
waffect Package (v.1.2) Tutorial

Vittorio Perduca and Gregory Nuel

This document provides a short overview of how to use waffect. It shows
how to simulate phenotypes given a disease model in the binary and multiclass
cases and then how to use waffect for assessing the power of GWAs. Details
about the algorithms implemented in the package can be found in [2].

We assume that the reader has correctly installed the package by running
the command install.packages("waffect") from the R Console.

Disclaimer. If you use waffect in published research, please cite the com-
panion article [2]. The authors would be glad to hear how waffect is employed.
You are kindly encouraged to notify Gregory Nuel<gregory.nuel@parisdescartes.fr>
and Vittorio Perduca <vittorio.perduca@parisdescartes.fr> about any
work you publish that makes use of waffect.

Notations. n is the total number of individuals in the study. The phenotype
and genotype of the j-th individual are Yj and Xj respectively.

1 Simulating case/controls phenotypes

Notations. In the binary case, phenotypes are denoted by 1, 0: Yj = 1 if
individual j is a case, Yj = 0 if individual j is a control. By disease model we
mean the vector of probabilities π = (πj)j=1,...,n with πj = P(Yj = 1|Xj), that
is the conditional probability that the j-th individual is a case given her/his
genotype. The number of cases and controls are n1 and n0 respectively (with
n = n0 + n1). These numbers are fixed from the beginning: for instance they
are the actual number of cases and controls observed in the real dataset. The
package makes it possible to simulate a new vector of phenotypes accordingly
to the disease model and such that the number of cases and controls are exactly
n1 and n0 respectively.

Suppose n = 5 and consider the vector of probabilities1

π = (0.5, 0.2, 0.9, 0.7, 0.1).

We simulate a phenotypic dataset for these individuals accordingly to the disease
model H1 given by π and such that the number of cases is n1 = 2 (n2 = 3) as
follows using the function waffect:

1In Section 3 we will show how to compute such probabilities from the genotypes and given
a disease model.

1

> library(waffect); set.seed(42)

> pi <- c(0.5,0.2,0.9,0.3,0.1)

> waffect(prob=pi, count=c(2,3), label=c(1,0))

[1] 1 0 1 0 0

As we didn’t specify the method, phenotypes are assigned with the default
backward algorithm. The output is a list of phenotypes coded by 1s and 0s.
By rerunning the function waffect we obtain another phenotypic dataset with
n1 = 2:

> waffect(prob=pi, count=c(2,3), label=c(1,0))

[1] 1 0 1 0 0

Instead of specifying both n1 and n2 we can simply enter the the number n1
of cases:

> waffect(prob=pi, count=2, label=c(1,0))

[1] 1 0 1 0 0

If we forget to specify the labels, by default the codes for cases and controls
will be 1 and 0:

> waffect(prob=pi, count=c(2,3))

[1] 1 0 1 0 0

However we are free to use our preferred coding, the only thing to remember
is that the first element in the argument of label must be the code for cases:

> waffect(prob=pi, count=c(2,3), label=c("case", "control"))

[1] "case" "control" "case" "control" "control"

The following command generates phenotypes with cases and controls coded
by 2 and 1 to be used with PLINK (see Section 3)

> waffect(prob=pi, count=c(2,3), label=c(2,1))

[1] 2 1 2 1 1

Under the null hypothesis H0, each individual has the same probability to
be a case (no matter her/his genotype), that is all the entries in π are equal.
If we want to simulate a phenotypic dataset under H0, it is sufficient to specify
the numbers n1, n2 of cases and controls:

> waffect(count=c(7,9), label=c(1,0))

[1] 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1

By default, the function will consider prob=rep(0.1, sum(count)). Equiv-
alently, if we are given the observed phenotypes

2

> obs <- c(1,1,0,0,0,1,0,1,1,0)

we can simulate a new phenotypic dataset under H0 by simply permuting them
with the standard R function

> sample(obs)

[1] 0 1 0 1 0 1 0 1 1 0

The permutation breaks any link between phenotypes and genotypes.

2 Simulating phenotypes in the multiclass case

Notations. If there are K classes, phenotypes are denoted by an integer in
{1, . . . ,K}. By disease model we mean the K × n matrix of probabilities π =
(πkj) with P(Yj = k|Xj) = πkj . By nk we denote the total number of individuals
in the k-th class. The package makes it possible to simulate a new vector of
phenotypes accordingly to the disease model and such that for each k the total
number of individuals with phenotype in the k-th class is exactly nk.

Suppose we have n = 5 individuals each belonging to one out of K = 3
classes, and that the disease model is given by the matrix

π =

 0.5 0.3 0.1 0.2 0.1
0.4 0.5 0.1 0.6 0.7
0.1 0.2 0.8 0.2 0.2

 .

We assign a class to each individual so that there are exactly n1 = 2 in-
dividuals in the first class, n2 = 2 individuals in the second class and n3 = 1
individuals in the third class:

> pi1 = c(0.5,0.4,0.1)

> pi2 = c(0.3,0.5,0.2)

> pi3 = c(0.1,0.1,0.8)

> pi4 = c(0.2,0.6,0.2)

> pi5 = c(0.1,0.7,0.2)

> pi = cbind(pi1,pi2,pi3,pi4,pi5)

> waffect(prob = pi, count = c(2,2,1),label=1:3)

[1] 2 1 3 2 1

The output is the list of classes of all the individuals.

3 Assessing the power of GWAs

Given a GWA study method, it is crucial to assess its statistical power to detect
susceptibility variants. Power can be estimated empirically by simulating disease
(case and control) phenotypes. We illustrate how to asses the statistical power
of GWA studies using waffect for phenotype simulations. In particular we will
proceed as follows:

3

• We consider the toy dataset with 100 individuals (40 cases and 60 controls)
and 1000 SNPs included in the package.

• We assume an arbitrarily defined single marker disease model H1 and two
methods of associations: for each method, the aim is to assess its statistical
power to detect the susceptibility SNP.

• By using waffect we simulate 200 phenotypes under H0 and 200 pheno-
types under H1 so that in each simulation there are exactly 40 cases and
60 controls.

• For each simulation, we perform a single marker analysis with PLINK [3, 4],
a standard software for doing GWAs. For each simulation, this results in
a signal of association given by a vector of 1000 p-values (one for each
SNP).

• For each simulation, in order to avoid multiple-testing issues, we resume
the vector of p-values with two alternative single valued real statistics
S1, S2. As a result, for each statistics S1, S2 we have 200 values under H0
and 200 values under H1 (these results are included in the package for the
readers’s who don’t have PLINK) .

• For each method S1, S2, we assess the tradeoff between the true positive
rate (i.e. the power or sensitivity) and the false positive rate (i.e. 1 -
the specificity) by computing the corresponding ROC curve with the R

package pROC.

The toy dataset included in the package is encoded in PED and MAP for-
mats to be used with PLINK [3, 4]. Readers willing to use other softwares or
packages for producing the association signals have to convert the data files
into the suitable format. In the following, we include the complete commands
for performing association analysis with PLINK; however we also included the
results of PLINK analysis into four .txt files which come with the package, so
that the readers who don’t have PLINK installed can still reproduce our power
study. We assume that the R package pROC is installed, otherwise simply run
install.packages("pROC") from the R Console.

As a preliminary step, we store the data included in the package (which
comes with the extension .txt as required by CRAN) into files with the exten-
sions .ped and .map required by PLINK:

> library(waffect)

> data(map)

> write.table(map,file = "data.map", row.names=FALSE, col.names = FALSE)

> data(ped)

> write.table(ped,file = "data.ped", row.names=FALSE, col.names = FALSE)

The genotypes contained in the PED file were obtained from public data
released by the 1000 Genomes Projects [1], however in creating the PED files
we assigned dummy values to the covariates not needed for the present analysis.
We adopt the PLINK standard: cases are coded by 2 and controls by 1.
data.map has one row for each SNP and four columns:

4

chr: the chromose, here all the SNPs are in the chromosome X
SNP_id: the SNP identifier, here an integer from 1 to 1000
dist: the genetic distance, here set to 0 for all SNPs
bp_pos: the base-pair position, here an integer from 1 to 1000.

data.ped has one row for each individual and 2006 columns:

fam_id: family ID, here an integer from 1 to 100
ind_id: individual ID, an integer from 1 to 100
pat_id: paternal ID, here a dummy variable
mat_id: maternal ID, dummy variable
sex: all females
pheno: observed phenotypes; codes: case = 2, control = 1.

Genotypes (column 7 onwards) are biallelic, one allele for each column. For
instance, columns 7 and 8 contain the two alleles for SNP1 and columns 9 and
10 contain the alleles for SNP2.

We arbitrarily define an additive disease model H0 with SNP number 500
as disease SNP. Additive means that the relative risk grows linearly with the
number of rare alleles of the disease SNP2. We assume that the additive effect
is β = 0.5 and the baseline penetrance of the disease is f0 = 0.1 (since the
susceptibility variants are assumed to be rare, f0 is approximately equal to the
prevalence of the disease). Therefore the probability that individual j is a case
is

πj = f0 ·RRj = f0 · (1.0 + β ·X500
j)

where X500
j is the number of rare alleles in the genotype of the SNP number

500 for individual j. RRj is the Relative Risk for individual j. The rare allele
for the SNP number 500 is T as can be easily checked:

> ped <- read.table("data.ped")

> x <- ped[,c(6+500*2-1,6+500*2)]

> length(which(x == "T")) < length(which(x == "A"))

[1] TRUE

We compute the vector of probabilities (πj)j=1,...,100 as follows:

> ad <- 0.5

> RR <- rep(NA, 100)

> RR[x[,1] == "A" & x[,1] == "A"] <- 1.0 + ad * 0

> RR[x[,1] != x[,2]] <- 1.0 + ad * 1

> RR[x[,1] == "T" & x[,2] == "T"] <- 1.0 + ad * 2

> f0 <- 0.1

> pi = f0*RR

Now that we have the probabilities πj , we can simulate phenotypes under
H1 using waffect . In particular, we generate 200 phenotypic datasets and put
the results in a 100× 200 table:

2The choice of the disease model is completely unconstrained (number of SNPs involved,
epistasis, Gene-Environment interactions, hybrid genetic models...).

5

> Nsim <- 200

> pheno_H1 <- matrix(NA, nrow = 100, ncol = Nsim)

> for(i in 1:Nsim)

+ pheno_H1[,i] <- waffect(prob = pi, count=40, label=c(2, 1))

We store the results in a file in the format required by PLINK for alternate
phenotypes: the first two columns must be the familiy ID (in our case just an
integer from 1 to 100) and the individual ID:

> pheno_H1 <- cbind(1:100,1:100,pheno_H1)

> write.table(pheno_H1, file = "pheno_H1.txt", row.names = FALSE, col.names = FALSE)

Similarly we use waffect to simulate 200 phenotypic datasets under H0:

> pheno_H0 <- matrix(NA, nrow = 100, ncol = Nsim)

> for(i in 1:Nsim)

+ pheno_H0[,i] <- waffect(count = c(40,60), label = c(2,1))

> pheno_H0 <- cbind(1:100,1:100,pheno_H0)

> write.table(pheno_H0, file = "pheno_H0.txt", row.names = FALSE, col.names = FALSE)

We can now compute the signal of association for each simulation.

PLINK available. By default we assumed that PLINK is not installed on the
readers’ machines and therefore we commented out the following R commands.
Please delete all the # in order to run the code below.

We will store the results obtained with PLINK in two folders:

> #system("mkdir H1_signal H0_signal")

We run PLINK from R as follows :

> #system("plink --file data --model --pheno pheno_H1.txt --all-pheno --out H1_signal/H1")

> #system("plink --file data --model --pheno pheno_H0.txt --all-pheno --out H0_signal/H0")

Because we have specified the --model option, PLINK performs four statis-
tical tests for each SNP. For example the results for SNP number 1 in a given
simulation looks like

CHR SNP A1 A2 TEST AFF UNAFF CHISQ DF P

1 0 1 T A GENO 16/6/18 20/11/29 0.5099 2 0.7750

2 0 1 T A TREND 38/42 51/69 0.2934 1 0.5880

3 0 1 T A ALLELIC 38/42 51/69 0.4859 1 0.4858

4 0 1 T A DOM 22/18 31/29 0.1071 1 0.7435

5 0 1 T A REC 16/24 20/40 0.4630 1 0.4962

6 0 2 T A GENO 17/6/17 20/12/28 0.9710 2 0.6154

We are only interested in the p-values p1, . . . , p1000 of the Cochran-Armitage
trend test, a test which is often used when the disease model is expected to be
additive. The first statistic S1 we consider simply takes the smallest p-value
among the the p-values of all the SNPs. Equivalently

S1 := max
j=1,...,1000

− log10 pj

We compute S1 values (one for each simulation under H1 and H0) by running
the following code (this will take a few seconds):

6

> #p1_H1 <- rep(NA,Nsim)

> #for(i in 1:Nsim){

> # FileIn <- paste("H1_signal/H1.P", i , ".model", sep="")

> # aux <- read.table(FileIn, header = TRUE)

> # aux <- aux[which(aux$TEST == "TREND"),]

> # p1_H1[i] <- max(-log10(na.omit(aux$P)))

> #}

>

> #p1_H0 <- rep(NA,Nsim)

> #for(i in 1:Nsim){

> # FileIn <- paste("H0_signal/H0.P", i , ".model", sep="")

> # aux <- read.table(FileIn, header = TRUE)

> # aux <- aux[which(aux$TEST == 'TREND'),]
> # p1_H0[i] <- max(-log10(na.omit(aux$P)))

> #}

PLINK not available. We performed PLINK analysis for both the two simula-
tions under H0 and H1 (400 simulated datasets in total) and stored the results
into the files p1_H0.txt and p1_H1.txt which come with the package. The
readers who don’t have PLINK can just load the two vectors of p-values obtained
with PLINK:

> data(p1_H1)

> p1_H1 <- p1_H1$signal

> data(p1_H0)

> p1_H0 <- p1_H0$signal

In order to measure the performance of S1, it is convenient to study its
Receiver Operator Characteristic (ROC) curve which is nothing but a graphical
representation of the sensitivity for all possible values of the specificity. The
ROC curve itself can be further summarized by the Area Under the Curve
(AUC) which can be qualitatively interpreted as follows: AUC ≤ 0.6 means
“fail”; 0.6 < AUC ≤ 0.70 means “poor”; 0.7 < AUC ≤ 0.80 means “fair”;
0.8 < AUC ≤ 0.9 means “good”; 0.9 < AUC ≤ 1.0 means “excellent”.

Now that the we have for each simulation a value of S1, it is straightforward
to compute the AUC and its confidence interval using the package pROC [5]:

> library(pROC)

> roc(controls = p1_H0, cases = p1_H1, ci=TRUE, plot = TRUE)

Call:

roc.default(controls = p1_H0, cases = p1_H1, ci = TRUE, plot = TRUE)

Data: 200 controls < 200 cases.

Area under the curve: 0.5321

95% CI: 0.4754-0.5888 (DeLong)

The ROC curve is depicted in Figure 1. The AUC is 0.53 with [0.48, 0.59] as
95% confidence interval, therefore S1 is not successful in detecting a positive
signal.

7

Specificity

S
en

si
tiv

ity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.0 0.8 0.6 0.4 0.2 0.0

Figure 1: ROC curve for the statistics S1.

If we have a a biological a priori we can try to narrow the investigation to
the candidate gene level. In this perspective, the second statistic S2 takes the
smallest p-value in an interval centered around the disease SNP whose length is
5 SNPs3:

S2 := max
498≤j≤502

log10 pj .

PLINK available. Please delete all the # in order to run the code below.

> #region <- 498:502

>

> #p2_H0 <- rep(NA,Nsim)

> #for(i in 1:Nsim){

> # FileIn <- paste("H0_signal/H0.P", i, ".model", sep = "")

> # aux <- read.table(FileIn, header = TRUE)

> # aux <- aux[which(aux$TEST == "TREND"),]

> # aux <- aux[region,]

> # p2_H0[i] <- max(-log10(na.omit(aux$P)))

> #}

>

> #p2_H1 <- rep(NA,Nsim)

3Assuming that there is a SNP every 2kb, the length of an interval with 5 consecutive
SNPs is compatible with the average size of genes.

8

> #for(i in 1:Nsim){

> # FileIn <- paste("H1_signal/H1.P", i, ".model", sep="")

> # aux <- read.table(FileIn, header=TRUE)

> # aux <- aux[which(aux$TEST == "TREND"),]

> # aux <- aux[region,]

> # p2_H1[i] <- max(-log10(na.omit(aux$P)))

> #}

PLINK not available. We performed PLINK analysis for both the simulations
under H0 and H1 and then stored the results into the files p2_H0.txt and
p2_H1.txt which come with the package.

> data(p2_H1)

> p2_H1 <- p2_H1$signal

> data(p2_H0)

> p2_H0 <- p2_H0$signal

We are now ready to compute the ROC curve for S2:

> roc(controls = p2_H0, cases = p2_H1, plot = TRUE, ci=TRUE)

Call:

roc.default(controls = p2_H0, cases = p2_H1, ci = TRUE, plot = TRUE)

Data: 200 controls < 200 cases.

Area under the curve: 0.7215

95% CI: 0.6712-0.7718 (DeLong)

The AUC for S2 is 0.72 with [0.67, 0.77] as 95% confidence interval, the
ROC curve is depicted in Figure 2. We conclude that, as expected, S2 is more
performant than S1, however the overall performance is still poor.

9

Specificity

S
en

si
tiv

ity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.0 0.8 0.6 0.4 0.2 0.0

Figure 2: ROC curve for the statistics S2.

10

References

[1] R. Durbin, D. Altshuler, G. Abecasis, D. Bentley, A. Chakravarti, A. Clark,
F. Collins, M. Francisco, P. Donnelly, M. Egholm, et al. A map of human
genome variation from population-scale sequencing. Nature, 467(7319):1061–
1073, 2010.

[2] V. Perduca, R. Mourad, C. Sinoquet, and G. Nuel. Alternative methods
for H1 simulations in genome wide association studies. Human Heredity,
73(2):95–104, 2012.

[3] S. Purcell. PLINK 1.07. http://pngu.mgh.harvard.edu/purcell/plink/.

[4] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. Ferreira, D. Bender,
J. Maller, P. Sklar, P. de Bakker, M. Daly, and P. Sham. PLINK: a toolset for
whole-genome association and population-based linkage analysis. American
Journal of Human Genetics, page 81, 2007.

[5] X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and
M. Müller. pROC: an open-source package for R and S+ to analyze and
compare ROC curves. BMC Bioinformatics, 12:77, 2011.

11

