
Riemann 101 : A First Step

Kisung You

In this vignette, we demonstrate basic functionalities of Riemann package by walking through from
installation to a simple analysis with the cities dataset for the sphere manifold S2.

Install and Load

Riemann package can be installed via two outlets. A release version from CRAN can be installed
install.packages("Riemann")

or a development version is available from GitHub with devtools package.
if (!require("devtools")) {

install.packages("devtools")
}
devtools::install_github("kisungyou/Riemann")

Now we are ready to go by loading the library.
library(Riemann)

Users, Wrap the Data!

Our package is designed to be a friendly toolkit for those with less computational expertise. Therefore, we
decided to make the structure and workflow of the package exposed to users as simple as possible. To serve
its purpose best, we decided to be a bit coercive; users, prepare the data (please).

In geometric statistics, data are usually represented as matrices. That means, the biggest huddle would be to
wrap your data in a suitable form. When you provide one of our wrapper functions - named wrap.***() -
with your data. Then the process we call wrapping would check the suitability of your matrix data with
respect to the definition of the manifold you want to use and even apply suitable transformation for you
when possible.

Example : Big Cities in US

As of Jan. 2006, there are 60 cities in the contiguous U.S. with population size larger than 300,000 (not the
metropolitan areas, but just the cities). It is common in spatial statistics to represent locations on Earth
with geographic coordinates - latitude and longitude. This representation can be freely transformed into
cartesian coordinate representation (x, y, z) ∈ S2 ⊂ R3 and vice versa.

Here, our goal is to compute the center-most location for 60 populous cities. Before proceeding any further,
let’s see how these cities are spread across the U.S. In Riemann package, the data is available under the
name cities.

1

load the necessary libraries for visualization
if (!requireNamespace("usmap", quietly = TRUE)){install.packages("usmap")}
if (!requireNamespace("ggplot2",quietly = TRUE)){install.packages("ggplot2")}
library(usmap)
library(ggplot2)

load the cities dataset and apply converting
data("cities")
dfcities = data.frame(lon=cities$coord[,2], lat=cities$coord[,1], tt=cities$names)
mycities = usmap::usmap_transform(dfcities)

visualize
myplot <- usmap::plot_usmap(regions="states", exclude=c("AK")) +

geom_point(data=mycities, aes(x=lon.1, y=lat.1), alpha=.5) +
labs(title="60 Populated Cities in the US")

plot(myplot)

60 Populated Cities in the US

In order to find the mean location of those cities, the first option would be to come up with an Euclidean
way of thinking: do the averaging for longitude and latitude of all corresponding cities. However, a more
geometrically sound way of doing it would be to find geodesic mean. Here, we will use riem.mean() function
that computes Fréchet mean on the manifold. As we described above, the steps will be shown in the code
snippet below. For the convenience, we also added the location information in cartesian coordinates as well.
(WRAPPING) Spherical Data
myriem = wrap.sphere(cities$cartesian)

(INFERENCE) Compute the mean & Convert back to Geographic Coordinates
intmean = as.vector(riem.mean(myriem)$mean) # vectorization for convenience
geomean = sphere.xyz2geo(intmean) # (lat, lon) will be returned

(EXTRA)
Compute Euclidean average of Geographic Coordinates
eucmean = as.double(base::colMeans(cities$coord))

2

Merge two means
twomean = rbind(geomean, eucmean)
dfmeans = data.frame(lon=twomean[,2], lat=twomean[,1], type=c("geometric","euclidean"))
vismean = usmap::usmap_transform(dfmeans)

visualize
myplot <- myplot +

geom_point(data=vismean, aes(x=lon.1, y=lat.1, col=type), size=3) +
ggrepel::geom_label_repel(data=mycities, aes(x=lon.1, y=lat.1, label=tt),

size = 2, alpha = 0.5,
label.r = unit(0.25, "lines"), label.size = 0.1,
segment.color = "red", segment.size = 0.5) +

labs(title="Populated Cities and Central Locations")
plot(myplot)

Albuquerque NM

Arlington TX

Atlanta GA

Aurora CO

Austin TX

Bakersfield CA

Baltimore MD

Boston MA

Charlotte NC

Chicago IL

Cincinnati OHColorado Springs CO

Dallas TX

Denver CO

Detroit MI

El Paso TX

Fort Worth TX

Fresno CA

Houston TX

Indianapolis IN

Jacksonville FL

Kansas City MO

Las Vegas NV

Memphis TN
Mesa AZ

Miami FL

Milwaukee WI

Minneapolis MN

Nashville TN

New Orleans LA

New York NY

Oakland CA

Oklahoma City OK

Omaha NE Philadelphia PA

Phoenix AZ

Portland OR

Raleigh NC

Sacramento CA

Saint Louis MO

San Antonio TX

San Diego CA

San Francisco CA

San Jose CA

Seattle WA

Tampa FL

Toledo OH

Tucson AZ

Tulsa OK

Virginia Beach VAWASHINGTON DC

Wichita KS

type

euclidean

geometric

Populated Cities and Central Locations

From the plot above, we can observe that geometric center is right next to Wichita, KS whereas euclidean
center of locations is a bit deviated, lying between Wichita and Albuquerque, NM.

3

	Install and Load
	Users, Wrap the Data!
	Example : Big Cities in US

