
wq: Exploring water quality monitoring data

Alan D. Jassby and James E. Cloern

September 5, 2011

Contents

1 Introduction 1

2 Preparing data from an external file 3

3 The WqData class 4

4 Creating a WqData object 5

5 Reshaping 7

6 Analyzing 10
6.1 Trends . 10
6.2 Empirical Orthogonal Functions . 15
6.3 Time series decomposition . 20
6.4 Phenological parameters . 25
6.5 Miscellaneous plotting functions . 27

7 Concluding Remarks 31

1 Introduction

This package contains functions to assist in the processing and exploration of data
from monitoring programs for aquatic ecosystems. The name wq stands for water
quality and reflects a focus on time series data for physical and chemical properties
of water, as well as the plankton. The package is intended for programs that sample
approximately monthly at discrete stations, a feature of many legacy data sets. Al-
though our emphasis is on aquatic ecosystems, many of the functions should be useful
for time series analysis regardless of the subject matter.

The approach used here involves transformation of external data files into a stan-
dard format that existing functions can then handle easily. A conceptualization of

1

1 INTRODUCTION

read

result

 analyze &
visualize

derive

clean

generate reshape

data

ammFrac
ec2pss
oxySol

new
wqData

mts2ts
tsMake
ts2df

decompTs
eof

layOut
phenoPhase
plotTsTile
seaKen

seasonTrend
...

Figure 1: A typical sequence of data analysis. Example functions from the package
are listed underneath the corresponding processes in the sequence.

this sequence is illustrated in Figure 1. Water quality monitoring programs maintain
their data in a wide variety of formats, and the first step is to read data from an
external file and store it in a data frame. Often, the external data are stored or
at least transmitted in a comma- or tab-delimited format and can be easily handled
with read.table or one of its variants. Some cleaning or manipulation of the data set
may take place during the import process, but more substantive ones are often under-
taken immediately after. Typical modifications include renaming variables, dropping
unnecessary variables and observations, and coercing variables to different classes.
These modifications are chosen with regard to ease of use and the intended analysis,
but also in order to facilitate construction of an object with a standardized format.
Before constructing this object, though, we may want to derive new variables from
the original ones (e.g., salinity from conductivity). Next, we generate the standard-
ized “wq data” object, which is a member of the WqData class defined in this package
(this step can be bypassed if it turns out not to be useful). We can then reshape
into various forms—matrix, list, time series vector, data frame, etc.—depending on
the analysis. At this point, the data are finally in a form that we can analyze and
visualize. Some functions may be able to explore a WqData object directly without
any additional reshaping.

This package is intended to facilitate all of these activities. We will illustrate some

2

2 PREPARING DATA FROM AN EXTERNAL FILE

of the steps in Figure 1 using the accompanying data set sfbay. The exercise should
demonstrate most of the current capability of the package and make its use more
clear.

> library(wq)

2 Preparing data from an external file

Our starting point is a comma-delimited file downloaded on 2009-11-17 from the U.S.
Geological Survey’s water quality data set for San Francisco Bay (http://sfbay.wr.
usgs.gov/access/wqdata). The downloaded file, sfbay.csv, starts with a row of
variable names followed by a row of units, so the first two lines are skipped during
import and simpler variable names are substituted for the originals. Also, only a
subset of stations and years is used in order to keep sfbay.csv small:

> sfbay <- read.csv("sfbay.csv", header = FALSE, as.is = TRUE,

+ skip = 2)

> names(sfbay) <- c("date", "time", "stn", "depth", "chl", "dox",

+ "spm", "ext", "sal", "temp", "nox", "nhx")

> sfbay <- subset(sfbay, stn %in% c(21, 24, 27, 30, 32, 36) & substring(date,

+ 7, 10) %in% 1985:2004)

The resulting data frame sfbay is provided as part of the package, and its contents
are explained in the accompanying help file.

> head(sfbay)

date time stn depth chl dox spm ext sal temp nox nhx

6835 1/23/1985 1120 21 1 5.6 NA 17 1.6 28.15 NA NA NA

6836 1/23/1985 1120 21 2 3.4 NA 17 1.6 28.58 NA NA NA

6837 1/23/1985 1120 21 6 3.1 NA 18 1.6 28.91 NA NA NA

6838 1/23/1985 1120 21 12 3.4 NA 21 1.9 29.36 NA NA NA

6841 1/23/1985 1222 24 1 6.2 NA 17 1.6 27.42 NA NA NA

6842 1/23/1985 1222 24 2 5.6 NA 18 1.6 27.42 NA NA NA

The next step is to add any necessary derived variables to the data frame. An
initial data set will sometimes contain conductivity rather than salinity data, and we
might want to use ec2pss to derive the latter. That’s not the case here, but let’s
assume that we want dissolved oxygen as percent saturation rather than in concen-
tration units. Using oxySol and the convention of expressing percent saturation with
respect to surface pressure:

> x <- sample(1:nrow(sfbay), 10)

> sfbay[x, "dox"]

3

http://sfbay.wr.usgs.gov/access/wqdata
http://sfbay.wr.usgs.gov/access/wqdata

3 THE WQDATA CLASS

[1] 8.1 5.9 8.1 NA 8.1 NA 7.8 9.4 7.3 8.2

> sfbay1 <- transform(sfbay, dox = round(100 * dox/oxySol(sal,

+ temp), 1))

> sfbay1[x, "dox"]

[1] 99.2 84.1 113.2 NA 107.0 NA 99.0 125.2 106.4 107.1

Aside from ec2pss and oxySol, the function ammFrac is available for estimating the
fraction of total ammonium in un-ionized form.

As will be seen below, much of the manipulation work needed to form the WqData

object is taken care of by a generating function in the package, and there is really
nothing more that needs to be done. In fact, not even the renaming of the variables
was necessary: only the initial read.csv function was required. This is partly due
to the way the original data were formatted in the downloaded file and more work
may be needed in other cases. Also, one can always create the time series of interest
directly, bypassing the WqData object if it turns out to be of little benefit or if the
data come from other subject areas where“depth”has no relevance. Even in the latter
case, though, some arbitrary depth could be assigned to all observations in order to
take advantage of functions that operate on WqData objects.

3 The WqData class

We define a standardized format for water quality data by creating a formal (S4)
class, the WqData class, that enforces the standards, and an accompanying generating
function wqData. The generating function acts on the suitably-modified data frame
and constructs a WqData object. The WqData object is just a simple extension or
subset of the data.frame and can be treated as such. The only restrictions it makes
is in the column names and classes.

We decided to accommodate two types of sampling time, namely, the date either
with or without the time of day. The former are converted to the POSIXct class and
the latter to the Date class. A special class DateTime is created, which is the union of
these two time classes. This was done because the use of classes that combine date and
time of day require an additional level of care with respect to time zone (Grothendieck
and Petzoldt 2004). Almost all analyses of these low-frequency sampling programs
are concerned only with the date, and this additional burden and possible source of
error seems unwarranted when not necessary.

Surface location is specified by a site code, as the intention is to handle discrete
monitoring programs as opposed to continuous transects. Latitude-longitude and
distances from a fixed point are implicit in the site code and can be recorded in a
separate table (see sfbayVars). The depth is specified separately as a number. Other
information that may not be depth-specific, such as the mean vertical extinction

4

4 CREATING A WQDATA OBJECT

coefficient in the near-surface layer, can be coded by a negative depth number. The
last two fields in the data portion of a WqData object are the variable code and the
value. The variables are given as character strings and the values as numbers. As in
the case of the sampling site, additional information related to the variable code can
be maintained in a separate table (see sfbayVars).

4 Creating a WqData object

Like all S4 classes, WqData has a generating function called new automatically created
along with the class. This function, however, requires that its data frame argument
already have a fairly restricted form of structure. In order to decrease the manipu-
lation required of the imported data, a separate, less restrictive generating function
called wqData is available. This function is more forgiving of field names and classes
and does a few other “cleanup” tasks with the data before calling new. Perhaps most
useful, it converts data from a“wide” format with one field per variable into the“long”
format used by the WqData class. For example, sfbay can be converted to a WqData

object with a single command:

> sfb <- wqData(sfbay, c(1, 3:4), 5:12, site.order = TRUE, type = "wide",

+ time.format = "%m/%d/%Y")

> head(sfb)

time site depth variable value

1 1985-01-23 s21 1 chl 5.6

2 1985-01-23 s21 2 chl 3.4

3 1985-01-23 s21 6 chl 3.1

4 1985-01-23 s21 12 chl 3.4

5 1985-01-23 s24 1 chl 6.2

6 1985-01-23 s24 2 chl 5.6

There is a summary method for this class that tabulates the number of observations
by site and variable, as well as the mean and quartiles for individual variables:

> summary(sfb)

date range: 1985-01-23 to 2004-12-14

$observations

chl dox spm ext sal temp nox nhx

s21 5164 3673 3903 159 5379 5385 135 135

s24 3340 2246 2405 146 3485 3480 123 123

5

4 CREATING A WQDATA OBJECT

site

va
lu

e

6

8

10

12

14

dox

●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●
●

●
●
●●●
●
● ●●

●●●●●●●●●
●●●
●●

●
●

●

●
●
●●●●●●●●●●●●
●●●●
●●●●●●
●●●●

●
●

●

●●●●

●
●

●

●
●
● ●

●●

●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●●●●●●●●●

●

●

●
●

●
●
●●●●

●●●
●●●●●●●●●●●●●
●●●●●●●●

●

●

●
●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●
●●
●●
●●●●●●●

●
●
●
●
●
●
●●●●●●●●
●
●●●

●
●

●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●

●●●●
●
●●●●●●●●

●●●●●●●●

●●●
●●●●●

●●●●●●●●●

●●●●●●●

●

●
●

●●●●●●●●
●●

s21 s24 s27 s30 s32 s36

10

15

20

temp

s21 s24 s27 s30 s32 s36

Figure 2: Plotting specific variables of a "WqData" object, in this case dissolved oxygen
and temperature.

s27 3927 2676 2848 150 4119 4118 142 142

s30 4496 2922 3106 147 4725 4720 165 164

s32 3560 2608 2763 129 3786 3777 141 141

s36 1576 1380 1438 23 1678 1676 101 101

$quartiles

Min. 1st Qu. Median Mean 3rd Qu. Max.

chl 0.10 2.100 3.70 7.479 7.600 221.20

dox 4.10 7.200 8.00 8.140 8.800 15.90

spm 1.00 11.000 20.00 34.050 35.000 983.00

ext 0.20 1.200 1.50 1.762 1.900 12.70

sal 3.80 22.330 26.78 25.330 29.570 32.59

temp 7.24 12.890 15.12 15.500 17.890 24.61

nox 0.01 12.380 22.69 28.550 39.220 247.80

nhx 0.01 2.252 5.14 5.525 8.398 20.78

Plotting a "WqData" object produces a plot for each variable specified, each plot
containing a boxplot of the values for each site (Figure 2). If no variables are specified,
then the first 10 will be plotted:

> plot(sfb, vars = c("dox", "temp"), num.col = 2)

6

5 RESHAPING

Apart from summary and plot, existing methods for data frames will produce an
object of class "data.frame" rather than one of class "WqData".

5 Reshaping

Historical water quality data are often suitable for analyzing as monthly time series,
which permits the use of many existing time series functions. tsMake is a function
for WqData objects that creates monthly time series for all variables at a single site or
for a single variable at all sites, when the option type = "ts.mon". If the quantile
probability qprob = NULL, all replicates are first averaged and then the mean is found
for the depth layers of interest. Otherwise the respective quantile will be used both
to aggregate depths for each day and to aggregate days for each month. If no layers
are specified, all depths will be used. If layer = "max.depths", the time series will
be values of the deepest sample for each time, site and variable. The layer argument
allows for flexibility in specifying depths, including a list of layers and negative depths
used as codes for, say, “near botton” or “entire water column”. The function plotTs

is convenient for a quick look at the series (Figure 3); it produces a line plot but
includes isolated data points as well:

> y <- tsMake(sfb, focus = "chl", layer = c(0, 5))

> y[1:6,]

s21 s24 s27 s30 s32 s36

[1,] 4.500000 5.900000 NaN 1.300000 2.650000 6.250

[2,] NaN NaN NaN 1.600000 5.550000 NaN

[3,] 5.858333 10.654167 12.291667 12.787500 11.866667 40.100

[4,] 4.638889 5.916667 8.133333 8.388889 11.455556 4.525

[5,] 2.575000 2.058333 1.566667 1.183333 1.725000 NaN

[6,] 3.025000 1.875000 1.441667 1.133333 1.641667 3.000

> tsp(y)

[1] 1985.000 2004.917 12.000

> plotTs(y, ylab = "Chlorophyll in San Francisco Bay", ncol = 2)

If the option type = "zoo", then tsMake produces an object of class "zoo" containing
values by date of observation, rather than a monthly time series.

> head(tsMake(sfb, focus = "chl", layer = c(0, 5), type = "zoo"))

7

5 RESHAPING

C
hl

or
op

hy
ll

in
 S

an
 F

ra
nc

is
co

 B
ay 20

40
60
80

20
40
60
80

20
40
60
80

s21

●
●● ● ● ●

s27

●

s32

●● ● ● ● ● ●
●

●

19
85

19
90

19
95

20
00

20
05

s24

●
● ●

s30

●

s36

● ●
●

● ● ●
● ● ● ●

19
85

19
90

19
95

20
00

20
05

Figure 3: Monthly mean chlorophyll (µg L−1) in 0-5 m layer of San Francisco Bay.

8

5 RESHAPING

s21 s24 s27 s30 s32 s36

1985-01-23 4.500 5.90000 NaN 1.300000 2.650000 6.25

1985-02-27 NaN NaN NaN 1.600000 5.550000 NaN

1985-03-07 4.800 3.90000 5.200000 5.033333 5.166667 NaN

1985-03-13 2.600 9.35000 7.066667 5.066667 4.500000 NaN

1985-03-21 NaN 7.70000 13.300000 10.200000 4.700000 NaN

1985-03-29 10.175 21.66667 23.600000 30.850000 33.100000 40.10

There are several functions for further reshaping of time series, which prepare them
for use in specific analyses. ts2df converts a monthly time series vector to a year
× month data frame. Leading and trailing empty rows are removed, additional rows
with missing data are optionally removed, and the data frame can be reconfigured to
represent a local “water year”:

> chl27 <- sfbayChla[, "s27"]

> tsp(chl27)

[1] 1978.000 2009.583 12.000

> chl27 <- round(chl27, 1)

> head(ts2df(chl27))

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1978 1.1 2.8 5.5 2.7 3.4 1.9 1.6 NA 1.7 2.1 2.2 1.7

1979 1.9 1.8 2.4 3.8 2.3 4.8 1.6 3.9 2.1 1.2 1.1 NA

1980 1.3 1.9 2.1 10.2 3.4 2.1 1.1 1.4 1.6 1.4 1.7 1.3

1981 NA 1.7 2.0 9.1 NA NA NA NA NA NA NA NA

1982 2.8 4.5 6.5 9.3 8.2 3.4 1.4 NA 2.1 1.8 1.7 1.0

1983 NA 1.4 7.0 16.4 16.6 5.4 1.4 1.7 2.0 1.5 1.5 1.4

Another example of its use is shown in Section 6.2 below. A similar reshaping function
is mts2ts, which converts a matrix time series to a vector time series for various
analyses. It first aggregates the multivariate matrix time series by year, then converts
it to a vector time series in which the “seasons” correspond to these annnualized
values for the original variables. The seas parameter enables focusing the subsequent
analysis on seasons of special interest, or to ignore seasons where there are too many
missing data. The function can be used in conjunction with seaKen to conduct a
Regional Kendall trend analysis, as described in Section 6.1 below:

> y <- window(sfbayChla, start = 2005, end = c(2009, 12))

> round(mts2ts(y, seas = 2:4), 1)

9

6 ANALYZING

Time Series:

Start = c(2005, 1)

End = c(2009, 16)

Frequency = 16

[1] 5.8 4.7 6.0 4.6 5.5 5.6 5.9 6.3 6.5 7.6 7.5 7.8 8.5 8.8 8.0

[16] 8.4 18.1 9.8 12.0 12.5 12.8 16.2 18.1 20.6 22.5 26.9 26.4 29.9 31.1 33.7

[31] 32.1 33.2 7.9 6.6 7.8 7.9 7.9 9.2 10.1 10.2 10.5 11.9 12.0 12.1 13.2

[46] 13.0 13.0 15.1 15.1 10.9 12.5 13.8 14.1 14.8 15.9 17.0 16.7 20.2 21.0 21.8

[61] 22.3 23.5 23.4 24.0 4.7 4.5 4.6 4.7 4.7 4.4 4.6 5.2 5.4 6.0 6.8

[76] 7.7 8.5 9.1 8.1 8.1

6 Analyzing

6.1 Trends

The function mannKen does a Mann-Kendall test of trend on a time series and provides
the corresponding nonparametric slope estimate. Because of serial correlation for most
monthly time series, the significance of such a trend is often overstated and mannKen

is better suited for annual series, such as this one for Nile River flow:

> mannKen(Nile)

$sen.slope

[1] -2.6

$sen.slope.pct

[1] -0.2828085

$p.value

[1] 3.658263e-05

$S

[1] -1387

$varS

[1] 112728.3

$miss

[1] 0

mannKen can also handle matrix time series, with options for plotting trends in the
original units per year, as percent per year, or as Kendall’s tau. The first option is

10

6.1 Trends 6 ANALYZING

suitable when time series are all in the same units, such as chlorophyll-a measurements
from different stations. The second makes sense with variables of different units but is
not suitable for variables that can span zero (e.g., sea level, or temperature in ◦C). The
last option can always be used but measures the strength of the correlation with time
rather than the trend level. Plotted variables can be ordered by the size of their trends,
and both statistical significance and excessive missing data are mapped to point colour
and shape (see discussion of seasonTrend below). When aggregating monthly series
to produce an annual series for trend testing, there is a utility function tsSub that
allows subsetting the months beforehand (meanSub is actually more efficient when
aggregation is the goal). It can be useful for avoiding months with many missing
data, or to focus attention on a particular time of year (Figure 4):

> y <- sfbayChla

> y1 <- tsSub(y, seas = 2:4)

> y2 <- aggregate(y1, 1, mean, na.rm = FALSE)

> signif(mannKen(y2), 3)

sen.slope sen.slope.pct p.value S varS miss tau

s21 0.224 3.38 2.86e-04 175 2300 0.286 0.499

s22 0.168 3.10 2.20e-04 188 2560 0.286 0.497

s23 0.208 3.34 8.44e-05 200 2560 0.143 0.529

s24 0.209 3.28 5.51e-05 216 2840 0.000 0.532

s25 0.216 2.76 6.73e-03 131 2300 0.286 0.373

s26 0.222 2.63 7.31e-03 144 2840 0.000 0.355

s27 0.268 3.04 3.92e-04 190 2840 0.000 0.468

s28 0.231 2.38 9.65e-03 132 2560 0.000 0.349

s29 0.208 1.97 1.87e-02 120 2560 0.000 0.317

s30 0.242 2.09 1.40e-02 132 2840 0.000 0.325

s31 0.172 1.37 1.33e-01 73 2300 0.286 0.208

s32 0.200 1.37 1.01e-01 84 2560 0.286 0.222

s33 0.335 2.06 1.73e-01 43 949 0.571 0.226

s34 0.254 1.39 4.01e-01 25 817 0.714 0.146

s35 0.196 1.10 4.05e-01 23 697 0.714 0.150

s36 0.191 1.03 4.05e-01 23 697 0.714 0.150

> mannKen(y2, plot = TRUE, type = "pct", order = TRUE)

A main role for mannKen in this package is as a support function for the Seasonal
Kendall test of trend (Hirsch et al. 1982, Helsel and Hirsch 2002). The Seasonal
Kendall test combines information about trends for individual months (or some other
subdivision of the year such as quarters) and produces an overall test of trend for a
series. mannKen collects certain information on the pattern of missing data that is

11

6.1 Trends 6 ANALYZING

Trend (% year−1)

s35
s36
s29
s33
s34
s26
s28
s31
s32
s25
s30
s27
s22
s21
s24
s23

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.4 1.6 1.8 2.0 2.2

p−value < 0.05

● TRUE

missing < 50%

● FALSE

● TRUE

Figure 4: Chlorophyll-a trends in San Francisco Bay.

then used to determine if a Seasonal Kendall test is warranted. In particular, there
is an option to report a result only if more than half the seasons are each missing
less than half the possible comparisons between the first and last 20% of the years
(Schertz et al. 1991):

> chl27 <- sfbayChla[, "s27"]

> seaKen(chl27)

$sen.slope

[1] 0.1083333

$sen.slope.pct

[1] 2.148168

$p.value

[1] 1.117981e-25

$miss

1 2 3 4 5 6 7 8 9 10 11 12

0.286 0.000 0.000 0.000 0.265 0.265 0.265 0.429 0.143 0.143 0.286 0.429

An important role, in turn, for seaKen in this package is as a support function for
seaRoll, which applies the Seasonal Kendall test to a rolling window of years, such

12

6.1 Trends 6 ANALYZING

as a decadal window. There is an option to plot the results of seaRoll. seaKen is
subject to distortion by correlation among months, but the relatively small number
of years per window in typical use does not allow for an accurate correction:

> seaRoll(chl27, w = 10)

sen.slope sen.slope.pct p.value

1987 0.0000 0.000 1.000

1988 0.0258 0.760 0.357

1989 NA NA NA

1990 NA NA NA

1991 NA NA NA

1992 0.0400 1.090 0.078

1993 NA NA NA

1994 NA NA NA

1995 0.0400 1.010 0.126

1996 -0.0217 -0.567 0.525

1997 -0.0364 -0.900 0.305

1998 NA NA NA

1999 NA NA NA

2000 0.1380 2.720 0.006

2001 NA NA NA

2002 NA NA NA

2003 0.2700 4.440 0.000

2004 0.2870 4.570 0.000

2005 0.3160 5.120 0.000

2006 0.2600 3.800 0.000

2007 0.3160 4.380 0.000

2008 0.3090 4.160 0.000

2009 NA NA NA

The Seasonal Kendall test is not informative when trends for different months
differ in sign. The function seasonTrend enables visualization of individual monthly
trends and can be helpful for, among other things, deciding on the appropriateness of
the Seasonal Kendall test. The Theil-Sen slopes are shown along with an indication,
using dot colour, of the Mann-Kendall test of significance. The dot shape (filled or
empty) indicates whether the proportion of missing values in the first and last fifths
of the data is < 0.5 or not (Figure 5).

> x <- sfbayChla

> seasonTrend(x, plot = TRUE, ncol = 4, scales = "free_y")

13

6.1 Trends 6 ANALYZING

Trend (units year−1)

M
on

th

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

s21

●

●

●

●

●

●

●

●

●

●

●

●

s25

●

●

●

●

●

●

●

●

●

●

●

●

s29

●

●

●

●

●

●

●

●

●

●

●

●

s33

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

s22

●

●

●

●

●

●

●

●

●

●

●

●

s26

●

●

●

●

●

●

●

●

●

●

●

●

s30

●

●

●

●

●

●

●

●

●

●

●

●

s34

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

s23

●

●

●

●

●

●

●

●

●

●

●

●

s27

●

●

●

●

●

●

●

●

●

●

●

●

s31

●

●

●

●

●

●

●

●

●

●

●

●

s35

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

s24

●

●

●

●

●

●

●

●

●

●

●

●

s28

●

●

●

●

●

●

●

●

●

●

●

●

s32

●

●

●

●

●

●

●

●

●

●

●

●

s36

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4

Figure 5: Mann-Kendall tests of chlorophyll trends for individual months at stations
in San Francisco Bay. Trends are expressed in original units per year, in this case µg
L−1 year−1.

14

6.2 Empirical Orthogonal Functions 6 ANALYZING

The function trendHomog can also be used to test directly for the homogeneity of
seasonal trends (van Belle and Hughes 1984):

> x <- sfbayChla[, "s27"]

> trendHomog(x)

$chi2.trend

[1] 118.4498

$chi2.homog

[1] 10.31347

$p.value

[1] 0.5024304

A Regional Kendall test is similar to a Seasonal Kendall test, with annual data
for multiple sites instead of annual data for multiple seasons (Helsel and Frans 2006).
The function mts2ts (Section 5) facilitates transforming an annual matrix time series
into the required vector time series for seaKen, with stations playing the role of
seasons. As with seasons, correlation among sites can inflate the apparent statistical
significance, so the test is best used with stations from different subregions that are
not too closely related, unlike the following example:

> chl <- sfbayChla[, 1:12]

> seaKen(mts2ts(chl, 2:4))

$sen.slope

[1] 0.2155

$sen.slope.pct

[1] 2.379796

$p.value

[1] 4.539847e-24

$miss

1 2 3 4 5 6 7 8 9 10 11 12

0.286 0.286 0.143 0.000 0.286 0.000 0.000 0.000 0.000 0.000 0.286 0.286

6.2 Empirical Orthogonal Functions

Empirical Orthogonal Function (EOF) analysis is a term used primarily in the earth
sciences for principal component analysis applied to simultaneous time series at dif-

15

6.2 Empirical Orthogonal Functions 6 ANALYZING

ch
l2

7a

1980 1985 1990 1995 2000 2005 2010

0
10

20
30

40

Figure 6: Interpolation of a monthly time series (interpolated data in red).

ferent spatial locations. Hannachi et al. (2007) provides a recent comprehensive sum-
mary. The function eof in this package, based on prcomp in the stats package, scales
the time series and applies a promax rotation to the EOFs.

eof does not permit NAs and some kind of data imputation or omission will usually
be required. The function interpTs is handy for interpolating small data gaps. It
can also be used for filling in larger gaps with long-term means or medians. Here, we
use it to bridge gaps of up to three months. The interpolated series is then plotted
in red and the original series overplotted in blue (Figure 6).

> chl27 <- sfbayChla[, "s27"]

> chl27a <- interpTs(chl27, gap = 3)

> plot(chl27a, col = "red", lwd = 0.5, xlab = "")

> lines(chl27, col = "blue", lwd = 1.5)

eof requires an estimate of the number of EOFs to retain for rotation. eofNum

provides a guide to this number by plotting the eigenvalues and their confidence inter-
vals in a “scree” plot. The significance of each eigenvalue is also assessed using rule N,
which repeatedly computes eigenvalues of the correlation matrix for an appropriately-
sized random variable matrix and returns the 0.95 quantiles. Here, we apply eofNum

to annualized San Francisco Bay chlorophyll data and retain the stations with no
missing data, namely, the first 12 stations.

16

6.2 Empirical Orthogonal Functions 6 ANALYZING

Rank

E
ig

en
va

lu
e

2

4

6

8

10

12

● ●
● ● ● ● ● ● ●

●

86.5 93.5
97

98.4 98.9 99.2 99.5 99.7 99.8

78.4

2 4 6 8 10

rule N

●a p < 0.05

●a p ≥ 0.05

Figure 7: Eigenvalues of the San Francisco Bay chlorophyll time series matrix.

> chla1 <- aggregate(sfbayChla, 1, mean, na.rm = TRUE)

> chla1 <- chla1[, 1:12]

> eofNum(chla1, distr = "lognormal", reps = 2000)

These stations have similar coefficients for the first EOF and appear to act as one
with respect to chlorophyll variability on the annual scale (Figure 7). It suggests that
further exploration of the interannual variability of these stations can be simplified
by using a single time series, namely, the first EOF.

> e1 <- eof(chla1, n = 1)

> e1

$REOF

id EOF1

1 s21 0.2984840

2 s22 0.2875436

3 s23 0.3074099

4 s24 0.3038324

5 s25 0.3013699

6 s26 0.2686399

7 s27 0.3116476

17

6.2 Empirical Orthogonal Functions 6 ANALYZING

8 s28 0.2791966

9 s29 0.3042674

10 s30 0.2931426

11 s31 0.2549798

12 s32 0.2445793

$amplitude

id EOF1

1 1978 -3.71779761

2 1979 -3.31653011

3 1980 -3.66943342

4 1981 -2.94304599

5 1982 -2.72889938

6 1983 0.05732382

7 1984 -2.02038749

8 1985 -1.89260439

9 1986 -0.30543129

10 1987 -4.18310354

11 1988 -2.38621346

12 1989 -1.07971835

13 1990 -0.90950909

14 1991 -3.05696910

15 1992 -2.71675623

16 1993 -0.64605278

17 1994 -2.17668147

18 1995 2.32949446

19 1996 -2.59126388

20 1997 0.86074181

21 1998 3.36503739

22 1999 2.70185298

23 2000 3.23687896

24 2001 2.78555990

25 2002 1.53489367

26 2003 5.42194986

27 2004 1.40560267

28 2005 0.58759133

29 2006 6.27913918

30 2007 3.92929848

31 2008 5.84503308

$eigen.pct

[1] 78.4 8.1 7.0 3.5 1.4 0.5 0.3 0.3 0.2 0.2 0.1 0.1

18

6.2 Empirical Orthogonal Functions 6 ANALYZING

A
m

pl
itu

de

−4

−2

0

2

4

6

EOF1

●
●

●

● ●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

1980 1985 1990 1995 2000 2005

Figure 8: Time series for the first EOF of the San Francisco Bay chlorophyll time
series matrix.

$variance

[1] 78.4

The function eofPlot produces a graph of either the EOFs or their accompanying
time series. In this case, with n = 1, there is only one plot for each such graph
(Figure 8).

> eofPlot(e1, type = "amp")

Principal component analysis can also be useful in studying the way different sea-
sonal “modes” of variability contribute to overall year-to-year variability of a single
time series (Jassby 1999). The basic approach is to consider each month as deter-
mining a separate annual time series and then to calculate the eigenvalues for the
resulting 12× n years time series matrix. The function ts2df is useful for expressing
a monthly time series in the form needed by eof. For example, the following code
converts the monthly chlorophyll time series for Station 27 in San Francisco Bay to
the appropriate data frame with October, the first month of the local “water year”,
in the first column, and years with missing data omitted:

> chl27b <- interpTs(sfbayChla[, "s27"], gap = 3)

> chl27b <- ts2df(chl27b, mon1 = 10, addYr = TRUE, omit = TRUE)

> head(round(chl27b, 1))

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

1979 2.1 2.2 1.7 1.9 1.8 2.4 3.8 2.3 4.8 1.6 3.9 2.1

19

6.3 Time series decomposition 6 ANALYZING

Coefficient

Oct

Nov

Dec

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

EOF1

●

●

●

●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

EOF2

●

●

●

●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

Figure 9: Rotated EOFs for the San Francisco Bay Station 27 month × year chloro-
phyll time series.

1980 1.2 1.1 1.2 1.3 1.9 2.1 10.2 3.4 2.1 1.1 1.4 1.6

1983 1.8 1.7 1.0 1.2 1.4 7.0 16.4 16.6 5.4 1.4 1.7 2.0

1984 1.5 1.5 1.4 1.9 2.8 3.0 9.8 3.5 1.2 1.7 2.3 2.9

1986 1.5 1.1 1.2 1.2 1.2 4.0 25.5 4.0 1.5 1.5 1.4 1.4

1987 1.3 1.2 1.1 1.4 1.4 5.1 5.9 5.1 2.9 1.7 2.0 2.0

The following example plots the EOFs from an analysis of this month × year
data frame for Station 27 chlorophyll. eofNum (not shown) suggested retaining up to
two EOFs. The resulting rotated EOFs imply two separate modes of variability for
further exploration, the first operating during May-Sep and the other during Nov-Jan
(Figure 9). The red lines represent an approximate range of thresholds for statistical
significance when sufficient data are used:

> e2 <- eof(chl27b, n = 2)

> eofPlot(e2, type = "coef")

6.3 Time series decomposition

An analysis of chlorophyll a time series from many coastal and estuarine sites around
the world demonstrates that the standard deviation of chlorophyll is approximately

20

6.3 Time series decomposition 6 ANALYZING

proportional to the mean, both among and within sites, as well as at different time
scales (Cloern and Jassby 2010). One consequence is that these monthly time series
are well described by a multiplicative seasonal model: cij = Cyimjεij, where cij is
chlorophyll concentration in year i and month j; C is the long-term mean; yi is the
annual effect; mj is the average seasonal (in this case monthly) effect; and εij is the
residual series, which we sometimes refer to as the “events” component. The annual
effect is simply the annual mean Yi = (1/12)

∑12
j=1 cij divided by the long-term mean:

yi = Yi/C. The average monthly effect is given by mj = (1/N)
∑N

i=1Mij/Yi, where
Mij is the value for month j in year i, and N is the total number of years. The
events component is then obtained by εij = cij/Cyimj. This simple approach is
motivated partly by the observation that many important events for estuaries (e.g.,
persistent dry periods, species invasions) start or stop suddenly. Smoothing to extract
the annualized term, which can disguise the timing of these events and make analysis
of them unnecessarily difficult, is not used.

The decompTs listed here accomplishes this multiplicative decomposition (an op-
tion allows additive decomposition as an alternative). It requires input of a time
series matrix in which the columns are monthly time series. It allows missing data,
but it is up to the user to decide how many data are sufficient and if the pattern of
missing data will lead to bias in the results. If so, it would be advisable to eliminate
problem years beforehand by setting all month values to NA for those years. There
are two cases of interest here: one in which the seasonal effect is held constant from
year to year, and another in which it is allowed to vary by not distinguishing a sep-
arate events component. The choice is made by setting event = TRUE or event =

FALSE, respectively, in the input. If no specific starting or ending year is given, the
input data will be extended to cover January of the earliest or December of the latest
year, respectively. The output of this function is a matrix time series containing the
original time series and its multiplicative model components.

The average seasonal pattern may not resemble observed seasonality in a given
year. Patterns that are highly variable from year to year will result in an average
seasonal pattern of relatively low amplitude (i.e., low range of monthly values) com-
pared to the amplitudes in individual years. An average seasonal pattern with high
amplitude therefore indicates both high amplitude and a recurring pattern for indi-
vidual years. The default time series plot again provides a quick illustration of the
result (Figure 10):

> chl27 <- sfbayChla[, "s27"]

> d1 <- decompTs(chl27)

> plot(d1, nc = 1, main = "Station 27 Chl-a decomposition")

The average seasonal pattern does not provide any information about potential
secular trends in the pattern. A solution is to apply the decomposition to a moving

21

6.3 Time series decomposition 6 ANALYZING

0
10

30

or
ig

in
al

3
4

5
6

7

gr
an

dm
ea

n

0.
6

1.
0

1.
4

1.
8

an
nu

al

0.
5

1.
5

2.
5

se
as

on
al

0
2

4
6

1980 1985 1990 1995 2000 2005 2010

ev
en

ts

Time

Station 27 Chl−a decomposition

Figure 10: Multiplicative decomposition of chlorophyll at Station 27 in San Francisco
Bay.

22

6.3 Time series decomposition 6 ANALYZING

S
tn

 2
7

C
hl

−
a

10

20

30

[1978,1988]

●

●

● ●

●

●
●

●
● ●

Jan Apr Jul Oct

(1988,1999]

●

●

●

●

●

●●
●

●

●

●

Jan Apr Jul Oct

(1999,2009]

●

●
●

●

●
●

●

●

Jan Apr Jul Oct

Figure 11: Composites of seasonal pattern in chl27 for three multi-year intervals in
different plots.

time window. The window should be big enough to yield a meaningful average of
interannual variability but short enough to allow a trend to manifest. This may be
different for different systems, but a decadal window can be used as a starting point.
A more convenient, albeit restrictive, way to examine changing seasonality is with the
dedicated function plotSeason. It divides the time period into equal intervals and
plots a composite of the seasonal pattern in each interval. It also warns of months
that may not be represented by enough data by colouring them red (Figure 11).
plotSeason is an easy way to decide on the value for the event option in decompTs.

> plotSeason(chl27, num.era = 3, same.plot = FALSE, ylab = "Stn 27 Chl-a")

The same boxplots can also be combined in one plot, with boxplots for the same
month grouped together (Figure 12):

> plotSeason(chl27, num.era = 3, same.plot = TRUE, ylab = "Stn 27 Chl-a")

plotSeason also has an option to plot all individual months separately as standard-
ized anomalies for the entire record (Figure 13).

> plotSeason(chl27, "by.month", ylab = "Stn 27 Chl-a")

With all types of seasonal plots, it is often helpful to adjust the device aspect ratio
and size manually to get the clearest information.

23

6.3 Time series decomposition 6 ANALYZING

Stn 27 Chl−a 102030

●

● ●
● ●

● ●

●
●

●
●

● ●

●●

● ●●

●

●

●

● ●
●

●

●
●

●

●

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

E
ra

[1
97

8,
19

88
]

(1
98

8,
19

99
]

(1
99

9,
20

09
]

F
ig

u
re

12
:

C
om

p
os

it
es

of
se

as
on

al
p
at

te
rn

in
c
h
l
2
7

fo
r

th
re

e
m

u
lt

i-
ye

ar
in

te
rv

al
s

in
on

e
p
lo

t.

24

6.4 Phenological parameters 6 ANALYZING

S
tn

 2
7

C
hl

−
a

1.0
1.5
2.0
2.5
3.0
3.5
4.0

5

10

15

2
3
4
5
6
7

Jan

May

Sep

19
80
19

85
19

90
19

95
20

00
20

05

5
10
15
20
25
30

1
2
3
4
5
6
7

2
4
6
8

10
12
14
16

Feb

Jun

Oct

19
80
19

85
19

90
19

95
20

00
20

05

5
10
15
20
25

1
2
3
4
5
6
7
8

5
10
15
20
25
30
35

Mar

Jul

Nov

19
80
19

85
19

90
19

95
20

00
20

05

5
10
15
20
25

5

10

15

5
10
15
20
25

Apr

Aug

Dec

19
80
19

85
19

90
19

95
20

00
20

05

Figure 13: Changing seasonal pattern in chl27 described by the time series of stan-
dardized anomalies for individual months.

6.4 Phenological parameters

phenoPhase and phenoAmp act on monthly time series or dated observations ("zoo"
objects) and produce measures of the phase and amplitude, respectively, for each
year. phenoPhase finds the month containing the maximum value, the fulcrum or
center of gravity, and the weighted mean month. phenoAmp finds the range, the range
divided by mean, and the coefficient of variation. Both functions can be confined to
only part of the year, for example, the months containing the spring phytoplankton
bloom. This feature can also be used to avoid months with chronic missing-data
problems.

Illustrating once again with chlorophyll observations from Station 27 in San Fran-
cisco Bay:

> chl27 <- sfbayChla[, "s27"]

> p1 <- phenoPhase(chl27)

> head(p1)

year max.time fulcrum mean.wt

1 1978 NA NA NA

2 1979 NA NA NA

3 1980 4 4.52 5.54

25

6.4 Phenological parameters 6 ANALYZING

4 1981 NA NA NA

5 1982 NA NA NA

6 1983 NA NA NA

> p2 <- phenoPhase(chl27, c(1, 6))

> head(p2)

year max.time fulcrum mean.wt

1 1978 3 3.37 3.58

2 1979 6 3.94 4.01

3 1980 4 3.99 3.90

4 1981 NA NA NA

5 1982 4 3.86 3.75

6 1983 NA NA NA

> p3 <- phenoAmp(chl27, c(1, 6))

> head(p3)

year range range.mean cv

1 1978 4.450000 1.530086 0.5228641

2 1979 3.033333 1.074803 0.4260272

3 1980 8.900000 2.538827 0.9578382

4 1981 NA NA NA

5 1982 6.509444 1.122560 0.4564730

6 1983 NA NA NA

Using the actual dated observations:

> zchl <- tsMake(sfb, focus = "chl", layer = c(0, 5), type = "zoo")

> head(zchl)

s21 s24 s27 s30 s32 s36

1985-01-23 4.500 5.90000 NaN 1.300000 2.650000 6.25

1985-02-27 NaN NaN NaN 1.600000 5.550000 NaN

1985-03-07 4.800 3.90000 5.200000 5.033333 5.166667 NaN

1985-03-13 2.600 9.35000 7.066667 5.066667 4.500000 NaN

1985-03-21 NaN 7.70000 13.300000 10.200000 4.700000 NaN

1985-03-29 10.175 21.66667 23.600000 30.850000 33.100000 40.10

> zchl27 <- zchl[, 3]

> head(phenoPhase(zchl27))

26

6.5 Miscellaneous plotting functions 6 ANALYZING

year max.time fulcrum mean.wt n

1 1985 1985-03-29 1985-03-31 1985-04-19 17

2 1986 1986-04-29 1986-04-25 1986-04-27 21

3 1987 1987-04-16 1987-05-13 1987-05-18 20

4 1988 1988-04-14 1988-04-27 1988-06-09 16

5 1989 1989-03-01 1989-04-12 1989-04-12 25

6 1990 1990-04-12 1990-04-30 1990-04-21 13

> head(phenoPhase(zchl27, c(1, 6), out = "doy"))

year max.time fulcrum mean.wt n

1 1985 88 85 94 11

2 1986 119 111 109 15

3 1987 106 107 107 12

4 1988 105 84 98 7

5 1989 60 86 87 18

6 1990 102 106 98 10

> head(phenoPhase(zchl27, c(1, 6), out = "julian"))

year max.time fulcrum mean.wt n

1 1985 5566 5563 5572 11

2 1986 5962 5954 5952 15

3 1987 6314 6315 6315 12

4 1988 6678 6657 6671 7

5 1989 6999 7025 7026 18

6 1990 7406 7410 7402 10

6.5 Miscellaneous plotting functions

plotTsAnom plots (unstandardized) departures of vector or matrix time series from
their long-term mean and can be a useful way of examining trends in annualized data
(Figure 14).

> chl <- aggregate(sfbayChla[, 1:6], 1, meanSub, 2:4, na.rm = TRUE)

> plotTsAnom(chl, ylab = "Chlorophyll-a", strip.labels = paste("Station",

+ substring(colnames(chl), 2, 3)))

plotTsTile plots a monthly time series as a month × year grid of tiles, with
color representing magnitude. The data can be binned in either of two ways. The
first is simply by deciles. The second, which is intended for log-anomaly data, is by
four categories: Positive numbers higher or lower than the mean positive value, and
negative numbers higher or lower than the mean negative value. In this version of
plotTsTile, the anomalies are calculated with respect to the overall mean month.

27

6.5 Miscellaneous plotting functions 6 ANALYZING

C
hl

or
op

hy
ll−

a

2
4
6
8

10
12

2
4
6
8

10
12

Station 21

Station 24

19
80

19
85

19
90

19
95

20
00

20
05

Station 22

Station 25

19
80

19
85

19
90

19
95

20
00

20
05

Station 23

Station 26

19
80

19
85

19
90

19
95

20
00

20
05

Figure 14: Anomaly plots for the “spring bloom” (mean Feb–Apr chlorophyll) at six
stations in San Francisco Bay.

28

6.5 Miscellaneous plotting functions 6 ANALYZING

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

1980 1985 1990 1995 2000 2005

value

[−1.1,−0.35]

(−0.35,0]

(0,0.29]

(0.29,0.89]

Figure 15: Image plot of monthly log-anomaly time series for Station 27 chlorophyll.

> chl27 <- sfbayChla[, "s27"]

> plotTsTile(chl27)

This plot shows clearly the change in autumn-winter chlorophyll magnitude after 1999
(Figure 15).

The layOut function is a convenient way to create a graph consisting of two or
more plots produced by the ggplot2 package. The position of each plot is determined
by the beginning row and column numbers. The relative size of each plot is determined
by the sequence lengths of row and column numbers. The total grid size of the graph
is determined automatically by the grid numbers used for individual plots. Manual
adjustment of the graphics window may be useful to get proper aspect ratios and
prevent text from overlapping (Figure 16):

> chl27 = sfbayChla[, "s27"]

> g1 <- plotTsTile(chl27, legend.title = "Chl log-anomaly", square = FALSE)

> g2 <- seasonTrend(chl27, plot = TRUE, legend = TRUE)

> g3 <- plotSeason(chl27, num.era = 3, ylab = expression(paste("Chl-",

+ italic(a), ", ", mu * g ~ L^{

+ -1

+ })))

> layOut(list(g1, 1:2, 1:6), list(g2, 1:2, 7:10), list(g3, 3:5,

+ 1:8))

29

6.5 Miscellaneous plotting functions 6 ANALYZING

Ja
n

F
eb

M
ar

A
pr

M
ayJu
n

Ju
l

A
ug

S
epO
ct

N
ov

D
ec

19
80

19
85

19
90

19
95

20
00

20
05

C
hl

 lo
g−

an
om

al
y

[−
1.

1,
−

0.
35

]

(−
0.

35
,0

]

(0
,0

.2
9]

(0
.2

9,
0.

89
]

Tr
en

d
(u

ni
ts

 y
ea

r−1
)

Month Ja
n

F
eb

M
ar

A
pr

M
ayJu
n

Ju
l

A
ug

S
epO
ct

N
ov

D
ec

●

●

●

●

●

●●

●

●

●

●

● 0.
10

0.
15

0.
20

0.
25

0.
30

p
−

va
lu

e
<

 0
.0

5

●
FA

LS
E

●
T

R
U

E

Chl−a, µg L
−1

102030

●

● ●
● ●

● ●

●
●

●
●

● ●

●●

● ●●

●

●

●

● ●
●

●

●
●

●

●

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

E
ra

[1
97

8,
19

88
]

(1
98

8,
19

99
]

(1
99

9,
20

09
]

F
ig

u
re

16
:

E
x
am

p
le

of
u
se

of
l
a
y
O
u
t

fu
n
ct

io
n

fo
r

th
e

ch
lo

ro
p
h
y
ll
-a

m
on

th
ly

ti
m

e
se

ri
es

at
st

at
io

n
27

in
S
an

F
ra

n
ci

sc
o

B
ay

.

30

REFERENCES

7 Concluding Remarks

In the near future, this package will remain focused on typical data sets that have
accumulated in long-term coastal water quality monitoring programs, namely, those
collected at a frequency of about 101 to 102 times per year at 101 to 102 sites. Aside
from incremental revision and addition of specific functions, the package direction
will be driven by the needs of people actually using it. Suggestions or reports of any
problems are welcome.

References

Cloern, J. E., and A. D. Jassby. 2010. Patterns and scales of phytoplankton
variability in estuarine-coastal ecosystems. Estuaries and Coasts 33: 230–241.

Grothendieck, G., and T. Petzoldt. 2004. R help desk: Date and time classes
in R. R News 4: 29–32.

Hannachi, A., I. T. Jolliffe, and D. B. Stephenson. 2007. Empirical orthogo-
nal functions and related techniques in atmospheric science: A review. International
Journal of Climatology 27: 1119–1152.

Helsel, D., and L. Frans. 2006. Regional Kendall test for trend. Environmental
Science and Technology 40: 4066–4073.

Helsel, D., and R. Hirsch. 2002. Statistical methods in water resources, Tech-
niques of Water-Resources Investigations of the United States Geological Survey.
Book 4, Hydrologic Analysis and Interpretation. Chapter A3. U.S. Geological Sur-
vey.

Hirsch, R., J. Slack, and R. Smith. 1982. Techniques of trend analysis for
monthly water quality data. Water Resources Research 18: 107–121.

Jassby, A. D. 1999. Uncovering mechanisms of interannual variability in ecological
time series, pp. 285–306. In K. Scow, G. Fogg, D. Hinton, and M. Johnson [eds.],
Integrated assessment of ecosystem health. CRC Press.

Schertz, T. L., R. B. Alexander, and D. J. Ohe. 1991. The computer program
EStimate TREND (ESTREND), a system for the detection of trends in water-
quality data. Water-Resources Investigations Report 91-4040, U.S. Geological Sur-
vey.

van Belle, G., and J. P. Hughes. 1984. Nonparametric tests for trend in water
quality. Water Resources Research 20: 127–136.

31

	Introduction
	Preparing data from an external file
	The WqData class
	Creating a WqData object
	Reshaping
	Analyzing
	Trends
	Empirical Orthogonal Functions
	Time series decomposition
	Phenological parameters
	Miscellaneous plotting functions

	Concluding Remarks

