
Package ‘HEMDAG’
February 2, 2018

Title Hierarchical Ensemble Methods for Directed Acyclic Graphs

Version 2.0.1

Author Marco Notaro [aut, cre] and Giorgio Valentini [aut]
(AnacletoLab, Dipartimento di Informatica, Universita' degli Studi di Milano)

Maintainer Marco Notaro <marco.notaro@unimi.it>

Description An implementation of Hierarchical Ensemble Methods for Di-
rected Acyclic Graphs (DAGs). The 'HEMDAG' package can be used to enhance the predic-
tions of virtually any flat learning methods, by taking into account the hierarchical na-
ture of the classes of a bio-ontology. 'HEMDAG' is specifically designed for exploiting the hier-
archical relationships of DAG-structured taxonomies, such as the Human Phenotype Ontol-
ogy (HPO) or the Gene Ontology (GO), but it can be also safely applied to tree-structured tax-
onomies (as FunCat), since trees are DAGs. 'HEMDAG' scale nicely both in terms of the complex-
ity of the taxonomy and in the cardinality of the examples. (Marco Notaro, Max Schubach, Pe-
ter N. Robinson and Giorgio Valentini (2017) <doi:10.1186/s12859-017-1854-y>).

Depends R (>= 2.10)

License GPL (>= 3)

Encoding UTF-8

Repository CRAN

LazyLoad true

NeedsCompilation no

Imports graph,
RBGL,
PerfMeas,
precrec,
preprocessCore,
methods

Suggests Rgraphviz

RoxygenNote 6.0.1

R topics documented:
HEMDAG-package . 3

1

2 R topics documented:

ancestors . 4
AUPRC.single.class . 5
AUPRC.single.over.classes . 5
AUROC.single.class . 6
AUROC.single.over.classes . 7
check.annotation.matrix.integrity . 8
check.DAG.integrity . 9
children . 9
compute.flipped.graph . 10
constraints.matrix . 11
descendants . 11
DESCENS . 12
distances.from.leaves . 14
do.edges.from.HPO.obo . 15
Do.FLAT.scores.normalization . 16
Do.full.annotation.matrix . 17
Do.heuristic.methods . 18
Do.heuristic.methods.holdout . 21
Do.HTD . 23
Do.HTD.holdout . 25
do.subgraph . 27
do.submatrix . 28
do.unstratified.cv.data . 29
example.datasets . 29
find.best.f . 30
find.leaves . 32
full.annotation.matrix . 32
graph.levels . 33
Heuristic-Methods . 34
hierarchical.checkers . 35
HTD-DAG . 36
Multilabel.F.measure . 37
normalize.max . 38
parents . 39
read.graph . 40
read.undirected.graph . 40
root.node . 41
specific.annotation.list . 42
specific.annotation.matrix . 42
stratified.cross.validation . 43
TPR-DAG . 44
TPR-DAG-cross-validation . 46
TPR-DAG-holdout . 49
TPR-DAG-variants . 53
transitive.closure.annotations . 54
tupla.matrix . 55
weighted.adjacency.matrix . 56
write.graph . 57

HEMDAG-package 3

Index 58

HEMDAG-package HEMDAG: Hierarchical Ensemble Methods for Directed Acyclic
Graphs

Description

The HEMDAG package provides an implementation of several Hierarchical Ensemble Methods for
DAGs. HEMDAG can be used to enhance the predictions of virtually any flat learning methods, by
taking into account the hierarchical nature of the classes of a bio-ontology. HEMDAG is specifically
designed for exploiting the hierarchical relationships of DAG-structured taxonomies, such as the
Human Phenotype Ontology (HPO) or the Gene Ontology (GO), but it can be also safely applied to
tree-structured taxonomies (as FunCat), since trees are DAGs. HEMDAG scale nicely both in terms
of the complexity of the taxonomy and in the cardinality of the examples.

Details

The HEMDAG package provides many utility functions to handle graph data structures and imple-
ments several Hierarchical Ensemble Methods for DAGs:

1. HTD-DAG: Hierarchical Top Down (HTD-DAG);

2. TPR-DAG: True-Path Rule (TPR-DAG);

3. DESCENS: Descendants Ensemble Classifier (DESCENS);

4. MAX, AND, OR: Heuristic Methods, Obozinski et al. (Heuristic-Methods);

Author(s)

Marco Notaro and Giorgio Valentini, AnacletoLab, DI, Dipartimento di Informatica, Universita’
degli Studi di Milano

Maintainer: Marco Notaro <marco.notaro@unimi.it>

References

Marco Notaro, Max Schubach, Peter N. Robinson and Giorgio Valentini, Prediction of Human Phe-
notype Ontology terms by means of Hierarchical Ensemble methods, BMC Bioinformatics 2017,
18(1):449, doi:10.1186/s12859-017-1854-y

https://sites.google.com/site/anacletolaboratory/
https://doi.org/10.1186/s12859-017-1854-y

4 ancestors

ancestors Build ancestors

Description

Compute the ancestors for each node of a graph

Usage

build.ancestors(g)

build.ancestors.per.level(g, levels)

build.ancestors.bottom.up(g, levels)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes

levels a list of character vectors. Each component represents a graph level and the
elements of any component correspond to nodes. The level 0 coincides with the
root node.

Value

build.ancestos returns a named list of vectors. Each component corresponds to a node x of the
graph and its vector is the set of its ancestors including also x.

build.ancestors.per.level returns a named list of vectors. Each component corresponds to a
node x of the graph and its vector is the set of its ancestors including also x. The nodes are ordered
from root (included) to leaves.

build.ancestors.bottom.up a named list of vectors. Each component corresponds to a node x
of the graph and its vector is the set of its ancestors including also x. The nodes are ordered from
leaves to root (included).

See Also

graph.levels

Examples

data(graph);
root <- root.node(g);
anc <- build.ancestors(g);
lev <- graph.levels(g, root=root);
anc.tod <-build.ancestors.per.level(g,lev);
anc.bup <- build.ancestors.bottom.up(g,lev);

AUPRC.single.class 5

AUPRC.single.class AUPRC single class

Description

High-level function to compute the Area under the Precision Recall Curve (AUPRC) just for a single
class through precrec package

Usage

AUPRC.single.class(target, pred)

Arguments

target vector of the true labels (0 negative, 1 positive examples)

pred numeric vector of the values of the predicted labels (scores)

Value

a numeric value corresponding to the AUPRC for the considered class

See Also

AUPRC.single.over.classes

Examples

data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
PRC <- AUPRC.single.class(L[,3],S[,3]);

AUPRC.single.over.classes

AUPRC over classes

Description

High-level function to compute the Area under the Precision Recall Curve (AUPRC) across a set of
classes through precrec package

Usage

AUPRC.single.over.classes(target, pred)

6 AUROC.single.class

Arguments

target matrix with the target multilabels: rows correspond to examples and columns
to classes. target[i, j] = 1 if example i belongs to class j, target[i, j] = 0
otherwise.

pred a numeric matrix with predicted values (scores): rows correspond to examples
and columns to classes.

Value

a list with two elements:

1. average: the average AUPRC across classes;

2. per.class: a named vector with AUPRC for each class. Names correspond to classes

See Also

AUPRC.single.class

Examples

data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
PRC <- AUPRC.single.over.classes(L,S);

AUROC.single.class AUROC single class

Description

High-level function to compute the Area under the ROC Curve (AUPRC) just for a single class
through precrec package

Usage

AUROC.single.class(target, pred)

Arguments

target vector of the true labels (0 negative, 1 positive examples)

pred numeric vector of the values of the predicted labels (scores)

Value

a numeric value corresponding to the AUROC for the considered class

AUROC.single.over.classes 7

See Also

AUROC.single.over.classes

Examples

data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
AUC <- AUROC.single.class(L[,3],S[,3]);

AUROC.single.over.classes

AUROC over classes

Description

High-level function to compute the Area under the ROC Curve (AUROC) for a set of classes through
precrec package

Usage

AUROC.single.over.classes(target, pred)

Arguments

target matrix with the target multilabels: rows correspond to examples and columns
to classes. target[i, j] = 1 if example i belongs to class j, target[i, j] = 0
otherwise.

pred a numeric matrix with predicted values (scores): rows correspond to examples
and columns to classes.

Value

a list with two elements:

1. average: the average AUROC across classes;

2. per.class: a named vector with AUROC for each class. Names correspond to classes

See Also

AUROC.single.class

8 check.annotation.matrix.integrity

Examples

data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
AUC <- AUROC.single.over.classes(L,S);

check.annotation.matrix.integrity

Annotation matrix checker

Description

This function assess the integrity of an annotation table in which a transitive closure of annotations
was performed

Usage

check.annotation.matrix.integrity(anc, ann.spec, hpo.ann)

Arguments

anc list of the ancestors of the ontology.

ann.spec the annotation matrix of the most specific annotations (0/1): rows are genes and
columns are terms.

hpo.ann the full annotations matrix (0/1), that is the matrix in which the transitive closure
of the annotation was performed. Rows are examples and columns are classes.

Value

If the transitive closure of the annotations is well performed "OK" is returned, otherwise a message
error is printed on the stdout

See Also

build.ancestors, transitive.closure.annotations, full.annotation.matrix

Examples

data(graph);
data(labels);
anc <- build.ancestors(g);
tca <- transitive.closure.annotations(L, anc);
check.annotation.matrix.integrity(anc, L, tca);

check.DAG.integrity 9

check.DAG.integrity DAG checker

Description

This function assess the integrity of a DAG

Usage

check.DAG.integrity(g, root = "00")

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes
root name of the class that is on the top-level of the hierarchy (def:"00")

Value

If there are nodes not accessible from the root "OK" is printed, otherwise a message error and the
list of the not accessible nodes is printed on the stdout

Examples

data(graph);
root <- root.node(g);
check.DAG.integrity(g, root=root);

children Build children

Description

Compute the children for each node of a graph

Usage

build.children(g)

get.children.top.down(g, levels)

get.children.bottom.up(g, levels)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes
levels a list of character vectors. Each component represents a graph level and the

elements of any component correspond to nodes. The level 0 coincides with the
root node.

10 compute.flipped.graph

Value

build.children returns a named list of vectors. Each component corresponds to a node x of the
graph and its vector is the set of its children

get.children.top.down returns a named list of character vectors. Each component corresponds
to a node x of the graph (i.e. parent node) and its vector is the set of its children. The nodes are
ordered from root (included) to leaves.

get.children.bottom.up returns a named list of character vectors. Each component corresponds
to a node x of the graph (i.e. parent node) and its vector is the set of its children. The nodes are
ordered from leaves (included) to root.

See Also

graph.levels

Examples

data(graph);
root <- root.node(g);
children <- build.children(g);
lev <- graph.levels(g, root=root);
children.tod <- get.children.top.down(g,lev);
children.bup <- get.children.bottom.up(g,lev);

compute.flipped.graph Flip Graph

Description

Compute a directed graph with edges in the opposite direction

Usage

compute.flipped.graph(g)

Arguments

g a graphNEL directed graph

Value

a graph (as an object of class graphNEL) with edges in the opposite direction w.r.t. g

Examples

data(graph);
g.flipped <- compute.flipped.graph(g);

constraints.matrix 11

constraints.matrix Constraints Matrix

Description

This function returns a matrix with two columns and as many rows as there are edges. The entries
of the first columns are the index of the node the edge cames from (i.e. children nodes), the entries
of the second columns indicate the index of node the edge is to (i.e. parents nodes). Referring to a
DAG this matrix defines a partial order.

Usage

constraints.matrix(g)

Arguments

g a graph of class graphNELL. It represents the hierarchy of the classes

Value

a constraints matrix w.r.t the graph g

Examples

data(graph);
m <- constraints.matrix(g);

descendants Build descendants

Description

Compute the descendants for each node of a graph

Usage

build.descendants(g)

build.descendants.per.level(g, levels)

build.descendants.bottom.up(g, levels)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes
levels a list of character vectors. Each component represents a graph level and the

elements of any component correspond to nodes. The level 0 coincides with the
root node.

12 DESCENS

Value

build.descendants returns a named list of vectors. Each component corresponds to a node x of
the graph, and its vector is the set of its descendants including also x.

build.descendants.per.level returns a named list of vectors. Each component corresponds to
a node x of the graph and its vector is the set of its descendants including also x. The nodes are
ordered from root (included) to leaves.

build.descendants.bottom.up returns a named list of vectors. Each component corresponds to
a node x of the graph and its vector is the set of its descendants including also x. The nodes are
ordered from leaves to root (included).

See Also

graph.levels

Examples

data(graph);
root <- root.node(g);
desc <- build.descendants(g);
lev <- graph.levels(g, root=root);
desc.tod <- build.descendants.per.level(g,lev);
desc.bup <- build.descendants.bottom.up(g,lev);

DESCENS DESCENS variants

Description

The novelty of DESCENS with respect to TPR-DAG algorithm consists in considering the con-
tribution of all the descendants of each node instead of only that of its children, since with the
TPR-DAG algorithm the contribution of the descendants of a given node decays exponentially with
their distance from the node itself, thus reducing the impact of the predictions made at the most
specific levels of the ontology. On the contrary DESCENS predictions are more influenced by the
information embedded in the most specific terms of the taxonomy (e.g. leaf nodes), thus putting
more emphasis on the terms that most characterize the gene under study.

Usage

descens.threshold(S, g, root = "00", t = 0.5)

descens.threshold.free(S, g, root = "00")

descens.weighted.threshold.free(S, g, root = "00", w = 0.5)

descens.weighted.threshold(S, g, root = "00", t = 0.5, w = 0.5)

descens.tau(S, g, root = "00", t = 0.5)

DESCENS 13

Arguments

S a named flat scores matrix with examples on rows and classes on columns
g a graph of class graphNEL. It represents the hierarchy of the classes
root name of the class that it is on the top-level of the hierarchy (def. root="00")
t threshold for the choice of the positive descendants (def. t=0.5); whereas in

the descens.tau variant the parameter t balances the contribution between the
positives children of a node i and that of its positives descendants excluding the
positives children

w weight to balance between the contribution of the node i and that of its positive
descendants

Details

The vanilla DESCENS adopts a per-level bottom-up traversal of the DAG to correct the flat predic-
tions ŷi:

ȳi :=
1

1 + |∆i|
(ŷi +

∑
j∈∆i

ȳj)

where ∆i are the positive descendants of i. Different strategies to select the positive descendants
∆i can be applied:

1. Threshold-Free strategy: as positive descendants we choose those nodes that achieve a score
higher than that of their ancestor node i:

∆i := {j ∈ descendats(i)|ȳj > ŷi}

2. Threshold strategy: the positive descendants are selected on the basis of a threshold that can
ben selected in two different ways:
(a) for each node a constant threshold t̄ is a priori selected:

φi := {j ∈ descendats(i)|ȳj > t̄}

For instance if the predictions represent probabilities it could be meaningful to a priori
select t̄ = 0.5.

(b) the threshold is selected to maximize some performance metricM estimated on the train-
ing data, as for instance the F-score or the AUPRC. In other words the threshold is se-
lected to maximize some measure of accuracy of the predictionsM(j, t) on the training
data for the class j with respect to the threshold t. The corresponding set of positives
∀i ∈ V is:

φi := {j ∈ descendants(i)|ȳj > t∗j , t
∗
j = arg max

t
M(j, t)}

For instance t∗j can be selected from a set of t ∈ (0, 1) through internal cross-validation
techniques.

The weighted DESCENS variants can be simply designed by adding a weight w ∈ [0, 1] to balance
the contribution between the prediction of the classifier associated with the node i and that of its
positive descendants:

ȳi := wŷi +
(1− w)

|∆i|
∑
j∈φi

ȳj

14 distances.from.leaves

The DESCENS-τ variants balances the contribution between the positives children of a node i and
that of its positives descendants excluding the children by adding a weight τ ∈ [0, 1]:

ȳi :=
τ

1 + |φi|
(ŷi +

∑
j∈φi

ȳj) +
1− τ

1 + |δi|
(ŷi +

∑
j∈δi

ȳj)

where φi are the positive children of i and δi = ∆i \ φi the descendants of i without its children. If
τ = 1 we consider only the contribution of the positive children of i; if τ = 0 only the descendants
that are not children contribute to the score, while for intermediate values of τ we can balance the
contribution of φi and δi positive nodes.

Value

a named matrix with the scores of the classes corrected according to the DESCENS algorithm.

See Also

TPR-DAG

Examples

data(graph);
data(scores);
data(labels);
root <- root.node(g);
S.descensTF <- descens.threshold.free(S,g,root);
S.descensT <- descens.threshold(S,g,root,t=0.5);
S.descensW <- descens.weighted.threshold.free(S,g,root,w=0.5);
S.descensWT <- descens.weighted.threshold(S,g,root,w=0.5, t=0.5);
S.descensTAU <- descens.tau(S,g,root, t=0.5);

distances.from.leaves Distances from leaves

Description

This function returns the minimum distance of each node from one of the leaves of the graph

Usage

distances.from.leaves(g)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes

do.edges.from.HPO.obo 15

Value

a named vector. The names are the names of the nodes of the graph g, and their values represent
the distance from the leaves. A value equal to 0 is assigned to the leaves, 1 to nodes with distance
1 from a leaf and so on

Examples

data(graph);
dist.leaves <- distances.from.leaves(g);

do.edges.from.HPO.obo Parse an HPO OBO file

Description

Read an HPO OBO file (HPO) and write the edges of the DAG on a plain text file.The format of
the file is a sequence of rows and each row corresponds to an edge represented through a pair of
vertices separated by blanks

Usage

do.edges.from.HPO.obo(file = "hp.obo", output.file = "edge.file")

Arguments

file an HPO OBO file

output.file name of the file of the edges to be written

Value

a text file representing the edges in the format: source destination (i.e. one row for each edge)

Examples

Not run:
hpobo <- "http://purl.obolibrary.org/obo/hp.obo";
do.edges.from.HPO.obo(file=hpobo, output.file="hp.edge");
End(Not run)

http://human-phenotype-ontology.github.io/

16 Do.FLAT.scores.normalization

Do.FLAT.scores.normalization

Flat scores normalization

Description

High level functions to normalize a flat scores matrix w.r.t. max normalization (MaxNorm) or
quantile normalization (Qnorm)

Usage

Do.FLAT.scores.normalization(norm.type = "MaxNorm", flat.file = flat.file,
dag.file = dag.file, flat.dir = flat.dir, dag.dir = dag.dir,
flat.norm.dir = flat.norm.dir)

Arguments

norm.type can be one of the following two values:

• MaxNorm (def.): each score is divided w.r.t. the max of each class;
• Qnorm: a quantile normalization is applied. Library preprocessCore is

used.

flat.file name of the flat scores matrix (without rda extension)

dag.file name of the graph that represents the hierarchy of the classes

flat.dir relative path to folder where flat normalized scores matrix is stored

dag.dir relative path to folder where graph is stored

flat.norm.dir the directory where the normalized flat scores matrix must be stored

Details

To apply the quantile normalization the preprocessCore library is uded.

Value

the matrix of the scores flat normalized w.r.t. MaxNorm or Qnorm

Examples

data(scores);
data(graph);
if (!dir.exists("data")){
dir.create("data");
}
if (!dir.exists("results")){
dir.create("results");
}
save(S,file="data/scores.rda");

Do.full.annotation.matrix 17

save(g,file="data/graph.rda");
flat.dir <- dag.dir <- "data/";
flat.norm.dir <- "results/";
flat.file <- "scores";
dag.file <- "graph";
norm.types <- c("MaxNorm","Qnorm");
for(norm.type in norm.types){
Do.FLAT.scores.normalization(norm.type=norm.type, flat.file=flat.file,
dag.file=dag.file, flat.dir=flat.dir, dag.dir=dag.dir,
flat.norm.dir=flat.norm.dir);
}

Do.full.annotation.matrix

Do full annotations matrix

Description

High-level function to obtain a full annotation matrix, that is a matrix in which the transitive closure
of annotations was performed, respect to a given weighted adiacency matrix

Usage

Do.full.annotation.matrix(anc.file.name = anc.file.name, anc.dir = anc.dir,
net.file = net.file, net.dir = net.dir, ann.file.name = ann.file.name,
ann.dir = ann.dir, output.name = output.name, output.dir = output.dir)

Arguments

anc.file.name name of the file containg the list for each node the list of all its ancestor (without
rda extension)

anc.dir relative path to directory where the ancestor file is stored
net.file name of the file containing the weighted adjiacency matrix of the graph (without

rda extension)
net.dir relative path to directory where the weighted adjiacency matrix is stored
ann.file.name name of the file containing the matrix of the most specific annotations (without

rda extension)
ann.dir relative path to directory where the matrix of the most specific annotation is

stored
output.name name of the output file without rda extension (without rda extension)
output.dir relative path to directory where the output file must be stored

Value

a full annotation matrix T, that is a matrix in which the transitive closure of annotations was per-
formed. Rows correspond to genes of the input weighted adjiacency matrix and columns to terms.
T [i, j] = 1 means that gene i is annotated for the term j, T [i, j] = 0 means that gene i is not
annotated for the term j.

18 Do.heuristic.methods

See Also

full.annotation.matrix

Examples

data(graph);
data(labels);
data(wadj);
if (!dir.exists("data")){
dir.create("data");
}
if (!dir.exists("results")){
dir.create("results");
}
anc <- build.ancestors(g);
save(anc,file="data/ancestors.rda");
save(g,file="data/graph.rda");
save(L,file="data/labels.rda");
save(W,file="data/wadj.rda");
anc.dir <- net.dir <- ann.dir <- "data/";
output.dir <- "results/";
anc.file.name <- "ancestors";
net.file <- "wadj";
ann.file.name <- "labels";
output.name <- "full.ann.matrix";
Do.full.annotation.matrix(anc.file.name=anc.file.name, anc.dir=anc.dir, net.file=net.file,
net.dir=net.dir, ann.file.name=ann.file.name, ann.dir=ann.dir, output.name=output.name,
output.dir=output.dir);

Do.heuristic.methods Do Heuristic Methods

Description

High level function to compute the hierarchical heuristic methods MAX, AND, OR (Heuristic
Methods MAX, AND, OR (Obozinski et al., Genome Biology, 2008)

Usage

Do.heuristic.methods(heuristic.fun = "AND", norm = TRUE,
norm.type = "NONE", flat.file = flat.file, ann.file = ann.file,
dag.file = dag.file, flat.dir = flat.dir, ann.dir = ann.dir,
dag.dir = dag.dir, flat.norm.dir = NULL, n.round = 3,
f.criterion = "F", hierScore.dir = hierScore.dir, perf.dir = perf.dir)

Do.heuristic.methods 19

Arguments

heuristic.fun can be one of the following three values:

1. "MAX": run the heuristic method MAX;

2. "AND": run the heuristic method AND;

3. "OR": run the heuristic method OR;

norm boolean value:

• TRUE (def.): the flat scores matrix has been already normalized in according
to a normalization method;

• FALSE: the flat scores matrix has not been normalized yet. See the parameter
norm.type for which normalization can be applied.

norm.type can be one of the following three values:

1. NULL (def.): set norm.type to NULL if and only if the parameter norm is set
to TRUE;

2. MaxNorm: each score is divided for the maximum of each class;

3. Qnorm: quantile normalization. preprocessCore package is used.

flat.file name of the file containing the flat scores matrix to be normalized or already
normalized (without rda extension)

ann.file name of the file containing the the label matrix of the examples (without rda
extension)

dag.file name of the file containing the graph that represents the hierarchy of the classes
(without rda extension)

flat.dir relative path where flat scores matrix is stored

ann.dir relative path where annotation matrix is stored

dag.dir relative path where graph is stored

flat.norm.dir relative path where flat normalized scores matrix must be strored. Use this pa-
rameter if and only if norm is set to FALSE, otherwise set flat.norm.dir to
NULL (def.)

n.round number of rounding digits to be applied to the hierarchical scores matrix (def. 3).
It is used for choosing the best threshold on the basis of the best F-measure

f.criterion character. Type of F-measure to be used to select the best F-measure. Two
possibilities:

1. F (def.): corresponds to the harmonic mean between the average precision
and recall

2. avF: corresponds to the per-example F-score averaged across all the ex-
amples

hierScore.dir relative path where the hierarchical scores matrix must be stored

perf.dir relative path where the term-centric and protein-centric measures must be stored

20 Do.heuristic.methods

Value

Five rda files stored in the rispective output directories:

1. hierarchical scores matrix: a matrix with examples on rows and classes on columns
representing the computed hierarchical scores for each class and example considered. It stored
in hierScore.dir directory.

2. FMM (F-Measure Multilabel) average and per-example: compute F-score measure by find.best.f
function. It stored in perf.dir directory.

3. PRC (area under Precision-Recall Curve) average and per.class: compute PRC by precrec pack-
age. It stored in perf.dir directory.

4. AUC (Area Under ROC Curve) average and per-class: compute AUC by precrec package. It
stored in perf.dir directory.

5. PXR (Precision at fixed Recall levels) average and per classes: compute PXR by PerfMeas
package. It stored in perf.dir directory.

See Also

Heuristic-Methods

Examples

data(graph);
data(scores);
data(labels);
if (!dir.exists("data")){
dir.create("data");
}
if (!dir.exists("results")){
dir.create("results");
}
save(g,file="data/graph.rda");
save(L,file="data/labels.rda");
save(S,file="data/scores.rda");
dag.dir <- flat.dir <- flat.norm.dir <- ann.dir <- "data/";
hierScore.dir <- perf.dir <- "results/";
dag.file <- "graph";
flat.file <- "scores";
ann.file <- "labels";
Do.heuristic.methods(heuristic.fun="AND", norm=FALSE, norm.type="MaxNorm",
flat.file=flat.file, ann.file=ann.file, dag.file=dag.file, flat.dir=flat.dir,
ann.dir=ann.dir, dag.dir=dag.dir, flat.norm.dir=flat.norm.dir, n.round=3,
f.criterion="F", hierScore.dir=hierScore.dir, perf.dir=perf.dir);

Do.heuristic.methods.holdout 21

Do.heuristic.methods.holdout

Do Heuristic Methods holdout

Description

High level function to compute the hierarchical heuristic methods MAX, AND, OR (Heuristic
Methods MAX, AND, OR (Obozinski et al., Genome Biology, 2008) applying a classical hold-
out procedure

Usage

Do.heuristic.methods.holdout(heuristic.fun = "AND", norm = TRUE,
norm.type = "NONE", flat.file = flat.file, ann.file = ann.file,
dag.file = dag.file, ind.test.set = ind.test.set, ind.dir = ind.dir,
flat.dir = flat.dir, ann.dir = ann.dir, dag.dir = dag.dir,
flat.norm.dir = NULL, n.round = 3, f.criterion = "F",
hierScore.dir = hierScore.dir, perf.dir = perf.dir)

Arguments

heuristic.fun can be one of the following three values:

1. "MAX": run the heuristic method MAX;
2. "AND": run the heuristic method AND;
3. "OR": run the heuristic method OR;

norm boolean value:

• TRUE (def.): the flat scores matrix has been already normalized in according
to a normalization method;

• FALSE: the flat scores matrix has not been normalized yet. See the parameter
norm for which normalization can be applied.

norm.type can be one of the following three values:

1. NONE (def.): set norm.type to NONE if and only if the parameter norm is set
to TRUE;

2. MaxNorm: each score is divided for the maximum of each class;
3. Qnorm: quantile normalization. preprocessCore package is used.

flat.file name of the file containing the flat scores matrix to be normalized or already
normalized (without rda extension)

ann.file name of the file containing the the label matrix of the examples (without rda
extension)

dag.file name of the file containing the graph that represents the hierarchy of the classes
(without rda extension)

ind.test.set name of the file containing a vector of integer numbers corresponding to the
indices of the elements (rows) of scores matrix to be used in the test set

22 Do.heuristic.methods.holdout

ind.dir relative path to folder where ind.test.set is stored

flat.dir relative path where flat scores matrix is stored

ann.dir relative path where annotation matrix is stored

dag.dir relative path where graph is stored

flat.norm.dir relative path where flat normalized scores matrix must be strored. Use this pa-
rameter if and only if norm is set to FALSE, otherwise set flat.norm.dir to
NULL (def.)

n.round number of rounding digits to be applied to the hierarchical scores matrix (def. 3).
It is used for choosing the best threshold on the basis of the best F-measure

f.criterion character. Type of F-measure to be used to select the best F-measure. Two
possibilities:

1. F (def.): corresponds to the harmonic mean between the average precision
and recall

2. avF: corresponds to the per-example F-score averaged across all the ex-
amples

hierScore.dir relative path where the hierarchical scores matrix must be stored

perf.dir relative path where the term-centric and protein-centric measures must be stored

Value

Five rda files stored in the rispective output directories:

1. hierarchical scores matrix: a matrix with examples on rows and classes on columns
representing the computed hierarchical scores for each example and for each considered class.
This file is stored in hierScore.dir directory.

2. FMM (F-Measure Multilabel) results: F-score computed by find.best.f function. Both
flat and hierarchical results are reported. This file is stored in perf.dir directory.

3. PRC (area under Precision-Recall Curve) results: PRC computed by precrec package. Both
flat and hierarchical results are reported. This file is stored in perf.dir directory.

4. AUC (Area Under ROC Curve) results: AUC computed by precrec package. Both flat and
hierarchical results are reported. This file is stored in perf.dir directory.

5. PXR (Precision at fixed Recall levels) average and per classes: PXR computed by PerfMeas
package. It is stored in perf.dir directory.

Examples

data(graph);
data(scores);
data(labels);
data(test.index);
if (!dir.exists("data")){
dir.create("data");
}
if (!dir.exists("results")){
dir.create("results");
}

Do.HTD 23

save(g,file="data/graph.rda");
save(L,file="data/labels.rda");
save(S,file="data/scores.rda");
save(test.index, file="data/test.index.rda");
ind.dir <- dag.dir <- flat.dir <- flat.norm.dir <- ann.dir <- "data/";
hierScore.dir <- perf.dir <- "results/";
ind.test.set <- "test.index";
dag.file <- "graph";
flat.file <- "scores";
ann.file <- "labels";
Do.heuristic.methods.holdout(heuristic.fun="MAX", norm=FALSE,
norm.type="MaxNorm", flat.file=flat.file, ann.file=ann.file, dag.file=dag.file,
ind.test.set=ind.test.set, ind.dir=ind.dir, flat.dir=flat.dir, ann.dir=ann.dir,
dag.dir=dag.dir, flat.norm.dir=flat.norm.dir, n.round=3, f.criterion="F",
hierScore.dir=hierScore.dir, perf.dir=perf.dir);

Do.HTD HTD-DAG vanilla

Description

High level function to correct the computed scores in a hierarchy according to the HTD-DAG algo-
rithm

Usage

Do.HTD(norm = TRUE, norm.type = NULL, flat.file = flat.file,
ann.file = ann.file, dag.file = dag.file, flat.dir = flat.dir,
ann.dir = ann.dir, dag.dir = dag.dir, flat.norm.dir = NULL,
n.round = 3, f.criterion = "F", hierScore.dir = hierScore.dir,
perf.dir = perf.dir)

Arguments

norm boolean value:

• TRUE (def.): the flat scores matrix has been already normalized in according
to a normalization method;

• FALSE: the flat scores matrix has not been normalized yet. See the parameter
norm.type for which normalization can be applied.

norm.type can be one of the following three values:

1. NULL (def.): set norm.type to NULL if and only if the parameter norm is set
to TRUE;

2. MaxNorm: each score is divided for the maximum of each class;
3. Qnorm: quantile normalization. preprocessCore package is used.

flat.file name of the file containing the flat scores matrix to be normalized or already
normalized (without rda extension)

24 Do.HTD

ann.file name of the file containing the the label matrix of the examples (without rda
extension)

dag.file name of the file containing the graph that represents the hierarchy of the classes
(without rda extension)

flat.dir relative path where flat scores matrix is stored

ann.dir relative path where annotation matrix is stored

dag.dir relative path where graph is stored

flat.norm.dir relative path where flat normalized scores matrix must be stored. Use this pa-
rameter if and only if norm is set to FALSE, otherwise set flat.norm.dir to
NULL (def.)

n.round number of rounding digits to be applied to the hierarchical scores matrix (def. 3).
It is used for choosing the best threshold on the basis of the best F-measure

f.criterion character. Type of F-measure to be used to select the best F-measure. Two
possibilities:

1. F (def.): corresponds to the harmonic mean between the average precision
and recall

2. avF: corresponds to the per-example F-score averaged across all the ex-
amples

hierScore.dir relative path where the hierarchical scores matrix must be stored

perf.dir relative path where the term-centric and protein-centric measures must be stored

Value

Five rda files stored in the respective output directories:

1. hierarchical scores matrix: a matrix with examples on rows and classes on columns
representing the computed hierarchical scores for each example and for each considered class.
This file is stored in hierScore.dir directory.

2. FMM (F-Measure Multilabel) results: F-score computed by find.best.f function. Both
flat and hierarchical results are reported. This file is stored in perf.dir directory.

3. PRC (area under Precision-Recall Curve) results: PRC computed by precrec package. Both
flat and hierarchical results are reported. This file is stored in perf.dir directory.

4. AUC (Area Under ROC Curve) results: AUC computed by precrec package. Both flat and
hierarchical results are reported. This file is stored in perf.dir directory.

5. PXR (Precision at fixed Recall levels) average and per classes: PXR computed by PerfMeas
package. It is stored in perf.dir directory.

See Also

HTD-DAG

Do.HTD.holdout 25

Examples

data(graph);
data(scores);
data(labels);
if (!dir.exists("data")){
dir.create("data");
}
if (!dir.exists("results")){
dir.create("results");
}
save(g,file="data/graph.rda");
save(L,file="data/labels.rda");
save(S,file="data/scores.rda");
dag.dir <- flat.dir <- flat.norm.dir <- ann.dir <- "data/";
hierScore.dir <- perf.dir <- "results/";
dag.file <- "graph";
flat.file <- "scores";
ann.file <- "labels";
Do.HTD(norm=FALSE, norm.type="MaxNorm", flat.file=flat.file, ann.file=ann.file,
dag.file=dag.file, flat.dir=flat.dir, ann.dir=ann.dir, dag.dir=dag.dir,
flat.norm.dir=flat.norm.dir, n.round=3, f.criterion ="F", hierScore.dir=hierScore.dir,
perf.dir=perf.dir);

Do.HTD.holdout HTD-DAG holdout

Description

High level function to correct the computed scores in a hierarchy according to the HTD-DAG algo-
rithm applying a classical holdout procedure

Usage

Do.HTD.holdout(norm = TRUE, norm.type = NULL, flat.file = flat.file,
ann.file = ann.file, dag.file = dag.file, ind.test.set = ind.test.set,
ind.dir = ind.dir, flat.dir = flat.dir, ann.dir = ann.dir,
dag.dir = dag.dir, flat.norm.dir = NULL, n.round = 3,
f.criterion = "F", hierScore.dir = hierScore.dir, perf.dir = perf.dir)

Arguments

norm boolean value:

• TRUE (def.): the flat scores matrix has been already normalized in according
to a normalization method;

• FALSE: the flat scores matrix has not been normalized yet. See the parameter
norm for which normalization can be applied.

norm.type can be one of the following three values:

26 Do.HTD.holdout

1. NULL (def.): set norm.type to NULL if and only if the parameter norm is set
to TRUE;

2. MaxNorm: each score is divided for the maximum of each class;
3. Qnorm: quantile normalization. preprocessCore package is used.

flat.file name of the file containing the flat scores matrix to be normalized or already
normalized (without rda extension)

ann.file name of the file containing the the label matrix of the examples (without rda
extension)

dag.file name of the file containing the graph that represents the hierarchy of the classes
(without rda extension)

ind.test.set name of the file containing a vector of integer numbers corresponding to the
indices of the elements (rows) of scores matrix to be used in the test set

ind.dir relative path to folder where ind.test.set is stored
flat.dir relative path where flat scores matrix is stored
ann.dir relative path where annotation matrix is stored
dag.dir relative path where graph is stored
flat.norm.dir relative path where flat normalized scores matrix must be stored. Use this pa-

rameter if and only if norm is set to FALSE, otherwise set flat.norm.dir to
NULL (def.)

n.round number of rounding digits to be applied to the hierarchical scores matrix (def. 3).
It is used for choosing the best threshold on the basis of the best F-measure

f.criterion character. Type of F-measure to be used to select the best F-measure. Two
possibilities:

1. F (def.): corresponds to the harmonic mean between the average precision
and recall

2. avF: corresponds to the per-example F-score averaged across all the ex-
amples

hierScore.dir relative path where the hierarchical scores matrix must be stored
perf.dir relative path where the term-centric and protein-centric measures must be stored

Value

Five rda files stored in the respective output directories:

1. hierarchical scores matrix: a matrix with examples on rows and classes on columns
representing the computed hierarchical scores for each example and for each considered class.
This file is stored in hierScore.dir directory.

2. FMM (F-Measure Multilabel) results: F-score computed by find.best.f function. Both
flat and hierarchical results are reported. This file is stored in perf.dir directory.

3. PRC (area under Precision-Recall Curve) results: PRC computed by precrec package. Both
flat and hierarchical results are reported. This file is stored in perf.dir directory.

4. AUC (Area Under ROC Curve) results: AUC computed by precrec package. Both flat and
hierarchical results are reported. This file is stored in perf.dir directory.

5. PXR (Precision at fixed Recall levels) average and per classes: PXR computed by PerfMeas
package. It is stored in perf.dir directory.

do.subgraph 27

See Also

HTD-DAG

Examples

data(graph);
data(scores);
data(labels);
data(test.index);
if (!dir.exists("data")){
dir.create("data");
}
if (!dir.exists("results")){
dir.create("results");
}
save(g,file="data/graph.rda");
save(L,file="data/labels.rda");
save(S,file="data/scores.rda");
save(test.index, file="data/test.index.rda");
ind.dir <- dag.dir <- flat.dir <- flat.norm.dir <- ann.dir <- "data/";
hierScore.dir <- perf.dir <- "results/";
ind.test.set <- "test.index";
dag.file <- "graph";
flat.file <- "scores";
ann.file <- "labels";
Do.HTD.holdout(norm=FALSE, norm.type="MaxNorm", flat.file=flat.file, ann.file=ann.file,
dag.file=dag.file, ind.test.set=ind.test.set, ind.dir=ind.dir, flat.dir=flat.dir,
ann.dir=ann.dir, dag.dir=dag.dir, flat.norm.dir=flat.norm.dir, n.round=3, f.criterion ="F",
hierScore.dir=hierScore.dir, perf.dir=perf.dir);

do.subgraph Build subgraph

Description

This function returns a subgraph with only the supplied nodes and any edges between them

Usage

do.subgraph(nd, g, edgemode = "directed")

Arguments

nd a vector with the nodes for which the subgraph must be built

g a graph of class graphNEL. It represents the hierarchy of the classes

edgemode can be "directed" or "undirected"

28 do.submatrix

Value

a subgraph with only the supplied nodes

Examples

data(graph);
anc <- build.ancestors(g);
nd <- anc[["HP:0001371"]];
subg <- do.subgraph(nd, g, edgemode="directed");

do.submatrix Build submatrix

Description

Terms having less than n annotations are pruned. Terms having exactly n annotations are discarded
as well.

Usage

do.submatrix(hpo.ann, n)

Arguments

hpo.ann the annotations matrix (0/1). Rows are examples and columns are classes

n integer number of annotations to be pruned

Value

Matrix of annotations having only those terms with more than n annotations

Examples

data(labels);
subm <- do.submatrix(L,5);

do.unstratified.cv.data 29

do.unstratified.cv.data

Unstratified cross-validation

Description

This function splits a dataset in k-fold in an unstratified way (that is a fold may not have an equal
amount of positive and negative examples). This function is used to perform k-fold cross-validation
experiments in a hierarchical correction contest where splitting dataset in a stratified way is not
needed.

Usage

do.unstratified.cv.data(S, kk = 5, seed = NULL)

Arguments

S matrix of the flat scores. It must be a named matrix, where rows are example
(e.g. genes) and columns are classes/terms (e.g. HPO terms)

kk number of folds in which to split the dataset (def. k=5)

seed seed for the random generator. If NULL (def.) no initialization is performed

Value

a list with k = kk components (folds). Each component of the list is a character vector contains the
names of the examples.

Examples

data(scores);

example.datasets Small real example datasets

Description

Collection of real sub-datasets used in the examples of the HEMDAG package

Usage

data(graph)
data(labels)
data(scores)
data(wadj)
data(test.index)

30 find.best.f

Details

The DAG g contained in graph data is an object of class graphNEL. The graph g has 23 nodes and 30
edges and represents the "ancestors view" of the HPO term Camptodactyly of finger ("HP:0100490").

The matrix L contained in the labels data is a 100 X 23 matrix, whose rows correspondes to genes
(Entrez GeneID) and columns to HPO classes. L[i, j] = 1 means that the gene i belong to class j,
L[i, j] = 0 means that the gene i does not belong to class j. The classes of the matrix L correspond
to the nodes of the graph g.

The matrix S contained in the scores data is a named 100 X 23 flat scores matrix, representing the
likelihood that a given gene belongs to a given class: higher the value higher the likelihood. The
classes of the matrix S correspond to the nodes of the graph g.

The matrix W contained in the wadj data is a named 100 X 100 symmetric weighted adjacency
matrix, whose rows and columns correspond to genes.The genes names (Entrez GeneID) of the
adjacency matrix W correspond to the genes names of the flat scores matrix S and to genes names of
the target multilabel matrix L.

The vector of integer numbers test.index contained in the test.index data refers to the index of
the examples of the scores matrix S to be used in the test set. It is useful only in holdout experiments.

Note

Some examples of full data sets for the prediction of HPO terms are available at the following link.
Note that the processing of the full datasets should be done similarly to the processing of the small
data examples provided directly in this package. Please read the README clicking the link above to
know more details about the available full datasets.

find.best.f Best hierarchical F-score

Description

Function to select the best hierarchical F-score by choosing an appropriate threshold in the scores

Usage

find.best.f(target, pred, n.round = 3, f.criterion = "F", verbose = TRUE,
b.per.example = FALSE)

Arguments

target matrix with the target multilabels: rows correspond to examples and columns
to classes. target[i, j] = 1 if example i belongs to class j, target[i, j] = 0
otherwise

pred a numeric matrix with predicted values (scores): rows correspond to examples
and columns to classes

n.round number of rounding digits to be applied to pred (default=3)

https://homes.di.unimi.it/notaro/DATA/DATA_BMC/

find.best.f 31

f.criterion character. Type of F-measure to be used to select the best F-score. There are
two possibilities:

1. F (def.) corresponds to the harmonic mean between the average precision
and recall;

2. avF corresponds to the per-example F-score averaged across all the exam-
ples.

verbose boolean. If TRUE (def.) the number of iterations are printed on stdout

b.per.example boolean.

• TRUE: results are returned for each example;
• FALSE: only the average results are returned

Details

All the examples having no positive annotations are discarded. The predicted scores matrix (pred)
is rounded according to parameter n.round and all the values of pred are divided by max(pred).
Then all the thresholds corresponding to all the different values included in pred are attempted, and
the threshold leading to the maximum F-measure is selected.

Value

Two different outputs respect to the input paramenter b.per.example:

• b.per.example==FALSE: a list with a single element average. A named vector with 7 elements
relative to the best result in terms of the F.measure: Precision (P), Recall (R), Specificity (S),
F.measure (F), av.F.measure (av.F), Accuracy (A) and the best selected Threshold (T). F is the
F-measure computed as the harmonic mean between the average precision and recall; av.F is
the F-measure computed as the average across examples and T is the best selected threshold;

• b.per.example==FALSE: a list with two elements:

1. average: a named vector with with 7 elements relative to the best result in terms of the
F.measure: Precision (P), Recall (R), Specificity (S), F.measure (F), av.F.measure (av.F),
Accuracy (A) and the best selected Threshold (T).

2. per.example: a named matrix with the Precision (P), Recall (R), Specificity (S), Accu-
racy (A), F-measure (F), av.F-measure (av.F) and the best selected Threhold (T) for each
example. Row names correspond to examples, column names correspond respectively
to Precision (P), Recall (R), Specificity (S), Accuracy (A), F-measure (F), av.F-measure
(av.F) and the best selected Threhold (T).

Examples

data(graph);
data(labels);
data(scores);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
FMM <- find.best.f(L,S,n.round=3, f.criterion ="F", verbose=TRUE, b.per.example=TRUE);

32 full.annotation.matrix

find.leaves Leaves

Description

Find the leaves of a directed graph

Usage

find.leaves(g)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes

Value

a vector with the names of the leaves of g

Examples

data(graph);
leaves <- find.leaves(g);

full.annotation.matrix

Full annotations matrix

Description

Construct a full annotations table using ancestors and the most specific annotations table w.r.t. a
given weighted adjacency matrix (wadj). The rows of the full annotations matrix correspond to
all the examples of the given weighted adjacency matrix and the columns to the class/terms. The
transitive closure of the annotations is performed.

Usage

full.annotation.matrix(W, anc, ann.spec)

Arguments

W symmetric adjacency weighted matrix of the graph

anc list of the ancestors of the ontology.

ann.spec the annotation matrix of the most specific annotations (0/1): rows are genes and
columns are classes.

graph.levels 33

Details

The examples present in the annotation matrix (ann.spec) but not in the adjacency weighted matrix
(W) are purged.

Value

a full annotation table T, that is a matrix in which the transitive closure of annotations was per-
formed. Rows correspond to genes of the weighted adjiacency matrix and columns to terms.
T [i, j] = 1 means that gene i is annotated for the term j, T [i, j] = 0 means that gene i is not
annotated for the term j.

See Also

weighted.adjacency.matrix, build.ancestors,
specific.annotation.matrix, transitive.closure.annotations

Examples

data(wadj);
data(graph);
data(labels);
anc <- build.ancestors(g);
full.ann <- full.annotation.matrix(W, anc, L);

graph.levels Build Graph Levels

Description

This function groups a set of nodes in according to their maximum depth in the graph. It first
inverts the weights of the graph and then applies the Bellman Ford algorithm to find the shortest
path, achieving in this way the longest path

Usage

graph.levels(g, root = "00")

Arguments

g an object of class graphNEL

root name of the root node (def. root="00")

Value

a list of the nodes grouped w.r.t. the distance from the root: the first element of the list corresponds
to the root node (level 0), the second to nodes at maximum distance 1 (level 1), the third to the node
at maximum distance 3 (level 2) and so on.

34 Heuristic-Methods

Examples

data(graph);
root <- root.node(g);
lev <- graph.levels(g, root=root);

Heuristic-Methods Obozinski Heuristic Methods

Description

Implementation of the Heuristic Methods MAX, AND, OR (Obozinski et al., Genome Biology,
2008, doi:10.1186/gb-2008-9-s1-s6)

Usage

heuristicMAX(S, g, root = "00")

heuristicAND(S, g, root = "00")

heuristicOR(S, g, root = "00")

Arguments

S a named flat scores matrix with examples on rows and classes on columns

g a graph of class graphNEL. It represents the hierarchy of the classes

root name of the class that it is the top-level (root) of the hierarchy (def:00)

Details

Heuristic Methods:

1. MAX: reports the largest logist regression (LR) value of self and all descendants: pi =
maxj∈descendants(i)p̂j ;

2. AND: reports the product of LR values of all ancestors and self. This is equivalent to comput-
ing the probability that all ancestral terms are "on" assuming that, conditional on the data, all
predictions are independent: pi =

∏
j∈ancestors(i) p̂j ;

3. OR: computes the probability that at least one of the descendant terms is "on" assuming again
that, conditional on the data, all predictions are independent: 1− pi =

∏
j∈descendants(i)(1−

p̂j);

Value

a matrix with the scores of the classes corrected according to the chosen heuristic algorithm

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2008-9-s1-s6

hierarchical.checkers 35

Examples

data(graph);
data(scores);
data(labels);
root <- root.node(g);
S.heuristicMAX <- heuristicMAX(S,g,root);
S.heuristicAND <- heuristicAND(S,g,root);
S.heuristicOR <- heuristicOR(S,g,root);

hierarchical.checkers Hierarchical constraints cheker

Description

Check if the true path rule is violated or not. In other words this function checks if the score of a
parent or an ancestor node is always larger or equal than that of its children or descendants nodes

Usage

check.hierarchy.single.sample(y.hier, g, root = "00")

check.hierarchy(S.hier, g, root = "00")

Arguments

y.hier vector of scores relative to a single example. This must be a named numeric
vector

g a graph of class graphNEL. It represents the hierarchy of the classes

root name of the class that it is the top-level (root) of the hierarchy (def:00)

S.hier the matrix with the scores of the classes corrected in according to hierarchy.
This must be a named matrix: rows are examples and colums are classes

Value

return a list of 3 elements:

• Status:

– OK if none hierarchical constraints have bee broken;
– NOTOK if there is at least one hierarchical constraints broken;

• Hierarchy_Constraints_Broken:

– TRUE: example did not respect the hierarchical constraints;
– FALSE: example broke the hierarchical constraints;

• Hierarchy_costraints_satisfied: how many terms satisfied the hierarchical constraint

36 HTD-DAG

Examples

data(graph);
data(scores);
root <- root.node(g);
S.hier <- htd(S,g,root);
S.hier.single.example <- S.hier[sample(ncol(S.hier),1),];
check.hierarchy.single.sample(S.hier.single.example, g, root=root);
check.hierarchy(S.hier, g, root);

HTD-DAG HTD-DAG

Description

Implementetion of a top-down procedure to correct the scores of the hierarchy according to the
constraints that the score of a node cannot be greater than a score of its parents.

Usage

htd(S, g, root = "00")

Arguments

S a named flat scores matrix with examples on rows and classes on columns

g a graph of class graphNEL. It represents the hierarchy of the classes

root name of the class that it is the top-level (root) of the hierarchy (def:00)

Details

The HTD-DAG algorithm modifies the flat scores according to the hierarchy of a DAG through a
unique run across the nodes of the graph. For a given example x ∈ X , the flat predictions f(x) = ŷ
are hierarchically corrected to ȳ, by per-level visiting the nodes of the DAG from top to bottom
according to the following simple rule:

ȳi :=

 ŷi if i ∈ root(G)
minj∈par(i) ȳj if minj∈par(i) ȳj < ŷi
ŷi otherwise

The node levels correspond to their maximum path length from the root.

Value

a matrix with the scores of the classes corrected according to the HTD-DAG algorithm.

See Also

graph.levels, hierarchical.checkers

Multilabel.F.measure 37

Examples

data(graph);
data(scores);
root <- root.node(g);
S.htd <- htd(S,g,root);

Multilabel.F.measure Multilabel F-measure

Description

Method for computing Precision, Recall, Specificity, Accuracy and F-measure for multiclass mul-
tilabel classification

Usage

F.measure.multilabel(target, predicted, b.per.example = FALSE)

S4 method for signature 'matrix,matrix'
F.measure.multilabel(target, predicted,
b.per.example = FALSE)

Arguments

target matrix with the target multilabels: rows correspond to examples and columns
to classes. target[i, j] = 1 if example i belongs to class j, target[i, j] = 0
otherwise

predicted a numeric matrix with predicted values (scores): rows correspond to examples
and columns to classes

b.per.example boolean.
• TRUE: results are returned for each example;
• FALSE: only the average results are returned

Value

Two different outputs respect to the input paramenter b.per.example:

• b.per.example==FALSE: a list with a single element average. A named vector with average
precision (P), recall (R), specificity (S), F-measure (F), average F-measure (avF) and Accuracy
(A) across examples. F is the F-measure computed as the harmonic mean between the average
precision and recall; av.F is the F-measure computed as the average across examples.

• b.per.example==FALSE: a list with two elements:
1. average: a named vector with average precision (P), recall (R), specificity (S), F-measure

(F), average F-measure (avF) and Accuracy (A) across examples;
2. per.example: a named matrix with the Precision (P), Recall (R), Specificity (S), Accuracy

(A), F-measure (F) and av.F-measure (av.F) for each example. Row names correspond to
examples, column names correspond respectively to Precision (P), Recall (R), Specificity
(S), Accuracy (A), F-measure (F) and av.F-measure (av.F)

38 normalize.max

Examples

data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
S[S>0.7] <- 1;
S[S<0.7] <- 0;
FMM <- F.measure.multilabel(L,S);

normalize.max Max normalization

Description

Function to normalize the scores of a flat scores matrix per class

Usage

normalize.max(S)

Arguments

S matrix with the raw non normalized scores. Rows are examples and columns
are classes

Details

The scores of each class are normalized by dividing the score values for the maximum score of that
class. If the max score of a class is zero, no normalization is needed, otherwise NaN value will be
printed as results of 0 out of 0 division.

Value

A score matrix with the same dimensions of S, but with scores max/normalized separately for each
class

Examples

data(scores);
maxnorm <- normalize.max(S);

parents 39

parents Build parents

Description

Compute the parents for each node of a graph

Usage

get.parents(g, root = "00")

get.parents.top.down(g, levels, root = "00")

get.parents.bottom.up(g, levels, root = "00")

get.parents.topological.sorting(g, root = "00")

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes

root name of the root node (def. root="00")

levels a list of character vectors. Each component represents a graph level and the
elements of any component correspond to nodes. The level 0 coincides with the
root node.

Value

get.parents returns a named list of character vectors. Each component corresponds to a node x
of the graph (i.e. child node) and its vector is the set of its parents (the root node is not included)

get.parents.top.down returns a named list of character vectors. Each component corresponds
to a node x of the graph (i.e. child node) and its vector is the set of its parents. The nodes order
follows the levels of the graph from root (excluded) to leaves.

get.parents.bottom.up returns a named list of character vectors. Each component corresponds
to a node x of the graph (i.e. child node) and its vector isthe set of its parents. The nodes are ordered
from leaves to root (excluded).

get.parents.topological.sorting a named list of character vectors. Each component corre-
sponds to a node x of the graph (i.e. child node) and its vector is the set of its parents. The nodes
are ordered according to a topological sorting, i.e. parents node come before children node.

See Also

graph.levels

40 read.undirected.graph

Examples

data(graph);
root <- root.node(g)
parents <- get.parents(g, root=root);
lev <- graph.levels(g, root=root);
parents.tod <- get.parents.top.down(g, lev, root=root);
parents.bup <- get.parents.bottom.up(g, lev, root=root);
parents.tsort <- get.parents.topological.sorting(g, root=root);

read.graph Read a directed graph from a file

Description

A directed graph is read from a file and a graphNEL object is built

Usage

read.graph(file = "graph.txt")

Arguments

file name of the file to be read. The format of the file is a sequence of rows and each
row corresponds to an edge represented through a pair of vertices separated by
blanks

Value

an object of class graphNEL

Examples

ed <- system.file("extdata/graph.edges.txt", package= "HEMDAG");
g <- read.graph(file=ed);

read.undirected.graph Read an undirected graph from a file

Description

The graph is read from a file and a graphNEL object is built. The format of the input file is a
sequence of rows. Each row corresponds to an edge represented through a pair of vertices separated
by blanks, and the weight of the edge.

Usage

read.undirected.graph(file = "graph.txt")

root.node 41

Arguments

file name of the file to be read

Value

a graph of class graphNEL

Examples

edges <- system.file("extdata/edges.txt" ,package="HEMDAG");
g <- read.undirected.graph(file=edges);

root.node Root node

Description

Find the root node of a directed graph

Usage

root.node(g)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes

Value

name of the root node

Examples

data(graph);
root <- root.node(g);

42 specific.annotation.matrix

specific.annotation.list

Specific annotations list

Description

Construct a list of the most specific annotations starting from the table of the most specific annota-
tions

Usage

specific.annotation.list(ann)

Arguments

ann annotation matrix (0/1). Rows are examples and columns are most specific
terms. It must be a named matrix.

Value

a named list, where the names of each component correspond to an examples (genes) and the ele-
ments of each component are the most specific classes associated to that genes

See Also

specific.annotation.matrix

Examples

data(labels);
spec.list <- specific.annotation.list(L);

specific.annotation.matrix

HPO specific annotations matrix

Description

Construct the labels matrix of the most specific HPO terms

Usage

specific.annotation.matrix(file = "gene2pheno.txt", genename = "TRUE")

stratified.cross.validation 43

Arguments

file text file representing the most specific associations gene-HPO term
(def: "gene2pheno.txt"). The file must be written as sequence of rows. Each
row represents a gene and all its associations with abnormal phenotype tab sep-
arated,
e.g.: gene_1 <tab> phen1 <tab> ... phen_N.
See Details section to know more information about how to obtain this file.

genename boolean value:

• TRUE (def.): the names of genes are gene symbol (i.e. characters);
• FALSE: the names of gene are entrez gene ID (i.e. integer numbers);

Details

The input plain text file representing the most specific associations gene-HPO term can be obtained
by forking the GitHub repositoty HPOparser, a collection of Perl subroutines to parse the HPO
OBO file and the HPO annotations file.

Value

the annotation matrix of the most specific annotations (0/1): rows are genes and columns are HPO
terms. Let’s denote M the labels matrix. If M [i, j] = 1, means that the gene i is annotated with the
class j, otherwise M [i, j] = 0.

Examples

gene2pheno <- system.file("extdata/gene2pheno.txt", package="HEMDAG");
spec.ann <- specific.annotation.matrix(gene2pheno, genename=TRUE);

stratified.cross.validation

Stratified cross validation

Description

Generate data for the stratified cross-validation

Usage

do.stratified.cv.data.single.class(examples, positives, kk = 5, seed = NULL)

do.stratified.cv.data.over.classes(labels, examples, kk = 5, seed = NULL)

https://github.com/gecko515/HPOparser

44 TPR-DAG

Arguments

examples indices or names of the examples. Can be either a vector of integers or a vector
of names.

positives vector of integers or vector of names. The indices (or names) refer to the indices
(or names) of ’positive’ examples

kk number of folds (def=5)

seed seed of the random generator (def=NULL). If is set to NULL no initialization is
performed

labels labels matrix. Rows are genes and columns are classes. Let’s denote M the
labels matrix. If M [i, j] = 1, means that the gene i is annotated with the class
j, otherwise M [i, j] = 0.

Value

do.stratified.cv.data.single.class returns a list with 2 two component:

• fold.non.positives: a list with k components. Each component is a vector with the indices (or
names) of the non-positive elements. Indices (or names) refer to row numbers (or names) of a
data matrix.

• fold.positives: a list with k components. Each component is a vector with the indices (or
names) of the positive elements. Indices (or names) refer to row numbers (or names) of a data
matrix.

do.stratified.cv.data.over.classes returns a list with n components, where n is the number
of classes of the labels matrix. Each component n is in turn a list with k elements, where k is the
number of folds. Each fold contains an equal amount of examples positives and negatives.

Examples

data(labels);
examples.index <- 1:nrow(L);
examples.name <- rownames(L);
positives <- which(L[,3]==1);
x <- do.stratified.cv.data.single.class(examples.index, positives, kk=5, seed=23);
y <- do.stratified.cv.data.single.class(examples.name, positives, kk=5, seed=23);
z <- do.stratified.cv.data.over.classes(L, examples.index, kk=5, seed=23);
k <- do.stratified.cv.data.over.classes(L, examples.name, kk=5, seed=23);

TPR-DAG TPR-DAG variants

TPR-DAG 45

Description

Different variants of the TPR-DAG algorithm are implemented. In their more general form the
TPR-DAG algorithms adopt a two step learnig strategy:

1. in the first step they compute a per-level bottom-up visit from the leaves to the root to propagate
positive predictions across the hierarchy;

2. in the second step they compute a per-level top-down visit from the root to the leaves in order
to assure the hierarchical consistency of the predictions

Usage

tpr.threshold(S, g, root = "00", t = 0.5)

tpr.threshold.free(S, g, root = "00")

tpr.weighted.threshold.free(S, g, root = "00", w = 0.5)

tpr.weighted.threshold(S, g, root = "00", t = 0.5, w = 0.5)

Arguments

S a named flat scores matrix with examples on rows and classes on columns
g a graph of class graphNEL. It represents the hierarchy of the classes
root name of the class that it is on the top-level of the hierarchy (def. root="00")
t threshold for the choice of positive children (def. t=0.5)
w weight to balance between the contribution of the node i and that of its positive

children

Details

The vanilla TPR-DAG adopts a per-level bottom-up traversal of the DAG to correct the flat predic-
tions ŷi:

ȳi :=
1

1 + |φi|
(ŷi +

∑
j∈φi

ȳj)

where φi are the positive children of i. Different strategies to select the positive children φi can be
applied:

1. Threshold-Free strategy: the positive nodes are those children that can increment the score
of the node i, that is those nodes that achieve a score higher than that of their parents:

φi := {j ∈ child(i)|ȳj > ŷi}

2. Threshold strategy: the positive children are selected on the basis of a threshold that can ben
selected in two different ways:
(a) for each node a constant threshold t̄ is a priori selected:

φi := {j ∈ child(i)|ȳj > t̄}

For instance if the predictions represent probabilities it could be meaningful to a priori
select t̄ = 0.5.

46 TPR-DAG-cross-validation

(b) the threshold is selected to maximize some performance metricM estimated on the train-
ing data, as for instance the F-score or the AUPRC. In other words the threshold is se-
lected to maximize some measure of accuracy of the predictionsM(j, t) on the training
data for the class j with respect to the threshold t. The corresponding set of positives
∀i ∈ V is:

φi := {j ∈ child(i)|ȳj > t∗j , t
∗
j = arg max

t
M(j, t)}

For instance t∗j can be selected from a set of t ∈ (0, 1) through internal cross-validation
techniques.

The weighted TPR-DAG version can be designed by adding a weight w ∈ [0, 1] to balance between
the contribution of the node i and that of its positive children φ, through their convex combination:

ȳi := wŷi +
(1− w)

|φi|
∑
j∈φi

ȳj

If w = 1 no weight is attributed to the children and the TPR-DAG reduces to the HTD-DAG
algorithm, since in this way only the prediction for node i is used in the bottom-up step of the
algorithm. If w = 0 only the predictors associated to the children nodes vote to predict node i. In
the intermediate cases we attribute more importance to the predictor for the node i or to its children
depending on the values of w.

Value

a named matrix with the scores of the classes corrected according to the TPR-DAG algorithm.

Examples

data(graph);
data(scores);
data(labels);
root <- root.node(g);
S.tprTF <- tpr.threshold.free(S,g,root);
S.tprT <- tpr.threshold(S,g,root,t=0.5);
S.tprW <- tpr.weighted.threshold.free(S,g,root,w=0.5);
S.tprWT <- tpr.weighted.threshold(S,g,root,w=0.5, t=0.5);

TPR-DAG-cross-validation

TPR-DAG cross-validation experiments

Description

High level function to correct the computed scores in a hierarchy according to the chosen ensemble
algorithm through a k-cross-validation

TPR-DAG-cross-validation 47

Usage

Do.TPR.DAG(threshold = seq(from = 0.1, to = 0.9, by = 0.1),
weight = seq(from = 0.1, to = 0.9, by = 0.1), kk = 5, seed = NULL,
norm = TRUE, norm.type = NULL, positives = "children",
bottomup = "threshold.free", flat.file = flat.file, ann.file = ann.file,
dag.file = dag.file, flat.dir = flat.dir, flat.norm.dir = NULL,
ann.dir = ann.dir, dag.dir = dag.dir, n.round = 3, f.criterion = "F",
hierScore.dir = hierScore.dir, perf.dir = perf.dir)

Arguments

threshold range of threshold values to be tested in order to find the best threshold (def:
from:0.1, to:0.9, by:0.1). The denser the range is, the higher the probability
to find the best theshold is, but obviously the execution time will be higher. Set
the parameter threshold only for the variants that requiring a threshold for the
positive nodes selection, otherwise set the parameter threshold to zero

weight range of weight values to be tested in order to find the best weight (def: from:0.1,
to:0.9, by:0.1). The denser the range is, the higher the probability to find the
best theshold is, but obviously the execution time will be higher. Set the param-
eter weight only for the weighted variants, otherwise set the parameter weight
to zero

kk number of folds of the cross validation (def: kk=5);

seed intialization seed for the random generator to create folds. If NULL (def.) no
initialization is performed

norm boolean value:

• TRUE (def.): the flat scores matrix has been already normalized in according
to a normalization method;

• FALSE: the flat scores matrix has not been normalized yet. See the parameter
norm.type for which normalization can be applied.

norm.type can be one of the following three values:

1. NULL (def.): set norm.type to NULL if and only if the parameter norm is set
to TRUE;

2. MaxNorm: each score is divided for the maximum of each class;
3. Qnorm: quantile normalization. preprocessCore package is used.

positives choice of the positive nodes to be considered in the bottom-up strategy. Can be
one of the following values:

• children: for each node are considered its positive children (def.);
• descendants: for each node are considered its positive descendants;

bottomup strategy to enhance the flat predictions by propagating the positive predictions
from leaves to root. It can be one of the following values:

• threshold.free: positive nodes are selected on the basis of the threshold.free
strategy (def.);

• threshold: positive nodes are selected on the basis of the threshold strat-
egy;

48 TPR-DAG-cross-validation

• weighted.threshold.free: positive nodes are selected on the basis of the
weighted.threshold.free strategy;

• weighted.threshold: positive nodes are selected on the basis of the weighted.threshold
strategy;

• tau: positive nodes are selected on the basis of the tau strategy. NOTE:
tau is only a DESCENS variants. If you use tau strategy you must set the
parameter positives to descendants;

flat.file name of the file containing the flat scores matrix to be normalized or already
normalized (without rda extension)

ann.file name of the file containing the the label matrix of the examples (without rda
extension)

dag.file name of the file containing the graph that represents the hierarchy of the classes
(without rda extension)

flat.dir relative path where flat scores matrix is stored

flat.norm.dir relative path where flat normalized scores matrix must be stored. Use this pa-
rameter if and only if norm is set to FALSE, otherwise set flat.norm.dir to
NULL (def.)

ann.dir relative path where annotation matrix is stored

dag.dir relative path where graph is stored

n.round number of rounding digits to be applied to the hierarchical scores matrix (def. 3).
It is used for choosing the best threshold on the basis of the best F-measure

f.criterion character. Type of F-measure to be used to select the best F-measure. Two
possibilities:

1. F (def.): corresponds to the harmonic mean between the average precision
and recall

2. avF: corresponds to the per-example F-score averaged across all the ex-
amples

hierScore.dir relative path where the hierarchical scores matrix must be stored

perf.dir relative path where the term-centric and protein-centric measures must be stored

Details

The variants choosing the positives nodes on the basis of a parameter are cross-validated by maxi-
mizing on F-measure (Multilabel.F.measure)

Value

Five rda files stored in the respective output directories:

1. hierarchical scores matrix: a matrix with examples on rows and classes on columns
representing the computed hierarchical scores for each example and for each considered class.
This file is stored in hierScore.dir directory.

2. FMM (F-Measure Multilabel) results: F-score computed by find.best.f function. Both
flat and hierarchical results are reported. This file is stored in perf.dir directory.

TPR-DAG-holdout 49

3. PRC (area under Precision-Recall Curve) results: PRC computed by precrec package. Both
flat and hierarchical results are reported. This file is stored in perf.dir directory.

4. AUC (Area Under ROC Curve) results: AUC computed by precrec package. Both flat and
hierarchical results are reported. This file is stored in perf.dir directory.

5. PXR (Precision at fixed Recall levels) average and per classes: PXR computed by PerfMeas
package. It is stored in perf.dir directory.

See Also

TPR-DAG-variants

Examples

data(graph);
data(scores);
data(labels);
if (!dir.exists("data")){
dir.create("data");
}
if (!dir.exists("results")){
dir.create("results");
}
save(g,file="data/graph.rda");
save(L,file="data/labels.rda");
save(S,file="data/scores.rda");
dag.dir <- flat.dir <- flat.norm.dir <- ann.dir <- "data/";
hierScore.dir <- perf.dir <- "results/";
dag.file <- "graph";
flat.file <- "scores";
ann.file <- "labels";
threshold <- weight <- 0;
positives <- "children";
bottomup <- "threshold.free";
Do.TPR.DAG(threshold=threshold, weight=weight, kk=5, seed=23, norm=FALSE,
norm.type="MaxNorm", positives=positives, bottomup=bottomup,
flat.file=flat.file, ann.file=ann.file, dag.file=dag.file, flat.dir=flat.dir,
ann.dir=ann.dir, dag.dir=dag.dir, flat.norm.dir=flat.norm.dir, n.round=3,
f.criterion="F", hierScore.dir=hierScore.dir, perf.dir=perf.dir);

TPR-DAG-holdout TPR-DAG holdout experiments

Description

High level function to correct the computed scores in a hierarchy according to the chosen ensemble
algorithm through an hold-out procedure

50 TPR-DAG-holdout

Usage

Do.TPR.DAG.holdout(threshold = seq(from = 0.1, to = 0.9, by = 0.1),
weight = seq(from = 0.1, to = 1, by = 0.1), kk = 5, seed = NULL,
norm = TRUE, norm.type = NULL, positives = "children",
bottomup = "threshold.free", flat.file = flat.file, ann.file = ann.file,
dag.file = dag.file, ind.test.set = ind.test.set, ind.dir = ind.dir,
flat.dir = flat.dir, ann.dir = ann.dir, dag.dir = dag.dir,
flat.norm.dir = NULL, n.round = 3, f.criterion = "F",
hierScore.dir = hierScore.dir, perf.dir = perf.dir)

Arguments

threshold range of threshold values to be tested in order to find the best threshold (def:
from:0.1, to:0.9, by:0.1). The denser the range is, the higher the probability
to find the best theshold is, but obviously the execution time will be higher. Set
the parameter threshold only for the variants that requiring a threshold for the
positive nodes selection, otherwise set the parameter threshold to zero

weight range of weight values to be tested in order to find the best weight (def: from:0.1,
to:0.9, by:0.1). The denser the range is, the higher the probability to find the
best theshold is, but obviously the execution time will be higher. Set the param-
eter weight only for the weighted variants, otherwise set the parameter weight
to zero

kk number of folds of the cross validation (def: kk=5);

seed intialization seed for the random generator to create folds. If NULL (def.) no
initialization is performed

norm boolean value:

• TRUE (def.): the flat scores matrix has been already normalized in according
to a normalization method;

• FALSE: the flat scores matrix has not been normalized yet. See the parameter
norm.type for which normalization can be applied.

norm.type can be one of the following three values:

1. NULL (def.): set norm.type to NULL if and only if the parameter norm is set
to TRUE;

2. MaxNorm: each score is divided for the maximum of each class;
3. Qnorm: quantile normalization. preprocessCore package is used.

positives choice of the positive nodes to be considered in the bottom-up strategy. Can be
one of the following values:

• children: for each node are considered its positive children (def.);
• descendants: for each node are considered its positive descendants;

bottomup strategy to enhance the flat predictions by propagating the positive predictions
from leaves to root. It can be one of the following values:

• threshold.free: positive nodes are selected on the basis of the threshold.free
strategy (def.);

TPR-DAG-holdout 51

• threshold: positive nodes are selected on the basis of the threshold strat-
egy;

• weighted.threshold.free: positive nodes are selected on the basis of the
weighted.threshold.free strategy;

• weighted.threshold: positive nodes are selected on the basis of the weighted.threshold
strategy;

• tau: positive nodes are selected on the basis of the tau strategy. NOTE:
tau is only a DESCENS variants. If you use tau strategy you must set the
parameter positives to descendants;

flat.file name of the file containing the flat scores matrix to be normalized or already
normalized (without rda extension)

ann.file name of the file containing the the label matrix of the examples (without rda
extension)

dag.file name of the file containing the graph that represents the hierarchy of the classes
(without rda extension)

ind.test.set name of the file containing a vector of integer numbers corresponding to the
indices of the elements (rows) of scores matrix to be used in the test set

ind.dir relative path to folder where ind.test.set is stored

flat.dir relative path where flat scores matrix is stored

ann.dir relative path where annotation matrix is stored

dag.dir relative path where graph is stored

flat.norm.dir relative path where flat normalized scores matrix must be stored. Use this pa-
rameter if and only if norm is set to FALSE, otherwise set flat.norm.dir to
NULL (def.)

n.round number of rounding digits to be applied to the hierarchical scores matrix (def. 3).
It is used for choosing the best threshold on the basis of the best F-measure

f.criterion character. Type of F-measure to be used to select the best F-measure. Two
possibilities:

1. F (def.): corresponds to the harmonic mean between the average precision
and recall

2. avF: corresponds to the per-example F-score averaged across all the ex-
amples

hierScore.dir relative path where the hierarchical scores matrix must be stored

perf.dir relative path where the term-centric and protein-centric measures must be stored

Details

The variants choosing the positives nodes on the basis of a parameter are cross-validated by maxi-
mizing on F-measure (Multilabel.F.measure)

Value

Five rda files stored in the respective output directories:

52 TPR-DAG-holdout

1. hierarchical scores matrix: a matrix with examples on rows and classes on columns
representing the computed hierarchical scores for each example and for each considered class.
This file is stored in hierScore.dir directory.

2. FMM (F-Measure Multilabel) results: F-score computed by find.best.f function. Both
flat and hierarchical results are reported. This file is stored in perf.dir directory.

3. PRC (area under Precision-Recall Curve) results: PRC computed by precrec package. Both
flat and hierarchical results are reported. This file is stored in perf.dir directory.

4. AUC (Area Under ROC Curve) results: AUC computed by precrec package. Both flat and
hierarchical results are reported. This file is stored in perf.dir directory.

5. PXR (Precision at fixed Recall levels) average and per classes: PXR computed by PerfMeas
package. It is stored in perf.dir directory.

See Also

TPR-DAG-variants

Examples

data(graph);
data(scores);
data(labels);
data(test.index);
if (!dir.exists("data")){
dir.create("data");
}
if (!dir.exists("results")){
dir.create("results");
}
save(g,file="data/graph.rda");
save(L,file="data/labels.rda");
save(S,file="data/scores.rda");
save(test.index, file="data/test.index.rda");
ind.dir <- dag.dir <- flat.dir <- flat.norm.dir <- ann.dir <- "data/";
hierScore.dir <- perf.dir <- "results/";
dag.dir <- flat.dir <- flat.norm.dir <- ann.dir <- "data/";
ind.test.set <- "test.index";
dag.file <- "graph";
flat.file <- "scores";
ann.file <- "labels";
threshold <- weight <- 0;
positives <- "children";
bottomup <- "threshold.free";
Do.TPR.DAG.holdout(threshold=threshold, weight=weight, kk=5, seed=23, norm=FALSE,
norm.type="MaxNorm", positives=positives, bottomup=bottomup,flat.file=flat.file,
ann.file=ann.file, dag.file=dag.file, ind.test.set=ind.test.set,
ind.dir=ind.dir, flat.dir=flat.dir, ann.dir=ann.dir, dag.dir=dag.dir,
flat.norm.dir=flat.norm.dir, n.round=3, f.criterion="F",
hierScore.dir=hierScore.dir, perf.dir=perf.dir);

TPR-DAG-variants 53

TPR-DAG-variants TPR-DAG Variants

Description

TPR-DAG is a user-friendly function gathering all the hierarchical ensemble algorithms

Usage

TPR.DAG(S, g, root = "00", positives = "children",
bottomup = "threshold.free", t = 0, w = 0)

Arguments

S a named flat scores matrix with examples on rows and classes on columns

g a graph of class graphNEL. It represents the hierarchy of the classes

root name of the class that it is on the top-level of the hierarchy (def. root="00")

positives choice of the positive nodes to be considered in the bottom-up strategy. Can be
one of the following values:

• children: for each node are considered its positive children (def.);
• descendants: for each node are considered its positive descendants;

bottomup strategy to enhance the flat predictions by propagating the positive predictions
from leaves to root. It can be one of the following values:

• threshold.free: positive nodes are selected on the basis of the threshold.free
strategy (def.);

• threshold: positive nodes are selected on the basis of the threshold strat-
egy;

• weighted.threshold.free: positive nodes are selected on the basis of the
weighted.threshold.free strategy;

• weighted.threshold: positive nodes are selected on the basis of the weighted.threshold
strategy;

• tau: positive nodes are selected on the basis of the tau strategy. NOTE:
tau is only a DESCENS variants. If you use tau strategy you must set the
parameter positives to descendants;

t threshold for the choice of positive nodes (def. t=0.5). Set t only for the vari-
ants that requiring a threshold for the selection of the positive nodes, otherwise
set t to zero

w weight to balance between the contribution of the node i and that of its positive
nodes. Set w only for the weighted variants, otherwise set w to zero

Value

a named matrix with the scores of the classes corrected according to the chosen algorithm

54 transitive.closure.annotations

See Also

TPR-DAG, DESCENS, HTD-DAG

Examples

data(graph);
data(scores);
data(labels);
root <- root.node(g);
S.hier <- TPR.DAG(S, g, root, positives="children", bottomup="threshold.free", t=0, w=0);

transitive.closure.annotations

Transitive closure of annotations

Description

Performs the transitive closure of the annotations using ancestors and the most specific annotation
table. The annotations are propagated from bottom to top, enriching the most specific annotations
table. The rows of the matrix correspond to the genes of the most specific annotation table and the
columns to the HPO terms/classes

Usage

transitive.closure.annotations(ann.spec, anc)

Arguments

ann.spec the annotation matrix of the most specific annotations (0/1): rows are genes and
columns are HPO terms.

anc list of the ancestors of the ontology.

Value

an annotation table T: rows correspond to genes and columns to HPO terms. T [i, j] = 1 means that
gene i is annotated for the term j, T [i, j] = 0 means that gene i is not annotated for the term j.

See Also

specific.annotation.matrix, build.ancestors

Examples

data(graph);
data(labels);
anc <- build.ancestors(g);
tca <- transitive.closure.annotations(L, anc);

tupla.matrix 55

tupla.matrix Tupla Matrix

Description

Trasform a Weighted Adjacency Matrix (wadj matrix) of a graph in a tupla, i.e. as a sequences of
rows separated by blank and the weight of the edges, e.g nodeX nodeY score

Usage

tupla.matrix(m, compressed = TRUE, output.file = "net.file.gz")

Arguments

m a weighetd adjacency matrix of the graph. Rows and columns are examples. It
must be a square named matrix.

compressed boolean value:

• TRUE (def.): the output file will be a gz compressed format;

• FALSE: the output file will be a plain text format;

output.file name of the file of the to be written

Details

Only the non-zero interactions are kept, while the zero interactions are discarded. In other words in
the output.file are reported only those nodes having a weight different from zero

Value

if compressed=TRUE the weighted adjacency matrix as tupla is stored in a compressed gz, otherwise
(compressed=FALSE) it is stored in a plain text file.

Examples

Not run:
data(wadj);
tupla.matrix(W,compressed=TRUE, output.file="tupla.wadj.gz");
tupla.matrix(W,compressed=FALSE, output.file="tupla.wadj.txt");
End(Not run)

56 weighted.adjacency.matrix

weighted.adjacency.matrix

Weighted Adjacency Matrix

Description

Construct a Weighted Adjacency Matrix (wadj matrix) of a graph

Usage

weighted.adjacency.matrix(file = "edges.txt", compressed = TRUE,
nodename = TRUE)

Arguments

file name of the plain text file to be read (def. edges). The format of the file is a
sequence of rows. Each row corresponds to an edge represented through a pair
of vertices separated by blanks and the weight of the edges.
For instance: nodeX nodeY score

compressed boolean value:

• TRUE (def.): the input file must be in a .gz compressed format;
• FALSE: the input file must be in a plain text format;

nodename boolean value:

• TRUE (def.): the names of nodes are gene symbol (i.e. characters);
• FALSE: the names of the nodes are entrez gene ID (i.e. integer numbers);

Details

The input paramenter nodename sorts the row names of the wadj matrix in increasing order if they
are integer number or in alphabetic order if they are characters.

Value

a named symmetric weighted adjacency matrix of the graph

Examples

edges <- system.file("extdata/edges.txt", package="HEMDAG");
W <- weighted.adjacency.matrix(file=edges, compressed=FALSE, nodename=TRUE);

write.graph 57

write.graph Write a directed graph on file

Description

An object of class graphNEL is read and the graph is written on a plain text file as sequence of rows

Usage

write.graph(g, file = "graph.txt")

Arguments

g a graph of class graphNEL

file name of the file to be written

Value

a plain text file representing the graph. Each row corresponds to an edge represented through a pair
of vertices separated by blanks

Examples

Not run:
data(graph);
write.graph(g, file="graph.edges.txt");
End(Not run)

Index

∗Topic package
HEMDAG-package, 3

ancestors, 4
AUPRC.single.class, 5, 6
AUPRC.single.over.classes, 5, 5
AUROC.single.class, 6, 7
AUROC.single.over.classes, 7, 7

build.ancestors, 8, 33, 54
build.ancestors (ancestors), 4
build.children (children), 9
build.descendants (descendants), 11

check.annotation.matrix.integrity, 8
check.DAG.integrity, 9
check.hierarchy

(hierarchical.checkers), 35
children, 9
compute.flipped.graph, 10
constraints.matrix, 11

descendants, 11
DESCENS, 3, 12, 54
descens.tau (DESCENS), 12
descens.threshold (DESCENS), 12
descens.weighted.threshold (DESCENS), 12
distances.from.leaves, 14
do.edges.from.HPO.obo, 15
Do.FLAT.scores.normalization, 16
Do.full.annotation.matrix, 17
Do.heuristic.methods, 18
Do.heuristic.methods.holdout, 21
Do.HTD, 23
Do.HTD.holdout, 25
do.stratified.cv.data.over.classes

(stratified.cross.validation),
43

do.stratified.cv.data.single.class
(stratified.cross.validation),
43

do.subgraph, 27
do.submatrix, 28
Do.TPR.DAG (TPR-DAG-cross-validation),

46
Do.TPR.DAG.holdout (TPR-DAG-holdout), 49
do.unstratified.cv.data, 29

example.datasets, 29

F.measure.multilabel
(Multilabel.F.measure), 37

F.measure.multilabel,matrix,matrix-method
(Multilabel.F.measure), 37

find.best.f, 30
find.leaves, 32
full.annotation.matrix, 8, 18, 32

g (example.datasets), 29
get.children.bottom.up (children), 9
get.children.top.down (children), 9
get.parents (parents), 39
graph.levels, 4, 10, 12, 33, 36, 39

HEMDAG (HEMDAG-package), 3
HEMDAG-package, 3
Heuristic-Methods, 34
heuristicAND (Heuristic-Methods), 34
heuristicMAX (Heuristic-Methods), 34
heuristicOR (Heuristic-Methods), 34
hierarchical.checkers, 35, 36
htd (HTD-DAG), 36
HTD-DAG, 36

L (example.datasets), 29

Multilabel.F.measure, 37, 48, 51

normalize.max, 38

parents, 39

read.graph, 40

58

INDEX 59

read.undirected.graph, 40
root.node, 41

S (example.datasets), 29
specific.annotation.list, 42
specific.annotation.matrix, 33, 42, 42,

54
stratified.cross.validation, 43

test.index (example.datasets), 29
TPR-DAG, 44
TPR-DAG-cross-validation, 46
TPR-DAG-holdout, 49
TPR-DAG-variants, 53
TPR.DAG (TPR-DAG-variants), 53
tpr.threshold (TPR-DAG), 44
tpr.weighted.threshold (TPR-DAG), 44
transitive.closure.annotations, 8, 33,

54
tupla.matrix, 55

W (example.datasets), 29
weighted.adjacency.matrix, 33, 56
write.graph, 57

	HEMDAG-package
	ancestors
	AUPRC.single.class
	AUPRC.single.over.classes
	AUROC.single.class
	AUROC.single.over.classes
	check.annotation.matrix.integrity
	check.DAG.integrity
	children
	compute.flipped.graph
	constraints.matrix
	descendants
	DESCENS
	distances.from.leaves
	do.edges.from.HPO.obo
	Do.FLAT.scores.normalization
	Do.full.annotation.matrix
	Do.heuristic.methods
	Do.heuristic.methods.holdout
	Do.HTD
	Do.HTD.holdout
	do.subgraph
	do.submatrix
	do.unstratified.cv.data
	example.datasets
	find.best.f
	find.leaves
	full.annotation.matrix
	graph.levels
	Heuristic-Methods
	hierarchical.checkers
	HTD-DAG
	Multilabel.F.measure
	normalize.max
	parents
	read.graph
	read.undirected.graph
	root.node
	specific.annotation.list
	specific.annotation.matrix
	stratified.cross.validation
	TPR-DAG
	TPR-DAG-cross-validation
	TPR-DAG-holdout
	TPR-DAG-variants
	transitive.closure.annotations
	tupla.matrix
	weighted.adjacency.matrix
	write.graph
	Index

