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Abstract

We describe a representation of linear mixed-effects models using
positive semidefinite, symmetric, compressed, column-oriented, sparse
matrices. This representation provides for efficient evaluation of the
profiled log-likelihood or profiled restricted log-likelihood of the model,
given the relative precision parameters of the random effects. The eval-
uation is based upon the Cholesky decomposition of the augmented
sparse representation. Additionally, we can use information from this
representation to evaluate ECME updates and the gradient and Hes-
sian of the objective criterion.

The ordering of the columns (and, correspondingly, the rows) of a
positive semidefinite, symmetric sparse matrix can have a substantial
effect on the amount of fill-in generated by the Cholesky decompo-
sition. For the particular matrices considered here the ordering will
only become important when random effects are associated with more
that one grouping factor and the grouping factors are neither nested
nor fully crossed. We say that such factors are partially crossed, a
situation that is very common in observational data.

Several methods for determining favorable orderings have been pro-
posed but these generally reorder all the columns. In our case the
columns are grouped. We show that we can reorder the columns while
preserving the grouping and still attain acceptable levels of fill-in.
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1 Introduction

This report is directed at two audiences: sparse matrix researchers and
mixed-effects model researchers. To make the ideas accessible to both audi-
ences I will need to introduce a formulation of mixed models for the sparse
matrix researchers and also to introduce sparse matrix representation for the
mixed model researchers.

Linear mixed-effects models are described in detail in Pinheiro and Bates
(2000). In chapter 3 of that book we provide details of computational meth-
ods suitable for mixed models with a single level of random effects or with
multiple, nested levels of random effects. (Detailed descriptions of terms like
“levels” of “random effects” and “nesting” are given later.) Those methods
were based on orthogonal-triangular (also called QR) decompositions. Later,
in Bates and DebRoy (2004) we generalized these computational methods
and showed that all of the important results can be calculated from the
Cholesky decomposition of a large, sparse, positive definite, symmetric ma-
trix. We also provide additional computational results for the specific cases
considered in Pinheiro and Bates (2000, ch. 3).

In this report I formulate a general approach to linear mixed model cal-
culations using sparse matrix techniques. For an important class of mixed
model problems, those with partially crossed grouping factors, the sparse ma-
trix methods will be competitive with, and probably quite superior to, any
existing methods. I believe that even for the problems with simpler struc-
ture, either a single grouping factor or nested grouping factors, an efficient
implementation of the sparse-matrix-based methods will be competitive with
the best current methods.

Opportunities for efficiency exist because we must repeatedly perform
Cholesky decompositions of matrices with the same pattern of non-zero en-
tries (and somewhat different values of those non-zero entries) and because
the non-zero entries occur in dense blocks. Many methods for sparse matri-
ces have both a symbolic phase, where the pattern of the non-zero entries in
the result is determined, and a numeric phase, where the actual results are
determined. For decompositions part of the symbolic phase is determination
of permutation of the rows and columns that reduces fill-in for the decom-
position. In our problem the symbolic phase need only be done once and it
can be performed based the positions of the blocks. The matrix giving the
positions of the blocks is frequently much smaller and easier to manipulate
than the matrix that is to be decomposed. Furthermore, the blocks provide
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a natural way of using multifrontal techniques, that is, using dense matrix
building blocks in a sparse matrix calculation, for this problem.

In the next section I introduce a general form of linear mixed-models
and the notation I will use. I also introduce three sample data sets and
models. These include a very simple example that can be used to illustrate
details of the calculations, a moderate-sized example that has been used to
illustrate other methods, and a very large example that can show the savings
available with sparse matrix methods. In section In §5 I introduce sparse
matrix storage schemes and computational methods and show how they can
be applied to the examples. Throughout we illustrate these methods using
the Matrix package for R (?), which provides an implementation of sparse
matrix methods for linear mixed-effects models. This R package is based on
code from the LDL, TAUCS, Metis, and UMFPACK packages.

2 Linear mixed models

As described in Bates and DebRoy (2004) a linear mixed-effects model can
be written as

y = Xβ + Zb + ε ε ∼ N (0, σ2I), b ∼ N (0, σ2Ω−1), ε ⊥ b (1)

where y is the n-dimensional response vector, X is an n×p model matrix for
the p-dimensional fixed-effects vector β, Z is the n× q model matrix for the
q-dimensional random-effects vector b that has a Gaussian distribution with
mean 0 and relative precision matrix Ω (i.e., Ω is the precision of b relative
to the precision of ε), and ε is the random noise assumed to have a spherical
Gaussian distribution. The symbol ⊥ indicates independence of random
variables. We assume that X has full column rank and that Ω is positive
definite. Furthermore Ω is a function of an (unconstrained) parameter vector
θ.

Generally p, the dimension of β, is moderate but q, the dimension of b can
be huge. Using the response and the model matrices, y, X and Z, which are
evaluated from the observed data, we determine the estimates of the model
parameters; β, θ, and σ2, as those values that optimize the likelihood func-
tion or, more commonly, a variant called the restricted likelihood. Both the
likelihood and the restricted likelihood must be positive and their logarithms,
called the log-likelihood and the log-restricted-likelihood, are generally easier
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to evaluate and provide a better quadratic approximation for optimization
than the original functions, so we work on the log-likelihood scale.

The dimension of θ is typically very small. Even in complex, “real-world”
models applied to data sets with millions of observations the dimension of θ
can be as small as two or three. Conditional on a value of θ, the optimal
values of β and σ2 can be determined from a penalized least squares problem
based on y, X, Z, and Ω

min
b,β

∥∥∥∥ỹ −Φ(θ)

[
b
β

]∥∥∥∥2

where Φ(θ) =

[
Z X

∆(θ) 0

]
, ỹ =

[
y
0

]
, (2)

and ∆(θ)T∆(θ) = Ω. One way to solve problem (2) is form Le and De, the
LDL form of the Cholesky decomposition,ZTZ + Ω ZTX ZTy

XTZ XTX XTy
yTZ yTX yTy

 = LDLT where L =

LZZ 0 0
LXZ LXX 0
`yZ `yZ 1

 (3)

and D is diagonal with non-negative diagonal elements. The matrix L is
unit lower triangular (i.e. it is lower triangular and its diagonal elements are
all unity).

We divide the diagonal of D into three components; dZ of length q, dX

of length p, and the scalar dy . Our assumptions that Ω be positive definite
and that X have full column rank ensure that the elements of dZ and dX

are positive. Because the only cases where dy = 0 are trivial cases with exact
fits to the response, we will assume that dy > 0.

In Bates and DebRoy (2004) we wrote the Cholesky decomposition (3) as
RTR where R is upper triangular and, from that, derived expressions for the
profiled log-likelihood ˜̀(θ) and the profiled log-restricted-likelihood, ˜̀

R(θ).
These “profiled” functions are functions of θ only. They are the values of the
corresponding objective function at the conditionally optimal values of the
other parameters, β and σ2. Translating from the representation in Bates
and DebRoy (2004) to the representation used here provides

−2˜̀(θ) = log

(∣∣ZTZ + Ω
∣∣

|Ω|

)
+ n

[
1 + log

(
2πdy

n

)]
(4)

−2˜̀
R(θ) = log

(∣∣ZTZ + Ω
∣∣ |LXX |2

|Ω|

)
+ (n− p)

[
1 + log

(
2πdy

n− p

)]
(5)
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As discussed later, Ω has a block diagonal structure and its determinant is
easily evaluated. The determinant

∣∣ZTZ + Ω
∣∣ is the product of the elements

of dZ and |LXX |2 is the product of the elements of dX .
The other results given in Bates and DebRoy (2004) can be calculated

from L and D. To make all this feasible the structure and, in particular, the
sparsity of Z and Ω must be exploited.

Sparsity in Z (and Ω) occurs when the random effects vector b is divided
into small components associated with one or more factors that group the
observations. It is easiest to illustrate this with some examples.

3 Examples of mixed-effects models

3.1 A simple variance components model

In Pinheiro and Bates (2000, §1.1) we discuss measurements of the travel time
of a certain type of ultrasonic wave in six different railway rails. Each rail
was tested three times yielding a total of 18 observations. Each observation
denotes the rail and the observed travel time. A simple data plot (e.g. Fig.
1.1 in Pinheiro and Bates (2000)) shows that the variation between responses
on different rails is much greater than the variation between responses on the
same rail. We model this as

yij = µ + bi + εij i = 1, . . . , 6, j = 1, . . . , 3 bi ∼ N (0, σ2
b ), εij ∼ N (0, σ2)

(6)
where σ2 is the within-rail variance and σ2

b is the between-rail variance. These
are called the variance components.

The random variable bi is the deviation of the mean travel time for rail
i from the overall mean travel time µ. These are called the random effects
associated with the rails.

We can express model (6) in the form (1) by setting

b = (b1, b2, . . . , b6)
T

β = µXT = [1, 1, . . . , 1]T
(7)

and Z to be the 18× 6 matrix of indicators of the rail. The matrix

Ω =
σ2

σ2
a

I6 (8)
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where I is the 6×6 identity matrix. The multiple σ2

σ2
a

is the relative precision
of the random effects and the parameter θ is a scalar that determines this
multiple. To obtain an unconstrained θ we could use the logarithm of the
ratio

θ = log
(
σ2
)
− log

(
σ2

a

)
(9)

The first few rows of Z, X, and y are

> data(Rail, package = "nlme")

> ZXy = cbind(model.matrix(~Rail - 1, Rail), X = 1, y = Rail$travel)

> ZXy[1:4, ]

Rail2 Rail5 Rail1 Rail6 Rail3 Rail4 X y

1 0 0 1 0 0 0 1 55

2 0 0 1 0 0 0 1 53

3 0 0 1 0 0 0 1 54

4 1 0 0 0 0 0 1 26

The matrix to be decomposed is obtained by adding Ω to the 6 × 6 upper
left submatrix of

> crossprod(ZXy)

Rail2 Rail5 Rail1 Rail6 Rail3 Rail4 X y

Rail2 3 0 0 0 0 0 3 95

Rail5 0 3 0 0 0 0 3 150

Rail1 0 0 3 0 0 0 3 162

Rail6 0 0 0 3 0 0 3 248

Rail3 0 0 0 0 3 0 3 254

Rail4 0 0 0 0 0 3 3 288

X 3 3 3 3 3 3 18 1197

y 95 150 162 248 254 288 1197 89105

For example, if eθ = 0.1 then the Cholesky decomposition is

> options(digits = 5)

> chol(crossprod(ZXy) + diag(c(rep(0.1, 6), 0, 0)))
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Rail2 Rail5 Rail1 Rail6 Rail3 Rail4 X y

Rail2 1.7607 0.0000 0.0000 0.0000 0.0000 0.0000 1.7039 53.956

Rail5 0.0000 1.7607 0.0000 0.0000 0.0000 0.0000 1.7039 85.194

Rail1 0.0000 0.0000 1.7607 0.0000 0.0000 0.0000 1.7039 92.010

Rail6 0.0000 0.0000 0.0000 1.7607 0.0000 0.0000 1.7039 140.855

Rail3 0.0000 0.0000 0.0000 0.0000 1.7607 0.0000 1.7039 144.262

Rail4 0.0000 0.0000 0.0000 0.0000 0.0000 1.7607 1.7039 163.573

X 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7620 50.673

y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 22.234

As seen in this example the cross-product matrix is sparse and only only
the diagonal and the last two rows need to be stored. (It happens that
ZTZ is a multiple of the identity, as is Ω, and this could lead to further
simplifications. However, this property depends on the fact that the data are
balanced in the sense that there are the same number of observations made
on each rail. Although data from a designed experiment may be balanced,
observational data are almost never balanced so it is not worthwhile trying
to exploit this special structure.)

In general the trailing p + 1 rows (and columns) of the cross-product
matrix will be dense. The structure of the other summarized as

In §4 we describe two of the popular sparse matrix representations and for-
mation of the Cholesky decomposition of sparse, symmetric, positive semidef-
inite matrices. The number of non-zero entries in the Cholesky factor can
depend on the ordering of the columns (and, correspondingly, the rows) of
the original matrix. Various methods have been proposed to choose optimal
or near-optimal reorderings. This is an example of symbolic analysis that can
be used before the numeric computation to reduce the amount of numeric
computation. We describe others.

4 Sparse matrix classes and methods in the

Matrix package for R

The simplest representation of a sparse matrix X is to store a triplet (i, j, xij)
for each non-zero element. If the triplets are sorted, say by column order,
the column indices will occur in blocks of equal values. In the compressed,
sparse, column-oriented format the entries are sorted in increasing column
order and a set of pointers to the beginning of each column are used instead of
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the column values themselves. The tripletMatrix class in the Matrix package
provides the triplet format and the cscMatrix class provides the compressed,
sparse column-oriented format. In both these classes indices are 0-based (for
compatibility with the underlying C code) and not 1-based as is common in
R.

> library(Matrix)

> mm = new("tripletMatrix", i = as(c(0, 2, 3, 1, 2, 0, 3, 4,

+ 3, 4), "integer"), j = as(c(0, 0, 0, 1, 1, 2, 2, 2, 3,

+ 3), "integer"), x = (1:10)/10, Dim = as(c(5, 4), "integer"))

> m1 = as(mm, "cscMatrix")

> str(m1)

list()

- attr(*, "p")= int [1:5] 0 3 5 8 10

- attr(*, "i")= int [1:10] 0 2 3 1 2 0 3 4 3 4

- attr(*, "x")= num [1:10] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

- attr(*, "Dim")= int [1:2] 5 4

- attr(*, "factorization")= list()

- attr(*, "class")= atomic [1:1] cscMatrix

..- attr(*, "package")= chr "Matrix"

> as(m1, "matrix")

[,1] [,2] [,3] [,4]

[1,] 0.1 0.0 0.6 0.0

[2,] 0.0 0.4 0.0 0.0

[3,] 0.2 0.5 0.0 0.0

[4,] 0.3 0.0 0.7 0.9

[5,] 0.0 0.0 0.8 1.0

> diff(m1@p)

[1] 3 2 3 2

We see that the p slot in a cscMatrix with 4 columns has 5 elements. The
first element is always zero and the successive differences are the numbers of
non-zero elements in each column. The total number of non-zero elements
is the value of the last element of the p slot. This is also the length of the
vector of row indices in the i slot.
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The validation method for the cscMatrix class ensures that the row indices
are increasing within columns and reorders the i and x slots if necessary to
achieve this. Technically, the objects in this class can be described as sorted,
compressed, sparse, column-oriented matrices.

Objects in the tscMatrix class represent triangular, sparse, column-oriented
matrices and those in the sscMatrix class represent symmetric, sparse, column-
oriented matrices. Only the upper triangle or the lower triangle, as indicated
by "U" or "L" in the uplo slot, of a symmetric matrix is stored. The crossprod
function applied to a cscMatrix produces an sscMatrix.

> class(m2 <- crossprod(m1))

[1] "sscMatrix"

attr(,"package")

[1] "Matrix"

> as(m2, "matrix")

[,1] [,2] [,3] [,4]

[1,] 0.14 0.00 0.00 0.00

[2,] 0.10 0.41 0.00 0.00

[3,] 0.27 0.00 1.49 0.00

[4,] 0.27 0.00 1.43 1.81

In Statistics we usually define the Cholesky decomposition of a positive
semidefinite, symmetric matrix A as an upper triangular matrix R such that
A = RTR but it is also frequently defined as a lower triangular matrix L
such that A = LLT. Naturally, L and R are transposes of each other. On
occasion there are advantages to working with the left factor L instead of
the right factor R.

For a sparse, symmetric, semidefinite matrix reordering the columns (and,
correspondingly, the rows) of A can change the number of non-zero elements
in the Cholesky factor. The number of elements in the Cholesky factor is at
least the number of non-zero elements in the lower triangle of A. Additional
non-zeros can be generated during the decomposition. This process is called
“fill-in”. Various methods of determining a fill-minimizing order have been
proposed. We use a graph-based method implemented in the Metis package.

The chol function generates the Cholesky decomposition. When applied
to an sscMatrix object it defaults to generating a fill-reducing permutation
and the Cholesky factor of the permuted matrix.
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> m3 = chol(m2)

> as(m3, "matrix")

[,1] [,2] [,3] [,4]

[1,] 1.34536 0.000000 0.00000 0.00000

[2,] 1.06291 0.600184 0.00000 0.00000

[3,] 0.00000 0.000000 0.64031 0.00000

[4,] 0.20069 0.094446 0.15617 0.25771

> m3@perm

[1] 3 2 1 0

If we set the optional argument pivot to FALSE, calculation of the fill-
reducing permutation is suppressed.

> as(chol(m2, pivot = FALSE), "matrix")

[,1] [,2] [,3] [,4]

[1,] 0.37417 0.00000 0.00000 0.00000

[2,] 0.26726 0.58187 0.00000 0.00000

[3,] 0.72161 -0.33144 0.92705 0.00000

[4,] 0.72161 -0.33144 0.86233 0.66016

In this example the fill-reducing permutation reverses the order of the columns
and rows of m2 before taking the decomposition. It results in two fewer non-
zero elements in the decomposition than when we suppress the permutation.

4.1 Symbolic versus numeric computation

Calculation of the fill-reducing ordering is an example of a symbolic com-
putation on sparse matrices in that it is based only on the positions of the
non-zero elements, not upon their values. Frequently a sparse-matrix com-
putation has both a symbolic phase, which typically determines the number
and positions of the non-zero entries in the result, and a numeric phase that
actually calculates these non-zero elements.

Evaluation of the profiled log-likelihood or profiled log-restricted-likelihood
requires updating the diagonal blocks in ZTZ and taking the Cholesky de-
composition of the resulting matrix. The symbolic phases, including calcu-
lation of a fill-reducing ordering only need to be done once.
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Recently Tim Davis has released the LDL package that provides a concise
Cholesky factorization of the form A = LDLT where L is a unit lower
triangular matrix (i.e. all the diagonal elements are unity) and D is diagonal
and stored as a single vector. This representation is particularly convenient
for us because the diagonal elements (which must be non-zero when A is
positive definite) often constitute a substantial portion of the total number
of non-zero elements in the Cholesky factor and, in this representations, we
do not encounter the extra indexing overhead when accessing these elements.
Also the determinant of A (or, for our purposes, the determinants of leading
diagonal submatrices of A) can be calculated directly from the diagonal of
D.

As shown in the examples in the next section we can determine fill-
reducing orderings and sizes of Cholesky factors of the matrices that we
wish to decompose by considering first the pairwise cross-tabulations of the
grouping factors.

5 Some examples

Data on achievement scores of Scottish secondary school students is described
in Paterson (1991) and included as the data set ScotsSec in the mlmrev pack-
age for R that provides the data sets from the multilevel modelling software
review.

> data(ScotsSec, package = "Matrix")

> dim(ScotsSec)

[1] 3435 6

> summary(ScotsSec)

verbal attain primary sex social

Min. :-30.00 Min. : 1.00 61 : 72 M:1739 Min. : 0.00

1st Qu.:-11.00 1st Qu.: 3.00 122 : 68 F:1696 1st Qu.: 0.00

Median : -2.00 Median : 5.00 32 : 58 Median : 0.00

Mean : -2.20 Mean : 5.68 24 : 57 Mean : 6.84

3rd Qu.: 7.00 3rd Qu.: 9.00 6 : 55 3rd Qu.:20.00

Max. : 40.00 Max. :10.00 1 : 54 Max. :31.00

(Other):3071
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second

14 : 290

18 : 257

12 : 253

6 : 250

11 : 234

17 : 233

(Other):1918

These data contain the achievement scores (attain) of 3435 secondary
school students in Scotland. Along with demographic data (sex and social
class) and a verbal reasoning score based on tests taken at entry to sec-
ondary school, the primary school and the secondary school that the student
attended are recorded.

There are 148 distinct primary schools and 19 distinct secondary schools
represented in these data and, in common models for such data (Lockwood
et al., 2003), there would be one or more coefficients in b associated with
each school. We say that primary and second are grouping factors for the
random effects.

When the random effects are grouped according to more than one group-
ing factors, as here, it is important to determine if the grouping factors are
crossed (every level of factor 1 occurs with every level of factor 2) or nested
(each level of factor 1 occurs with only one level of factor 2) or partially
crossed, which is how we describe grouping factors that are neither (fully)
crossed nor strictly nested.

In this case the grouping factors primary and second are partially crossed.
We can express this graphically through the image of the cross-tabulation of
the grouping factors. We can generate such a cross-tabulation as a sym-
metric, sparse, compressed column matrix with the sscCrosstab function and
use image to show the non-zero elements graphically. (Only the non-zero
elements in the lower triangle are shown.)

> ctab = sscCrosstab(ScotsSec[, c("primary", "second")])

> str(ctab)

list()

- attr(*, "Gp")= int [1:3] 0 148 167

- attr(*, "perm")= int(0)

- attr(*, "uplo")= chr "U"
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- attr(*, "p")= int [1:168] 0 1 2 3 4 5 6 7 8 9 ...

- attr(*, "i")= int [1:470] 0 1 2 3 4 5 6 7 8 9 ...

- attr(*, "x")= num [1:470] 54 7 3 7 53 55 22 15 33 18 ...

- attr(*, "Dim")= int [1:2] 167 167

- attr(*, "factorization")= list()

- attr(*, "class")= atomic [1:1] sscCrosstab

..- attr(*, "package")= chr "Matrix"
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José C. Pinheiro and Douglas M. Bates. Mixed-Effects Models in S and S-
PLUS. Springer, 2000. ISBN 0-387-98957-9. 2, 5

13

http://CRAN.R-project.org/doc/Rnews/

	Introduction
	Linear mixed models
	Examples of mixed-effects models
	A simple variance components model

	Sparse matrix classes and methods in the Matrix package for R
	Symbolic versus numeric computation

	Some examples

