RProtoBuf: An R API for Protocol Buffers

Romain Francois Dirk Eddelbuettel

Version 0.0-6 as of January 11, 2010

Abstract

Protocol Buffers is a software project by Google that is used extensively internally and also released
under an Open Source license. It provides a way of encoding structured data in an efficient yet
extensible format. Google formally supports APIs for C4++, Java and Python.

This vignette describes version 0.0-6 of the RProtoBuf package which brings support for protocol
buffer messages to R.

1 Protocol Buffers

Protocol buffers are a language-neutral, platform-neutral, extensible way of serializing structured
data for use in communications protocols, data storage, and more.

Protocol Buffers offer key features such as an efficient data interchange format that is both
language- and operating system-agnostic yet uses a lightweight and highly performant encoding, ob-
ject serialization and de-serialization as well data and configuration management. Protocol buffers
are also forward compatible: updates to the proto files do not break programs built against the
previous specification.

While benchmarks are not available, Google states on the project page that in comparison to
XML, protocol buffers are at the same time simpler, between three to ten times smaller, between
twenty and one hundred times faster, as well as less ambiguous and easier to program.

The protocol buffers code is released under an open-source (BSD) license. The protocol buffer
project (http://code.google.com/p/protobuf/) contains a C++ library and a set of runtime
libraries and compilers for C++, Java and Python.

With these languages, the workflow follows standard practice of so-called Interface Description
Languages (IDL) (c.f. Wikipedia on IDL). This consists of compiling a protocol buffer description
file (ending in .proto) into language specific classes that can be used to create, read, write and
manipulate protocol buffer messages. In other words, given the 'proto’ description file, code is
automatically generated for the chosen target language(s). The project page contains a tutorial for
each of these officially supported languages: http://code.google.com/apis/protocolbuffers/
docs/tutorials.html

Besides the officially supported C++, Java and Python implementations, several projects have
been created to support protocol buffers for many languages. The list of known languages to support
protocol buffers is compiled as part of the project page: http://code.google.com/p/protobuf/
wiki/ThirdPartyAddOns

http://code.google.com/p/protobuf/
http://en.wikipedia.org/wiki/Interface_description_language
http://code.google.com/apis/protocolbuffers/docs/tutorials.html
http://code.google.com/apis/protocolbuffers/docs/tutorials.html
http://code.google.com/p/protobuf/wiki/ThirdPartyAddOns
http://code.google.com/p/protobuf/wiki/ThirdPartyAddOns

The protocol buffer project page contains a comprehensive description of the language: http:
//code.google.com/apis/protocolbuffers/docs/proto.html

2 Static use: Revisiting the tutorial

In this section, we illustrate use of Protocol Buffers in a static fashion: based on the proto file,
code is generated by the compiler and used by language-specific bindings.

2.1 The address book example

Through this document, we will use the addressbook example that is used by the official tutorials
for Java, Python and C++. It is based on the following proto file:

package tutorial;
option java_package = "com.example.tutorial";
option java_outer_classname = "AddressBookProtos";
message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;
enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;
b
message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];
3
repeated PhoneNumber phone = 4;
b
message AddressBook {
repeated Person person = 1;
3
service EchoService {
rpc Echo (Person) returns (Person);

}
The proto file defines :

e three message types

— tutorial.Person,
— tutorial.Person.PhoneNumber and
— tutorial.AddressBook

e an enum type tutorial.Person.PhoneType with three values MOBILE, HOME and WORK

http://code.google.com/apis/protocolbuffers/docs/proto.html
http://code.google.com/apis/protocolbuffers/docs/proto.html

We see that a message type can contain several different items:

e sets of fields—for example the Person message type contains the required field name of prim-
itive type string associated with the tag number 1;

e fields can be either required (as name or id) or optional (as email);

e other message type descriptions—Person contains the nested message type PhoneNumber;
hence the fully qualified type of PhoneNumber is tutorial.Person.PhoneNumber

e enum type descriptions.

Using the protoc compiler, we can generate functions that access these Protocol Buffer messages
and their components for both reading and writing using any of the three officially supported
languages C++, Java and Python. For example, for C++ the call

protoc -cpp_out=. addressbook.proto

generates almost eighteen hundreed lines of code: seven hundred in a header file addressbook.pb.h
and almost elevenhundred in a file addressbook.pb.cc. These two files are used in the tutorial
application programs add_person.cc and list_people.cc. The former adds a new record to an
address book defined by the proto file shown above, and the latter prints the contents of all records
in the address book.

2.2 Simple R accessors for the address book example

The Protocol Buffers tutorial contains two simple standalone programs to, respectively, add a record
and list all records from an address book as defined by the proto file shown above.

In order to ease the transition from C++ to R when working with Protocol Buffers, we imple-
mented two simple wrapper functions in C++ that accomplish essentially the same task, but are
callable directly from R. This use the Rcpp package for interfacing C++ from R.

Adding a record: addPerson()
The R function addPerson() accepts five arguments:
> args(addPerson)

function (filename, id, name, emails, phones)
NULL

The first argument denotes the (binary) file into which the new address book record will be
written. The next four argument describe the record to be added. Both id and name have to be of
length one, whereas emails and phones can be of length zero as they correspond to optional fields.

The actual implementation in C++ is close to the tutorial example and can be used as gentle
first step in programming with R and Protocol Buffers.

Listing all records: listPeopleAsList() and listPeopleAsDataFrame()

Displaying the content of an address book defined by the proto file above is straigtforward in the
command-line example as records are simply printed to the screen.

For our use, these data need to be read from the file and transfered back to R. Given the
definition of the proto file, we face an interesting problem: some fields are optional, and some
fields can be repeated numerous types. That means our data structure can be textslragged: the
number of entries per record cannot be expected to be constant.

Of course, R can handle such dynamic data structures rather easily. One approach is to use
lists of lists which is implemented in listPeopleasList() which returns a 1ist object to R with
one entry per address book record. Each of these entries is itself a list comprised of two character
vectors of length one (name and id) as well as further lists for emails and phone numbers.

Similarly, we can use the fact that the id field is key identifying a person and return two
data.frames to R that that can then be merged on the id. This allows for both potentially missing
entries (as for the optional email fields) as well as repeated fields (as for the phone number records).
The R function 1listPeopleAsDataFrame () implements this approach, and its corresponding C++
function is very close to the tutorial file 1ist_people.cc.

Both these functions show how R can use the C++ code generated by the Protocol Buffers
compiler. Binding the generated functions to R is straightforward — but arguably tedious as new
interface code needs to be written manually. But R as is dynamically-typed language, we would
like to use Protocol Buffers in a less rigid fashion. The next few sections show how this can be
done.

3 Dynamic use: Protocol Buffers and R

This section describes how to use the R API to create and manipulate protocol buffer messages in
R, and how to read and write the binary payload of the messages to files and arbitrary binary R
connections.

3.1 Importing proto files

In contrast to the other languages (Java, C++, Python) that are officially supported by Google,
the implementation used by the RProtoBuf package does not rely on the protoc compiler (with the
exception of the two functions discussed in the previous section). This means that no initial step
of statically compiling the proto file into C++ code that is then accessed by R code is necessary.
Instead, proto files are parsed and processed at runtime by the protobuf C++ library—which is
much more appropriate for a dynamic language.

The readProtoFiles function allows importing proto files in several ways.

> args(readProtoFiles)

function (files, dir, package = "RProtoBuf")
NULL

Using the file argument, one can specify one or several file paths that ought to be proto files.

> proto.dir <- system.file("proto", package = "RProtoBuf")
> proto.file <- file.path(proto.dir, "addressbook.proto")
> readProtoFiles (proto.file)

With the dir argument, which is ignored if the file is supplied, all files matching the .proto
extension will be imported.

> dir(proto.dir, pattern = "\\.proto$", full.names = TRUE)

[1] "/tmp/Rinst1364685161/RProtoBuf/proto/addressbook.proto"
[2] "/tmp/Rinst1364685161/RProtoBuf/proto/helloworld.proto"

> readProtoFiles(dir = proto.dir)

Finally, with the package argument (ignored if file or dir is supplied), the function will import
all .proto files that are located in the proto sub-directory of the given package. A typical use for
this argument is in the .onLoad function of a package.

> readProtoFiles(package = "RProtoBuf")

Once the proto files are imported, all message descriptors are are available in the R search path
in the RProtoBuf :DescriptorPool special environment. The underlying mechanism used here is
described in more detail in section 6.

> 1s("RProtoBuf :DescriptorPool")

[1] "rprotobuf.HelloWorldRequest" "rprotobuf.HelloWorldResponse"
[3] "tutorial.AddressBook" "tutorial.Person"

3.2 Creating a message

The objects contained in the special environment are descriptors for their associated message types.
Descriptors will be discussed in detail in another part of this document, but for the purpose of this
section, descriptors are just used with the new function to create messages.

> p <- new(tutorial.Person, name = "Romain", id = 1)

3.3 Access and modify fields of a message

Once the message created, its fields can be quiered and modified using the dollar operator of R,
making protocol buffer messages seem like lists.

> p$name

[1] "Romain"
> p$id

(11 1

> p$email <- "francoisromain@free.fr"

However, as opposed to R lists, no partial matching is performed and the name must be given
entirely.

The [[operator can also be used to query and set fields of a mesages, supplying either their
name or their tag number :

> p[["name"]] <- "Romain Francois"
> pl[2]] <- 3
> pl["email"]]

[1] "francoisromain@free.fr"

3.4 Display messages
For debugging purposes, protocol buffer messages implement the as.character method:
> writeLines(as.character(p))

name: "Romain Francois"
id: 3
email: "francoisromain@free.fr"

3.5 Serializing messages

However, the main focus of protocol buffer messages is efficiency. Therefore, messages are trans-
ported as a sequence of bytes. The serialize method is implemented for protocol buffer messages
to serialize a message into the sequence of bytes (raw vector in R speech) that represents the
message.

> serialize(p, NULL)

[1] Oa Of 52 6f 6d 61 69 6e 20 46 72 61 6e 63 6f 69 73 10 03 1la
[21] 16 66 72 61 6e 63 6f 69 73 72 6f 6d 61 69 6e 40 66 72 65 65
[41] 2e 66 72

The same method can also be used to serialize messages to files :

> tf1 <- tempfile()
> tf1

[1] "/tmp/Rtmp3ztWaE/file109cf92e"

> serialize(p, tf1)
> readBin(tf1, raw(0), 500)

[1] Oa Of 52 6f 6d 61 69 6e 20 46 72 61 6e 63 6f 69 73 10 03 1la
[21] 16 66 72 61 6e 63 6f 69 73 72 6f 6d 61 69 6e 40 66 72 65 65
[41] 2e 66 72

Or to arbitrary binary connections:

tf2 <- tempfile()

con <- file(tf2, open = "wb")
serialize(p, con)

close(con)

readBin(tf2, raw(0), 500)

vV V.V Vv Vv

[1] Oa Of 52 6f 6d 61 69 6e 20 46 72 61 6e 63 6f 69 73 10 03 1la
[21] 16 66 72 61 6e 63 6f 69 73 72 6f 6d 61 69 6e 40 66 72 65 65
[41] 2e 66 72

serialize can also be used in a more traditionnal object oriented fashion using the dollar
operator :

> p$serialize(tf1)

> con <- file(tf2, open = "wb")
> p$serialize(con)

> close(con)

3.6 Parsing messages

The RProtoBuf package defines the read function to read messages from files, raw vector (the
message payload) and arbitrary binary connections.

> read

nonstandardGenericFunction for "read" defined from package "RProtoBuf"

function (descriptor, input)
{
standardGeneric("read")
3
<environment: 0xa288af0>
Methods may be defined for arguments: descriptor, input
Use showMethods("read") for currently available ones.

The binary representation of the message (often called the payload) does not contain information
that can be used to dynamically infer the message type, so we have to provide this information to
the read function in the form of a descriptor :

> message <- read(tutorial.Person, tf1)
> writeLines(as.character (message))

name: "Romain Francois"
id: 3
email: "francoisromain@free.fr"

The input argument of read can also be a binary readable R connection, such as a binary file
connection:

> con <- file(tf2, open = "rb")

> message <- read(tutorial.Person, con)
> close(con)

> writeLines(as.character (message))

name: "Romain Francois"
id: 3
email: "francoisromain®@free.fr"

Finally, the payload of the message can be used :

A\

payload <- readBin(tf1, raw(0), 5000)
> message <- read(tutorial.Person, payload)

read can also be used as a pseudo method of the descriptor object :

message <- tutorial.Person$read(tf1)
con <- file(tf2, open = "rb")

message <- tutorial.Person$read(con)
close(con)

message <- tutorial.Person$read(payload)

vV V.V Vv Vv

4 Classes, Methods and Pseudo Methods

The RProtoBuf package uses the S4 system to store information about descriptors and messages,
but the information stored in the R object is very minimal and mainly consists of an external
pointer to a C++ variable that is managed by the proto C++ library.

> str(p)

Formal class 'Message' [package "RProtoBuf"] with 2 slots
..Q@ pointer:<externalptr>
..Q type : chr "tutorial.Person"

Using the S4 system allows the RProtoBuf package to dispatch methods that are not generic in
the S3 sense, such as new and serialize.

The RProtoBuf package combines the R typical dispatch of the form method(object, argu-
ments) and the more traditionnal object oriented notation object$method (arguments).

4.1 messages

Messages are represented in R using the Message S4 class. The class contains the slots pointer
and type as described on the table 1 :

Although the RProtoBuf package uses the S4 system, the @ operator is very rarely used. Fields
of the message are retrieved or modified using the $ or [[operators as seen on the previous section,
and pseudo-methods can also be called using the $ operator. The table 2 describes the methods
defined for the Message class :

slot description
pointer external pointer to the Message object of the C++ proto

library. Documentation for the Message class is available
from the protocol buffer project page: http://code.
google.com/apis/protocolbuffers/docs/reference/
cpp/google.protobuf .message.html#Message

type fully qualified path of the message. For example a Person
message has its type slot set to tutorial.Person

Table 1: Description of slots for the Message S4 class

4.1.1 Retrieve fields

The $ and [[operators allow extraction of a field data.

> message <- new(tutorial.Person,

+ name = "foo", email = "foo@bar.com", id = 2,

+ phone = list(

+ new(tutorial.Person.PhoneNumber, number = "+33(0)...", type = "HOME"),
+ new(tutorial.Person.PhoneNumber, number = "+33(0)###", type = "MOBILE")
+))

> message$name

[1] "foo"

> message$email

[1] "foo@bar.com"

> message[["phone"]]
[[1]]

[1] " message of type 'tutorial.Person.PhoneNumber' "

[[211]

[1] " message of type 'tutorial.Person.PhoneNumber' "

> # using the tag number
> messagel[[2]] # id

[1] 2

Neither $ nor [[support partial matching of names. The $ is also used to call methods on the
message, and the [[operator can use the tag number of the field.

The table 3 details correspondance between the field type and the type of data that is retrieved
by $ and [[.

http://code.google.com/apis/protocolbuffers/docs/reference/cpp/google.protobuf.message.html#Message
http://code.google.com/apis/protocolbuffers/docs/reference/cpp/google.protobuf.message.html#Message
http://code.google.com/apis/protocolbuffers/docs/reference/cpp/google.protobuf.message.html#Message

method section description

has 4.1.3 Indicates if a message has a given field.
clone 4.1.4 Creates a clone of the message
isInitialized 4.1.5 Indicates if a message has all its required fields set
serialize 4.1.6 serialize a message to a file or a binary connection or
retrieve the message payload as a raw vector
clear 4.1.7 Clear one or several fields of a message, or the entire
message
size 4.1.8 The number of elements in a message field
bytesize 4.1.9 The number of bytes the message would take once
serialized
swap 4.1.10 swap elements of a repeated field of a message
set 4.1.11 set elements of a repeated field
fetch 4.1.12 fetch elements of a repeated field
add add elements to a repeated field
str 4.1.14 the R structure of the message
as.character 4.1.15 character representation of a message
toString 4.1.16 character representation of a message (same as
as.character)
update 4.1.18 updates several fields of a message at once
descriptor 4.1.19 get the descriptor of the message type of this message
fileDescriptor 4.1.20 get the file descriptor of this message’s descriptor

Table 2: Description of slots for the Message S4 class

4.1.2 Modify fields

The $<- and [[<- operators are implemented for Message objects to set the value of a field. The
R data is coerced to match the type of the message field.

message <- new(tutorial.Person, name = "foo", id = 2)
message$email <- "foo@bar.com"

message[["id"]] <- 2

message[[1]] <- "foobar"

writeLines (message$as.character())

vV V. Vv VvV

name: "foobar"
id: 2
email: "foo@bar.com"

The table 4 describes the R types that are allowed in the right hand side depending on the
target type of the field.

10

| field type | R type (non repeated)

R type (repeated)

double | double vector double vector
float double vector double vector
int32 integer vector integer vector
int64 integer vector integer vector
uint32 integer vector integer vector
uint64 integer vector integer vector
sint32 integer vector integer vector
sint64 integer vector integer vector
fixed32 | integer vector integer vector
fixed64 | integer vector integer vector
sfixed32 | integer vector integer vector
sfixed64 | integer vector integer vector
bool logical vector logical vector
string character vector character vector
bytes character vector character vector
enum integer vector integer vector
message | S4 object of class Message list of S4 objects of class Mes—
sage

Table 3: Correspondance between field type and R type retrieved by the extractors.

4.1.3 Message$has method

The has method indicates if a field of a message is set. For repeated fields, the field is considered
set if there is at least on object in the array. For non-repeated fields, the field is considered set if
it has been initialized.

The has method is a thin wrapper around the HasField and FieldSize methods of the
google: :protobuf: :Reflection C++ class.

> message <- new(tutorial.Person, name = "foo")
> message$has ("name")

[1] TRUE

> message$has("id")
[1] FALSE

> message$has ("phone")

[1] FALSE

4.1.4 Message$clone method

The clone function creates a new message that is a clone of the message. This function is a wrapper
around the methods New and CopyFrom of the google: :protobuf: :Message C++ class.

11

internal type

allowed R types

double, float

integer, raw, double, logical

int32, int64, uint32, uint64,
sint32, sint64, fixed32,
fixed64, sfixed32, sfixed64

integer, raw, double, logical

bool

integer, raw, double, logical

character
integer, double, raw, character

54, of class Message of the appropriate mes-
sage type, or a 1ist of S4 objects of class Mes-
sage of the appropriate message type.

bytes, string
enum

message, group

Table 4: Allowed R types depending on internal field types.

> ml1 <- new(tutorial.Person, name = "foo")
> m2 <- mi$clone()

> m2%email <- "foo@bar.com"

> writeLines(as.character(m1))

name: "foo"

> writeLines(as.character(m2))

Ilfooll
"foo@bar.com"

name:
email:

4.1.5 MessageS$isInitialized method

The isInitialized method quickly checks if all required fields have values set. This is a thin
wrapper around the IsInitialized method of the google: :protobuf: :Message C++ class.

> message <- new(tutorial.Person, name = "foo")

> message$isInitialized()

[1] FALSE
attr(,"uninitialized")
[1] llidll

> message$id <- 2
> message$isInitialized()

[1] TRUE

4.1.6 Message$serialize method

The serialize method can be used to serialize the message as a sequence of bytes into a file or a
binary connection.

12

> message <- new(tutorial.Person, name = "foo", email = "foo@bar.com",
+ id = 2)

> tf1 <- tempfile()

> tfil

[1] "/tmp/Rtmp3ztWaE/file580bd78L"

> message$serialize(tfl)
> tf2 <- tempfile()
> tf2

[1] "/tmp/Rtmp3ztWaE/file6a2342ec"

> con <- file(tf2, open = "wb")
> message$serialize(con)
> close(con)

The files file580bd78f and file6a2342ec both contain the message payload as a sequence of bytes.
The readBin function can be used to read the files as a raw vector in R:

> readBin(tf1, raw(0), 500)
[1] 0a 03 66 6f 6f 10 02 1la Ob 66 6f 6f 40 62 61 72 2e 63 6f 6d
> readBin(tf2, raw(0), 500)
[1] 0a 03 66 6f 6f 10 02 1la Ob 66 6f 6f 40 62 61 72 2e 63 6f 6d

The serialize method can also be used to directly retrieve the payload of the message as a
raw vector:

> message$serialize (NULL)

[1] 0a 03 66 6f 6f 10 02 la Ob 66 6f 6f 40 62 61 72 2e 63 6f 6d

4.1.7 Message$clear method

The clear method can be used to clear all fields of a message when used with no argument, or a
given field.

> message <- new(tutorial.Person, name = "foo", email = "foo@bar.com",
+ id = 2)
> writeLines(as.character (message))

name: "foo"
id: 2
email: "foo@bar.com"

> message$clear()
> writeLines(as.character (message))

13

> message <- new(tutorial.Person, name =
+ id = 2)

> message$clear("id")

> writeLines(as.character (message))

name: "foo"
email: "foo@bar.com"

"foo", email

"foo@bar.com",

The clear method is a thin wrapper around the Clear method of the google: :protobuf: :Message

C++ class.

4.1.8 Message$size method

The size method is used to query the number of objects in a repeated field of a message :

new(tutorial.Person.PhoneNumber, number

> message <- new(tutorial.Person, name =

+ phone = list(

+

+ new(tutorial.Person.PhoneNumber, number
+))

> message$size("phone")

[1] 2
> size(message, "phone")

[1] 2

"+33(0)...", type
"+33(0) ###", type

HHUME”
"MOBILE"

),

The size method is a thin wrapper around the FieldSize method of the google: :protobuf: :Reflection

C++ class.

4.1.9 Message$bytesize method

The bytesize method retrieves the number of bytes the message would take once serialized. This

is a thin wrapper around the ByteSize method of the google: :protobuf: :Message C++ class.

> message <- new(tutorial.Person, name = "foo", email = "foo@bar.com",

+ id = 2)
> message$bytesize()

[1]1 20

> bytesize (message)

[1]1 20

> length(message$serialize (NULL))
[1]1 20

14

)

4.1.10 Message$swap method

The swap method can be used to swap elements of a repeated field.

> message <- new(tutorial.Person, name = "foo",

+ phone = list(

+ new(tutorial.Person.PhoneNumber, number
+ new(tutorial.Person.PhoneNumber, number

+))
> message$swap("phone", 1, 2)
> writeLines(as.character(message$phone[[1]]))

number: "+33(0)###"
type: MOBILE

> writeLines(as.character(message$phone[[2]]))

number: "+33(0)..."
type: HOME

> swap(message, "phone", 1, 2)
> writeLines(as.character(message$phone[[1]]))

number: "+33(0)..."
type: HOME

> writeLines(as.character(message$phone[[2]]))

number: "+33(0)###"
type: MOBILE

4.1.11 Message$set method

The set method can be used to set values of a repeated field.

> message <- new(tutorial.Person, name = "foo",

+ phone = list(

+ new(tutorial.Person.PhoneNumber, number
+ new(tutorial.Person.PhoneNumber, number
+))

> number <- new(tutorial.Person.PhoneNumber,

+ number = "+33(0)---", type = "WORK")

> message$set("phone", 1, number)
> writeLines(as.character(message))

name: "foo"

phone {
number: "+33(0)---"
type: WORK

15

"+33(0)...", type
"+33(0) ###", type

"+33(0)...", type
"+33(0)###", type

HHOME n
"MOBILE"

IIHOME n
"MOBILE"

),

),

)

)

}

phone {
number: "+33(0)###"
type: MOBILE

}

4.1.12 Message$fetch method

The fetch method can be used to set values of a repeated field.

> message <- new(tutorial.Person, name = "foo",

+ phone = list(

+ new(tutorial.Person.PhoneNumber, number = "+33(0)...", type = "HOME"),
+ new(tutorial.Person.PhoneNumber, number = "+33(0)###", type = "MOBILE")
+))

> message$fetch("phone", 1)

[r111

[1] " message of type 'tutorial.Person.PhoneNumber' "

4.1.13 Message$add method
The add method can be used to add values to a repeated field.

> message <- new(tutorial.Person, name = "foo")
> phone <- new(tutorial.Person.PhoneNumber,
+ number = "+33(0)...", type = "HOME")

> message$add("phone", phone)
> writeLines(message$toString())

name: "foo"

phone {
number: "+33(0)..."
type: HOME

}

4.1.14 MessageS$str method
The str method gives the R structure of the message. This is rarely useful.

> message <- new(tutorial.Person, name = "foo", email = "foo@bar.com",
+ id = 2)
> message$str()

Formal class 'Message' [package "RProtoBuf"] with 2 slots
..0@ pointer:<externalptr>
..Q@ type : chr "tutorial.Person"

16

> str(message)

Formal class 'Message' [package "RProtoBuf"] with 2 slots
..Q pointer:<externalptr>
..Q type : chr "tutorial.Person"

4.1.15 Message$as.character method
The as.character method gives the debug string of the message.

> message <- new(tutorial.Person, name = "foo", email = "foo@bar.com",
+ id = 2)
> writeLines (message$as.character())

name: "foo"
id: 2
email: "foo@bar.com"

> writeLines (as.character (message))

name: "foo"

id: 2

email: "foo@bar.com"

4.1.16 Message$toString method

toString currently is an alias to the as.character function.

> message <- new(tutorial.Person, name = "foo", email = "foo@bar.com",
+ id = 2)
> writeLines (message$toString())

name: "foo"

id: 2

email: "foo@bar.com"

> writeLines (toString(message))
name: "foo"

id: 2

email: "foo@bar.com"

4.1.17 Message$as.list method

The as.list method converts the message to an named R list

> message <- new(tutorial.Person, name = "foo", email = "foo@bar.com",
+ id = 2)
> as.list (message)

17

$name
[1] "foo"

$id
(11 2

$email
[1] "foo@bar.com"

$phone
list Q)

The names of the list are the names of the declared fields of the message type, and the content
is the same as can be extracted with the $ operator described in section 4.1.1.
4.1.18 Message$update method
The update method can be used to update several fields of a message at once.

> message <- new(tutorial.Person)
> update(message,

+ name = "foo",
+ id = 2,
+ email = "foo@bar.com")

[1] " message of type 'tutorial.Person' "
> writeLines(message$as.character())
name: "foo"

id: 2

email: "foo@bar.com"

4.1.19 MessageS$descriptor method

The descriptor method retrieves the descriptor of a message. See section 4.2 for more information
about message type descriptors.

> message <- new(tutorial.Person)
> message$descriptor ()

[1] "descriptor for type 'tutorial.Person' "
> descriptor (message)

[1] "descriptor for type 'tutorial.Person' "

18

4.1.20 Message$fileDescriptor method

The fileDescriptor method retrieves the file descriptor of the descriptor associated with a mes-
sage. See section 4.5 for more information about file descriptors.

> message <- new(tutorial.Person)
> message$fileDescriptor()

[1] "file descriptor"
> fileDescriptor (message)

[1] "file descriptor"

4.2 message descriptors

Message descriptors are represented in R with the Descriptor S4 class. The class contains the slots
pointer and type :

slot description
pointer external pointer to the Descriptor object of the C++ proto
library. Documentation for the Descriptor class is avail-
able from the protocol buffer project page: http://code.
google.com/apis/protocolbuffers/docs/reference/
cpp/google.protobuf.descriptor.html#Descriptor
type fully qualified path of the message type.

Table 5: Description of slots for the Descriptor S4 class

Similarly to messages, the $ operator can be used to extract information from the descriptor,
or invoke pseuso-methods.
4.2.1 Extracting descriptors

The $ operator, when used on a descriptor object retrieves descriptors that are contained in the
descriptor.

This can be a field descriptor (see section 4.3), an enum descriptor (see section 4.4) or a
descriptor for a nested type

> tutorial.Person$email

[1] "descriptor for field 'email' of type 'tutorial.Person' "

> tutorial.Person$PhoneType

[1] "descriptor for enum 'PhoneType' of type 'tutorial.Person' "

> tutorial.Person$PhoneNumber

19

http://code.google.com/apis/protocolbuffers/docs/reference/cpp/google.protobuf.descriptor.html#Descriptor
http://code.google.com/apis/protocolbuffers/docs/reference/cpp/google.protobuf.descriptor.html#Descriptor
http://code.google.com/apis/protocolbuffers/docs/reference/cpp/google.protobuf.descriptor.html#Descriptor

[1] "descriptor for type 'tutorial.Person.PhoneNumber' "
> tutorial.Person.PhoneNumber

[1] "descriptor for type 'tutorial.Person.PhoneNumber' "

4.2.2 The new method

The new method creates a prototype of a message described by the descriptor.
> tutorial.Person$new()

[1] " message of type 'tutorial.Person' "

> new(tutorial.Person)

[1] " message of type 'tutorial.Person' "

Passing additional arguments to the method allows to directlt set the fields of the message at
construction time.

> tutorial.Person$new(email = "foo@bar.com")

[1] " message of type 'tutorial.Person'

> update (tutorial.Person$new(), email = "foo@bar.com")

[1] " message of type 'tutorial.Person'

4.2.3 The read method
The read method is used to read a message from a file or a binary connection.

message <- new(tutorial.Person.PhoneNumber, type = "HOME",
number = "+33(0)....")

tf <- tempfile()

serialize (message, tf)

m <- tutorial.Person.PhoneNumber$read (tf)

writeLines (as.character (m))

vV V.V VvV + V

number: "+33(0)...."
type: HOME

> m <- read(tutorial.Person.PhoneNumber, tf)
> writelLines(as.character(m))

number: "+33(0)...."
type: HOME

20

4.2.4 The toString method
4.2.5 The as.character method
4.2.6 The fileDescriptor method
4.2.7 The name method

The name method can be used to retrieve the name of the message type associated with the de-
scriptor.

> tutorial.Person$name ()
[1] "Person"
> tutorial.Person$name (full = TRUE)

[1] "tutorial.Person"

4.3 field descriptors

The class FieldDescriptor represents field descriptor in R. This is a wrapper S4 class around the
google: :protobuf: :FieldDescriptor C++ class.

slot description
pointer External pointer to the FieldDescriptor C++ variable
name simple name of the field
full_name fully qualified name of the field
type name of the message type where the field is declared

Table 6: Description of slots for the FieldDescriptor S4 class

4.3.1 as.character
The as.character method brings the debug string of the field descriptor.
> writeLines(as.character(tutorial.Person$PhoneNumber))

message PhoneNumber {

required string number = 1;

optional .tutorial.Person.PhoneType type = 2 [default = HOME];
b

4.3.2 toString
toString is an alias of as.character.

> writeLines(tutorial.Person.PhoneNumber$toString())

21

message PhoneNumber {

required string number = 1;

optional .tutorial.Person.PhoneType type = 2 [default = HOME];
3

4.3.3 name

TODO

4.4 enum descriptors

The class EnumDescriptor is an R wrapper class around the C++ class google: :protobuf : : EnumDescriptor.

slot description
pointer External pointer to the EnumDescriptor C+-+ variable

name simple name of the enum

full_name fully qualified name of the enum

type name of the message type where the enum is declared

Table 7: Description of slots for the EnumDescriptor S4 class

4.4.1 as.list

The as.list method creates a named R integer vector that captures the values of the enum and
their names.

> as.list(tutorial.Person$PhoneType)
MOBILE HOME WORK
0 1 2
4.4.2 as.character
The as.character method brings the debug string of the enum type.
> writelines(as.character (tutorial.Person$PhoneType))

enum PhoneType {
MOBILE = O;
HOME = 1;
WORK = 2;
}

4.5 file descriptors
TODO: add content

22

4.6 service descriptors
TODO: add content

4.7 method descriptors
TODO: add content

5 Utilities

5.1 coercing objects to messages

The asMessage function uses the standard coercion mechanism of the as method, and so can be
used as a shorthand :

> asMessage (tutorial.Person.PhoneType)

[1] " message of type 'google.protobuf.EnumDescriptorProto' "
> asMessage (tutorial.Person$email)

[1] " message of type 'google.protobuf.FieldDescriptorProto' "
> asMessage(fileDescriptor (tutorial.Person))

[1] " message of type 'google.protobuf.FileDescriptorProto' "

5.2 completion

The RProtoBuf package implements the .DollarNames S3 generic function (defined in the utils
package) for all classes.
Completion possibilities include pseudo method names for all classes, plus :

e field names for messages
e field names, enum types, nested types for message type descriptors

e names for enum descriptors

5.3 with and within

The S3 generic with function is implemented for class Message, allowing to evaluate an R expression
in an environment that allows to retrieve and set fields of a message simply using their names.

> message <- new(tutorial.Person, email = "foo@bar.com")
> with(message, {

+ id <- 2

+ name <- gsub("[@]", " ", email)

+ sprintf(")d [/s] : 7%s", id, email, name)

+ P

23

[1] "2 [foo@bar.com] : foo bar.com"

The difference between with and within is the value that is returned. For with returns the
result of the R expression, for within the message is returned. In both cases, the message is
modified because RProtoBuf works by reference.

5.4 1identical

The identical method is implemented to compare two messages.

> ml1 <- new(tutorial.Person, email = "foo@bar.com",

+ id = 2)

> m2 <- update(new(tutorial.Person), email = "foo@bar.com",
+ id = 2)

> identical(m1, m2)

[1] TRUE
The == operator can be used as an alias to identical.
> ml == m2
[1] TRUE
> ml !'=s m2
[1] FALSE

Alternatively, the all.equal function can be used, allowing a tolerance when comparing float
or double values.

5.5 merge
merge can be used to merge two messages of the same type.

> ml1 <- new(tutorial.Person, name = "foobar")

> m2 <- new(tutorial.Person, email = "foo@bar.com")
> m3 <- merge(ml, m2)

> writeLines(as.character(m3))

name: "foobar"
email: "foo@bar.com"

56 P

The P function is an alternative way to retrieve a message descriptor using its type name. It is not
often used because of the lookup mechanism described in section 6.

> P("tutorial.Person")

[1] "descriptor for type 'tutorial.Person' "

24

> new(P("tutorial.Person"))

[1] " message of type 'tutorial.Person' "

> tutorial.Person

[1] "descriptor for type 'tutorial.Person' "
> new(tutorial.Person)

[1] " message of type 'tutorial.Person' "

6 Descriptor lookup

The RProtoBuf package uses the user defined tables framework that is defined as part of the
RObjectTables package available from the OmegaHat project.

The feature allows RProtoBuf to install the special environment RProtoBuf:DescriptorPool in
the R search path. The environment is special in that, instead of being associated with a static
hash table, it is dynamically queried by R as part of R’s usual variable lookup. In other words, it
means that when the R interpreter looks for a binding to a symbol (foo) in its search path, it asks
to our package if it knows the binding "foo”, this is then implemented by the RProtoBuf package
by calling an internal method of the protobuf C++ library.

7 Plans for future releases

Saptarshi Guha wrote another package that deals with integration of protocol buffer messages with
R, taking a different angle : serializing any R object as a message, based on a single catch-all proto
file. We plan to integrate this functionality into RProtoBuf. Saptarshi’s package is available at
http://ml.stat.purdue.edu/rhipe/doc/html/ProtoBuffers.html

Protocol buffers have a mechanism for remote procedure calls (rpc) that is not yet used by
RProtoBuf, but we plan to take advantage of this by writing a protocol buffer message R server,
and client code as well, probably based on the functionality of the Rserve package.

8 Acknowledgments

Some of the design of the package is based on the design of the rJava package by Simon Urbanek
(dispatch on new, S4 class structures using external pointers, etc ...). We’d like to thank Simon for
his indirect involvment on RProtoBuf.

The user defined table mechasnism, implemented by Duncan Temple Lang for the purpose of
the RObjectTables package allowed the dynamic symbol lookup (see section 6). Many thanks to
Duncan for this amazing feature.

25

http://ml.stat.purdue.edu/rhipe/doc/html/ProtoBuffers.html

	Protocol Buffers
	Static use: Revisiting the tutorial
	The address book example
	Simple R accessors for the address book example

	Dynamic use: Protocol Buffers and R
	Importing proto files
	Creating a message
	Access and modify fields of a message
	Display messages
	Serializing messages
	Parsing messages

	Classes, Methods and Pseudo Methods
	messages
	Retrieve fields
	Modify fields
	Message$has method
	Message$clone method
	Message$isInitialized method
	Message$serialize method
	Message$clear method
	Message$size method
	Message$bytesize method
	Message$swap method
	Message$set method
	Message$fetch method
	Message$add method
	Message$str method
	Message$as.character method
	Message$toString method
	Message$as.list method
	Message$update method
	Message$descriptor method
	Message$fileDescriptor method

	message descriptors
	Extracting descriptors
	The new method
	The read method
	The toString method
	The as.character method
	The fileDescriptor method
	The name method

	field descriptors
	as.character
	toString
	name

	enum descriptors
	as.list
	as.character

	file descriptors
	service descriptors
	method descriptors

	Utilities
	coercing objects to messages
	completion
	with and within
	identical
	merge
	P

	Descriptor lookup
	Plans for future releases
	Acknowledgments

