
The Classical Jacobi Algorithm
Bill Venables

2015-08-09

Introduction

The Jacobi eigenvalue algorithm

This is a classical algorithm proposed by the mathematician C. G. J. Jacobi in 1846 in connexion with some
astronomical computations. See wikipedia for a detailed description and some historical references.

The method was computationally tedious, and remained dormant until the advent of modern computers in
the mid 20th century. Since its re-discovery it has been refined and improved many times, though much
faster algorithms have since been devised and implemented.

I first met the Jacobi algorithm as an early Fortran programming exercise I had as a student in 1966. It’s
simplicity and ingenuity fascinated me then and kindled an interest in numerical computations of this kind
that has remained ever since. It was a very good way to learn programming.

Parallel revival

There has been some renewed interest in Jacobi-like methods in recent times, however, since unlike the faster
methods for eigensolution computations, it offers the possibility of parallelisation. See, for example, Zhou
and Brent for one possibility, and others in the references therein.

Purpose of this package

This is a demonstration package used for teaching purposes. It’s main purposes are to provide an example
of an intermediate-level programming task where an efficient coding in pure R and one using in C++ using
Rcpp are strikingly similar. The task also involves matrix manipulation in pure Rcpp, rather than using
RcppArmadillo for example, which is of some teaching interest as well.

There are some situations where the C++ function provided, JacopiCpp, is slightly faster than the in-built
eigen function in the base package, mainly for large numbers of small symmetric matrices. Persons with a
fascination for old algorithms might find the comparison with modern versions and alternatives interesting,
but generally the functions are not intended for production use.

If someone is motivated to take up the challenge of producing a fast parallel Jacobi algorithm coding in R
and provide it as a package, there may well be much practical interest (and this package will have served a
useful practical purpose, if somewhat vicariously).

Brief synopsis of the algorithm

Let S be a 2 × 2 symmetric matrix, with entries sij . It it well known that any symmetric matrix may be
diagonalized by an orthogonal similarity transformation. In symbols, for this special case, this implies we
need to choose a value for θ for which:

HTSH =

[

cos θ − sin θ

sin θ cos θ

] [

s11 s12

s21 s22

] [

cos θ sin θ

− sin θ cos θ

]

=

[

λ1 0
0 λ2

]

def.
= Λ

1

https://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm
http://maths-people.anu.edu.au/~brent/pd/rpb207.pdf
http://maths-people.anu.edu.au/~brent/pd/rpb207.pdf

A solution is easily shown to be

θ =

{

1

2
arctan

(

2s12

s22−s11

)

if s11 6= s22

π
4

if s11 = s22

Note that both cases can be accommodated via the R function atan2.

In the general case a series of rotation matrices is chosen and applied successively. These have teh same form
as the 2 × 2 case, but embedded in an n × n identity matrix, so the application of any one of them affects
two rows and columns only. Such planar rotation matrices are chosen so that at any stage the off-diagonal
element with maximum absolute value is anihilated.

Hence if at some stage |sij |, (i < j), is maximum, the planar rotation matrix Hij will affect rows and columns
i and j only, and will transform sij to zero, and the process continues.

The process ceases when the max
i<j

|sij | < ǫ, where ǫ > 0 is some small pre-set tolerance.1

Elements that are anihilated at some stage may become non-zero at later stages, of course, but several
properties of the algorithm are guaranteed, namely

• At any stage the sum of squares of the off-diagonal elements is reduced, eventually to zero, and

• The rate of convergence is quadratic, so the algorithm is relatively quick.

At the end of the algorithm, the original symmetric matrix S is transformed into the diagonal matrix of
eigenvalues, Λ. If eigenvectors are also required then the accumulated product of the planar rotation matrices,
starting with the identity, provide a normalized version of them:

H = Hip,jp
· · · Hi3,j3

Hi2,j2
Hi1,j1

In

Examples

For a simple example, consider finding the eigenvalues and eigenvectors of a well-known correlation matrix.

imod <- aov(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) ~ Species, iris)

(R <- cor(resid(imod)))

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 0.5302358 0.7561642 0.3645064

Sepal.Width 0.5302358 1.0000000 0.3779162 0.4705346

Petal.Length 0.7561642 0.3779162 1.0000000 0.4844589

Petal.Width 0.3645064 0.4705346 0.4844589 1.0000000

library(JacobiEigen)

suppressPackageStartupMessages(library(dplyr))

rEig <- JacobiR(R)

cEig <- JacobiCpp(R)

identical(rEig, cEig) ## the R and Rcpp implementations are identical

[1] TRUE

1If only eigenvalues are required, the tolerance can be set somewhat higher than if accurate eigenvectors are required as well.

2

cEig

$values

[1] 2.5037618 0.7251373 0.5824012 0.1886997

$vectors

[,1] [,2] [,3] [,4]

[1,] 0.5423991 -0.4569743 -0.2149752 0.6713892

[2,] 0.4663824 0.4664664 -0.6965582 -0.2823176

[3,] 0.5348347 -0.4534110 0.3139268 -0.6401720

[4,] 0.4497138 0.6066317 0.6083110 0.2443627

(eEig <- eigen(R))

$values

[1] 2.5037618 0.7251373 0.5824012 0.1886997

$vectors

[,1] [,2] [,3] [,4]

[1,] -0.5423991 0.4569743 -0.2149752 0.6713892

[2,] -0.4663824 -0.4664664 -0.6965582 -0.2823176

[3,] -0.5348347 0.4534110 0.3139268 -0.6401720

[4,] -0.4497138 -0.6066317 0.6083110 0.2443627

all.equal(eEig$values, cEig$values) ## eigenvalues are (practically) identical

[1] TRUE

crossprod(eEig$vectors, cEig$vectors) %>% ## eigenvectors differ in signs

round(10)

[,1] [,2] [,3] [,4]

[1,] -1 0 0 0

[2,] 0 -1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

We can now look at some timings.

library(microbenchmark)

microbenchmark(JacobiR(R), JacobiCpp(R), eigen(R))

Unit: microseconds

expr min lq mean median uq max neval

JacobiR(R) 574.684 606.2260 696.01972 647.014 682.0795 2750.229 100

JacobiCpp(R) 12.887 14.5075 19.04106 19.498 21.2585 33.945 100

eigen(R) 87.762 96.3060 104.48423 103.768 109.6660 166.132 100

cld

c

a

b

3

The apparene advantage of JacobiCpp rapidly diminishes as the size of the matrix increases:

suppressPackageStartupMessages(library(tidyr))

set.seed(1234)

N <- 100

iseq <- seq(5, 50, by = 5)

res <- lapply(iseq, function(n) {

S <- crossprod(matrix(rnorm(N*n), N, n))/N

runTime <- microbenchmark(JacobiCpp(S), eigen(S), times = 20)

c(n = n, with(runTime, tapply(time, expr, median))/1000)

}) %>%

do.call(rbind, .) %>%

as.data.frame %>%

gather(key = expr, value = time, `JacobiCpp(S)`, `eigen(S)`)

suppressPackageStartupMessages(library(ggplot2))

ggplot(res) + aes(x = n, y = log10(time), colour = expr) + geom_line() + geom_point() +

theme(legend.position = "top") + xlab("matrix size") +

ylab("log10(median run time in milliseconds)")

2

3

4

10 20 30 40 50
matrix size

lo
g1

0(
m

ed
ia

n
ru

n
tim

e
in

 m
ill

is
ec

on
ds

)

expr JacobiCpp(S) eigen(S)

4

Code

For referece, the R and Rcpp code are listed below.

R

JacobiR <- function(x, only_values = FALSE,

eps = if(!only_values) .Machine$double.eps else

sqrt(.Machine$double.eps)) {

n <- nrow(x)

H <- if(only_values) NULL else diag(n)

eps <- max(eps, .Machine$double.eps)

if(n > 1) {

lt <- which(lower.tri(x))

repeat {

k <- lt[which.max(abs(x[lt]))] ## the matrix element

j <- floor(1 + (k - 2)/(n + 1)) ## the column

i <- k - n * (j - 1) ## the row

if(abs(x[i, j]) < eps) break

Si <- x[, i]

Sj <- x[, j]

theta <- 0.5*atan2(2*Si[j], Sj[j] - Si[i])

c <- cos(theta)

s <- sin(theta)

x[i,] <- x[, i] <- c*Si - s*Sj

x[j,] <- x[, j] <- s*Si + c*Sj

x[i,j] <- x[j,i] <- 0

x[i,i] <- c^2*Si[i] - 2*s*c*Si[j] + s^2*Sj[j]

x[j,j] <- s^2*Si[i] + 2*s*c*Si[j] + c^2*Sj[j]

if(!only_values) {

Hi <- H[, i]

H[, i] <- c*Hi - s*H[, j]

H[, j] <- s*Hi + c*H[, j]

}

}

}

list(values = as.vector(diag(x)), vectors = H)

}

5

Rcpp

We begin with some helper functions:

#include <Rcpp.h>

using namespace Rcpp;

SEXP machine_double_eps(std::string value = "double.eps") // not exported.

{

return (as<List>(Environment::base_env()[".Machine"]))[value];

}

NumericMatrix Ident(int n) // not exported.

{

NumericMatrix I(n, n);

for(int i = 0; i < n; i++) I(i, i) = 1.0;

return I;

}

// [[Rcpp::export]]

List JacobiCpp(NumericMatrix x, bool only_values = false, double eps = 0.0)

{

NumericMatrix S(clone(x));

int nr = S.nrow();

bool vectors = !only_values;

NumericMatrix H;

if(vectors) {

H = Ident(nr);

}

bool def = only_values & (eps == 0.0);

double eps0 = as<double>(machine_double_eps());

eps = eps > eps0 ? eps : eps0; // i.e. tol. no lower than .Machine$double.eps

if(def) eps = sqrt(eps); // only a lower accuracy is needed for eigenvalues only.

while(true) {

double maxS = 0.0;

int i=0, j=0;

for(int row = 1; row < nr; row++) { // find value & position of maximum |off-diagonal|

for(int col = 0; col < row; col++) {

double val = fabs(S(row, col));

if(maxS < val) {

maxS = val;

i = row;

j = col;

}

}

}

if(maxS < eps) break;

NumericVector Si = S(_, i), Sj = S(_, j);

double theta = 0.5*atan2(2.0*Si(j), Sj(j) - Si(i));

6

double s = sin(theta), c = cos(theta);

S(i, _) = S(_, i) = c*Si - s*Sj;

S(j, _) = S(_, j) = s*Si + c*Sj;

S(i, j) = S(j, i) = 0.0;

S(i, i) = c*c*Si(i) - 2.0*s*c*Si(j) + s*s*Sj(j);

S(j, j) = s*s*Si(i) + 2.0*s*c*Si(j) + c*c*Sj(j);

if(vectors) {

NumericVector Hi = H(_, i);

H(_, i) = c*Hi - s*H(_, j);

H(_, j) = s*Hi + c*H(_, j);

}

}

if(vectors) {

return List::create(_["values"] = diag(S),

_["vectors"] = H);

} else {

return List::create(_["values"] = diag(S),

_["vectors"] = R_NilValue);

}

}

7

	Introduction
	The Jacobi eigenvalue algorithm
	Parallel revival
	Purpose of this package

	Brief synopsis of the algorithm
	Examples
	Code
	R
	Rcpp

