cnt) %>%
set_names(c("date", "value"))
bike_transactions_tbl
## # A tibble: 731 x 2
## date value
## <date> <dbl>
## 1 2011-01-01 985
## 2 2011-01-02 801
## 3 2011-01-03 1349
## 4 2011-01-04 1562
## 5 2011-01-05 1600
## 6 2011-01-06 1606
## 7 2011-01-07 1510
## 8 2011-01-08 959
## 9 2011-01-09 822
## 10 2011-01-10 1321
## # … with 721 more rows
Next, visualize the dataset with the plot_time_series()
function. Toggle .interactive = TRUE
to get a plotly interactive plot. FALSE
returns a ggplot2 static plot.
Next, use time_series_split()
to make a train/test set.
assess = "3 months"
tells the function to use the last 3-months of data as the testing set.cumulative = TRUE
tells the sampling to use all of the prior data as the training set.Next, visualize the train/test split.
tk_time_series_cv_plan()
: Converts the splits object to a data frameplot_time_series_cv_plan()
: Plots the time series sampling data using the “date” and “value” columns.splits %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = interactive)
Machine learning models are more complex than univariate models (e.g. ARIMA, Exponential Smoothing). This complexity typically requires a workflow (sometimes called a pipeline in other languages). The general process goes like this:
The first step is to add the time series signature to the training set, which will be used this to learn the patterns. New in timetk
0.1.3 is integration with the recipes
R package:
The recipes
package allows us to add preprocessing steps that are applied sequentially as part of a data transformation pipeline.
The timetk
has step_timeseries_signature()
, which is used to add a number of features that can help machine learning models.
# Add time series signature
recipe_spec_timeseries <- recipe(value ~ ., data = training(splits)) %>%
step_timeseries_signature(date)
We can see what happens when we apply a prepared recipe prep()
using the bake()
function. Many new columns were added from the timestamp “date” feature. These are features we can use in our machine learning models.
## # A tibble: 641 x 29
## date value date_index.num date_year date_year.iso date_half
## <date> <dbl> <int> <int> <int> <int>
## 1 2011-01-01 985 1293840000 2011 2010 1
## 2 2011-01-02 801 1293926400 2011 2010 1
## 3 2011-01-03 1349 1294012800 2011 2011 1
## 4 2011-01-04 1562 1294099200 2011 2011 1
## 5 2011-01-05 1600 1294185600 2011 2011 1
## 6 2011-01-06 1606 1294272000 2011 2011 1
## 7 2011-01-07 1510 1294358400 2011 2011 1
## 8 2011-01-08 959 1294444800 2011 2011 1
## 9 2011-01-09 822 1294531200 2011 2011 1
## 10 2011-01-10 1321 1294617600 2011 2011 1
## # … with 631 more rows, and 23 more variables: date_quarter <int>,
## # date_month <int>, date_month.xts <int>, date_month.lbl <ord>,
## # date_day <int>, date_hour <int>, date_minute <int>, date_second <int>,
## # date_hour12 <int>, date_am.pm <int>, date_wday <int>, date_wday.xts <int>,
## # date_wday.lbl <ord>, date_mday <int>, date_qday <int>, date_yday <int>,
## # date_mweek <int>, date_week <int>, date_week.iso <int>, date_week2 <int>,
## # date_week3 <int>, date_week4 <int>, date_mday7 <int>
Next, I apply various preprocessing steps to improve the modeling behavior. If you wish to learn more, I have an Advanced Time Series course that will help you learn these techniques.
recipe_spec_final <- recipe_spec_timeseries %>%
step_fourier(date, period = 365, K = 5) %>%
step_rm(date) %>%
step_rm(contains("iso"), contains("minute"), contains("hour"),
contains("am.pm"), contains("xts")) %>%
step_normalize(contains("index.num"), date_year) %>%
step_dummy(contains("lbl"), one_hot = TRUE)
juice(prep(recipe_spec_final))
## # A tibble: 641 x 47
## value date_index.num date_year date_half date_quarter date_month date_day
## <dbl> <dbl> <dbl> <int> <int> <int> <int>
## 1 985 -1.73 -0.869 1 1 1 1
## 2 801 -1.72 -0.869 1 1 1 2
## 3 1349 -1.72 -0.869 1 1 1 3
## 4 1562 -1.71 -0.869 1 1 1 4
## 5 1600 -1.71 -0.869 1 1 1 5
## 6 1606 -1.70 -0.869 1 1 1 6
## 7 1510 -1.70 -0.869 1 1 1 7
## 8 959 -1.69 -0.869 1 1 1 8
## 9 822 -1.68 -0.869 1 1 1 9
## 10 1321 -1.68 -0.869 1 1 1 10
## # … with 631 more rows, and 40 more variables: date_second <int>,
## # date_wday <int>, date_mday <int>, date_qday <int>, date_yday <int>,
## # date_mweek <int>, date_week <int>, date_week2 <int>, date_week3 <int>,
## # date_week4 <int>, date_mday7 <int>, date_sin365_K1 <dbl>,
## # date_cos365_K1 <dbl>, date_sin365_K2 <dbl>, date_cos365_K2 <dbl>,
## # date_sin365_K3 <dbl>, date_cos365_K3 <dbl>, date_sin365_K4 <dbl>,
## # date_cos365_K4 <dbl>, date_sin365_K5 <dbl>, date_cos365_K5 <dbl>,
## # date_month.lbl_01 <dbl>, date_month.lbl_02 <dbl>, date_month.lbl_03 <dbl>,
## # date_month.lbl_04 <dbl>, date_month.lbl_05 <dbl>, date_month.lbl_06 <dbl>,
## # date_month.lbl_07 <dbl>, date_month.lbl_08 <dbl>, date_month.lbl_09 <dbl>,
## # date_month.lbl_10 <dbl>, date_month.lbl_11 <dbl>, date_month.lbl_12 <dbl>,
## # date_wday.lbl_1 <dbl>, date_wday.lbl_2 <dbl>, date_wday.lbl_3 <dbl>,
## # date_wday.lbl_4 <dbl>, date_wday.lbl_5 <dbl>, date_wday.lbl_6 <dbl>,
## # date_wday.lbl_7 <dbl>
Next, let’s create a model specification. We’ll use a lm
.
We can mary up the preprocessing recipe and the model using a workflow()
.
workflow_lm <- workflow() %>%
add_recipe(recipe_spec_final) %>%
add_model(model_spec_lm)
workflow_lm
## ══ Workflow ═══════════════════════════════════════════════════════════════════════════════════════════════════════════
## Preprocessor: Recipe
## Model: linear_reg()
##
## ── Preprocessor ───────────────────────────────────────────────────────────────────────────────────────────────────────
## 6 Recipe Steps
##
## ● step_timeseries_signature()
## ● step_fourier()
## ● step_rm()
## ● step_rm()
## ● step_normalize()
## ● step_dummy()
##
## ── Model ──────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Linear Regression Model Specification (regression)
##
## Computational engine: lm
The workflow can be trained with the fit()
function.
Linear regression has no parameters. Therefore, this step is not needed. More complex models have hyperparameters that require tuning. Algorithms include:
If you would like to learn how to tune these models for time series, then join the waitlist for my advanced Time Series Analysis & Forecasting Course.
The Modeltime Workflow is designed to speed up model evaluation and selection. Now that we have several time series models, let’s analyze them and forecast the future with the modeltime
package.
The Modeltime Table organizes the models with IDs and creates generic descriptions to help us keep track of our models. Let’s add the models to a modeltime_table()
.
## # Modeltime Table
## # A tibble: 1 x 3
## .model_id .model .model_desc
## <int> <list> <chr>
## 1 1 <workflow> LM
Model Calibration is used to quantify error and estimate confidence intervals. We’ll perform model calibration on the out-of-sample data (aka. the Testing Set) with the modeltime_calibrate()
function. Two new columns are generated (“.type” and “.calibration_data”), the most important of which is the “.calibration_data”. This includes the actual values, fitted values, and residuals for the testing set.
## # Modeltime Table
## # A tibble: 1 x 5
## .model_id .model .model_desc .type .calibration_data
## <int> <list> <chr> <chr> <list>
## 1 1 <workflow> LM Test <tibble [90 × 4]>
With calibrated data, we can visualize the testing predictions (forecast).
modeltime_forecast()
to generate the forecast data for the testing set as a tibble.plot_modeltime_forecast()
to visualize the results in interactive and static plot formats.calibration_table %>%
modeltime_forecast(actual_data = bike_transactions_tbl) %>%
plot_modeltime_forecast(.interactive = interactive)
Next, calculate the testing accuracy to compare the models.
modeltime_accuracy()
to generate the out-of-sample accuracy metrics as a tibble.table_modeltime_accuracy()
to generate interactive and staticAccuracy Table | ||||||||
---|---|---|---|---|---|---|---|---|
.model_id | .model_desc | .type | mae | mape | mase | smape | rmse | rsq |
1 | LM | Test | 1185.31 | 336.68 | 1.28 | 28.26 | 1629.85 | 0.49 |
Refitting is a best-practice before forecasting the future.
modeltime_refit()
: We re-train on full data (bike_transactions_tbl
)modeltime_forecast()
: For models that only depend on the “date” feature, we can use h
(horizon) to forecast forward. Setting h = "12 months"
forecasts then next 12-months of data.calibration_table %>%
modeltime_refit(bike_transactions_tbl) %>%
modeltime_forecast(h = "12 months", actual_data = bike_transactions_tbl) %>%
plot_modeltime_forecast(.interactive = interactive)
If you are interested in learning from my advanced Time Series Analysis & Forecasting Course, then join my waitlist. The course is coming soon.
You will learn: