How To Use SubpathwayMiner

Chunquan Li
September 2, 2009

Contents
1 Overview 2
2 A simple example of annotating genes to pathways 2
3 Annotate genes to pathways 3
3.1 Annotate gene sets to entire pathways 4
3.2 Annotate gene sets to sub-pathways of metabolic pathways based on en-
zyme commission (EC) oo o 5
3.3 Annotate gene sets to sub-pathways based on KEGG Orthology (KO) . . 5
3.4 Identify pathways or sub-pathways 6
4 Display and save results 6
4.1 Use data frame to display results 6
4.2 Save annotation results to a tab-delimited file 6
5 Visualization of pathways 7
5.1 Visualize sub-pathways of metabolic pathways based on enzyme commis-
sion (EC) using the function plotAnn 7
5.2 Visualize sub-pathways based on KEGG Orthology (KO) using the func-
tion plotKOAnn 8
5.3 Visualize pathways or sub-pathways through linking to KEGG web site . 9
6 How to set organism and gene identifier 10
6.1 Set or update the organism and the type of gene identifier 10
6.2 Load and save the environment variable of the system 10
6.3 Select the organism provided by the system 11
7 Use our flexible model to annotate genes to user-defined sub-pathways 11
7.1 Simplification version of metabolic pathways 11
7.2 Create a subGraph with the algorithms based on the concepts of graph . 13
7.3 annotate genes to sub-pathways defined by yourself 15

1

1 Overview

This vignette demonstrate how to easily annotate genes to pathways or sub-pathways
using the SubpathwayMiner package. To do this, let us generate an example of gene sets:

> genelist <- getAexample(k = 100)
> geneList[1:10]

[1]
[7]

n 10|l
n 1001"

"100" "1000" "10000"
"100128525" "100130247" "100130561"

"10005" "10007"

2 A simple example of annotating genes to pathways

Annotate a set of genes to pathways.

> genelist <- getAexample(k = 100)

> ann <- getAnn(geneList)
> result <- printAnn(ann)

Display 10 rows and 4 columns of results.

> result[1:10, 2:5]

path:
path:
path:
path:
path:
path:
path:
path:
path:
path:

04110
02010
05222
05200
04810
05220
05214
04115
05218
04120

annGeneRatio annBgRatio

12/100
8/100
7/100

11/100
9/100
6/100
5/100
5/100
5/100
6/100

119/24143
44/24143
86/24143

328/24143

217/24143
75/24143
65/24143
69/24143
71/24143

137/24143

N, R, N0 WER O -

pvalue

8.5043083686287e-14
.02069463991938e-11
.95087003510508e-08
.18920437941483e-07
.03943440305154e-07
.93495459502813e-07
.47568160008871e-06
.00392210432565e-05
.15546533421274e-05
.30227032608221e-05

O O OOk O WO+

qvalue

.35882615841157e-11
.15437609006045e-10
.50471159584496e-06
.75030404708571e-06
.71287209875354e-06
.84678896520311e-05
.000151711013930438
.000186924364824829
.000205134784917809
.000367858855442667

Annotate a set of genes to sub-pathways of metabolic pathways based on enzyme com-
mission (EC) numbers.

> genelist <- getAexample(k = 100)

> ann <- getKcsmpAnn(genelist, k = 4)
> printAnn(ann) [1:10, 2:5]

annGeneRatio annBgRatio pvalue gvalue

path:00272_1 3/100 44/24143 0.000807238137687127 0.312031195904082
path:00510_3 3/100 65/24143 0.00250023677917233 0.312031195904082
path:00510_1 3/100 69/24143 0.00296343071282412 0.312031195904082
path:00363_1 2/100 32/24143 0.00776968586125126 0.312031195904082
path:00906_1 3/100 99/24143 0.0081138382762106 0.312031195904082
path:00622_1 1/100 2/24143 0.00826698944909798 0.312031195904082
path:00622_2 1/100 2/24143 0.00826698944909798 0.312031195904082
path:00622_3 1/100 2/24143 0.00826698944909798 0.312031195904082
path:00622_4 1/100 2/24143 0.00826698944909798 0.312031195904082
path:00643_2 1/100 2/24143 0.00826698944909798 0.312031195904082

Annotate a set of genes to sub-pathways based on KEGG Orthology (KO) identifiers.

> genelist <- getAexample(k = 100)

> subGraphList <- getKcSubGraph(k = 4, graphList = getDefaultKOUndirectedGraph())
> ann <- getKOAnn(genelList, graphList = subGraphList)

> printAnn(ann) [1:10, 2:5]

annGeneRatio annBgRatio pvalue qvalue
path:04810_1 7/100 40/24143 2.81666912016476e-10 1.47809046530489e-07
path:04810_4 7/100 42/24143 4.04846378643242e-10 1.47809046530489e-07
path:04810_3 7/100 43/24143 4.81937156848744e-10 1.47809046530489e-07
path:04810_9 7/100 44/24143 5.71183433883959e-10 1.47809046530489e-07
path:04810_10 7/100 45/24143 6.74122424548784e-10 1.47809046530489e-07
path:056212_7 3/100 4/24143 2.74973428804337e-07 5.02425559175355e-05
path:05220_4 4/100 20/24143 1.27568419372448e-06 0.000199791671450944
path:04110_2 4/100 23/24143 2.30936807410487e-06 0.000315195695547961
path:05200_3 4/100 25/24143 3.27817861878188e-06 0.000399321183572774
path:04110_3 4/100 30/24143 6.98985360936266e-06 0.000766302647534033

3 Annotate genes to pathways

The function getAnn and getKOAnn in the SubpathwayMiner package not only facilitates
the annotation and identification of pathways but also sub-pathway annotation and iden-
tification. It can annotate a set of genes to entire pathways or sub-pathways by setting
the value of the argument graphList. The return value of the function is a list of the
annotated information.The list has eight elements: 'pathwayName’, annGeneList’, "an-
nGeneNumber’, ’annBgNumber’, 'geneNumber’, "bgNumber’, 'pvalue’, 'qvalue’. They
represent pathway name, genes annotated to the pathway, number of genes annotated
to the pathway, number of background genes annoted to the pathway, number of genes
in the study, number of background genes, p-value, and FDR-corrected g-value.

3.1 Annotate gene sets to entire pathways

If the value of argument graphList in the function getAnn is the return value of the
function getDefaultGraph, these genes will be annotated to all pathways. Of course,

this is the default setting of the function getAnn.

The code below can annotate a set of genes to pathways.

> ann <- getAnn(genelist)
> ann[1:2]

$"path:04110"
$ path:04110" $pathwayName
[1] "Cell cycle"

$ path:04110" $annGenelist
[1] "100131844" "1017" "1019"
[7]1 "1027" "1028" "1029"

$ path:04110" $annGeneNumber
[1] 12

$ path:04110" $annBgNumber
[1] 119

$ path:04110" $geneNumber
[1] 100

$ path:04110" $bgNumber
[1] 24143

$ path:04110" $pvalue
[1] 8.504308e-14

$ path:04110" $qvalue
[1] 1.358826e-11

$"path:02010"
$ path:02010" $pathwayName
[1] "ABC transporters"

$ path:02010" $annGenelist

"1021" "1022" "1026"
"1030" "1031" "1032"

[1] "10057" "10058" "10060" "10257" "10347" "10349" "10350" "10351"

$ path:02010" $annGeneNumber
(1] 8

$ path:02010" $annBgNumber
[1] 44

$ path:02010" $geneNumber
[1] 100

$ path:02010" $bgNumber
[1] 24143

$>path:02010" $pvalue
[1] 1.020695e-11

$ path:02010" $qvalue
[1] 8.154376e-10

3.2 Annotate gene sets to sub-pathways of metabolic pathways
based on enzyme commission (EC)

If the value of argument graphList is a list of subGraph, e.g., the return value of getKc-
SubGraph, these genes will be annotated to sub-pathways of metabolic pathways.

> subGraphList <- getKcSubGraph(k = 4)
> ann <- getAnn(geneList, graphlList = subGraphList)

we also provide a simple function for the sub-pathway annotation of metabolic pathways.

> ann <- getKcsmpAnn(geneList, k = 4)

3.3 Annotate gene sets to sub-pathways based on KEGG Or-
thology (KO)

If the value of argument graphList is a list of subGraph, e.g., the return value of getKc-
SubGraph when setting arguments graphList=getDefaultK0UndirectedGraph, these genes
will be annotated to sub-pathways based on KO.

> subGraphList <- getKcSubGraph(k = 4, graphList = getDefaultKOUndirectedGraph())
> ann <- getKOAnn(genelList, graphList = subGraphList)

3.4 Identify pathways or sub-pathways

Get the statistically signicantly enriched pathways according to pvalue.

> ann <- getAnn(genelList)
> cutedAnn <- cutoffAnn(ann,
> printAnn(cutedAnn) [2:5]

annGeneRatio annBgRatio

path:04110 12/100 119/24143
path:02010 8/100 44/24143
path:05222 7/100 86/24143
path:05200 11/100 328/24143
path:04810 9/100 217/24143
path:05220 6/100 75/24143
path:05214 5/100 65/24143
path:04115 5/100 69/24143
path:05218 5/100 71/24143
path:04120 6/100 137/24143
path:05223 4/100 54/24143
path:05010 6/100 177/24143

"pvalue”,

O NN EFP, P, NOWE O -

"<", 1e_04)

pvalue

8.5043083686287e-14
.02069463991938e-11
.95087003510508e-08
.18920437941483e-07
.03943440305154e-07
.93495459502813e-07
.47568160008871e-06
.00392210432565e-05
.15546533421274e-05
.30227032608221e-05
.47448190139277e-05
.61447896431489e-05

4 Display and save results

4.1 Use data frame to display results

O O OOk O WOo -

qvalue

.35882615841157e-11
.156437609006045e-10
.50471159584496e-06
.75030404708571e-06
.71287209875354e-06
.84678896520311e-05
.000151711013930438
.000186924364824829
.000205134784917809
.000367858855442667
0.00104626649102234
0.00128017519178884

To visualize the results, the list of results returned from the function getAnn or getKOAnn
can be converted to the data.frame by using the function printAnn. But, note that Com-
pared with data.frame, the 1ist provides more information, e.g., the annotated genes are
saved in list, yet not in the data.frame. The row names data.frame are pathway identi-
fiers, e.g, path:00010. It’s columns include pathwayName, annGeneRatio, annBgRatio,
pvalue, qvalue. The annGeneRatio is the ratio of the annotated genes, e.g., 30/1000
means that 30 genes in 1000 genes are annotated. The qvalue is the FDR-corrected

g-value.

> ann <- getAnn(genelist)
> result <- printAnn(ann)
> result[1:10, 2:5]

4.2 Save annotation results to a tab-delimited file

One can easily save the annotation results to a tab-delimited file. Note that the argument

col.names=NA is essential.

> geneList <- getAexample(k = 1000)

> ann <- getAnn(genelist)

> result <- printAnn(ann)

> write.table(result, file = "result", col.names = NA, sep = "\t")

5 Visualization of pathways

5.1 Visualize sub-pathways of metabolic pathways based on en-
zyme commission (EC) using the function plotAnn

Users can use the function plotAnn to visualize the pathways or sub-pathways of metabolic
pathways based on ec. The red nodes in the result graph represent the enzymes which
include the submitted genes.

Visualize sub-pathways of metabolic pathways based on EC.

> subGraphList <- getKcSubGraph(k = 4)
> ann <- getAnn(geneList, graphlist = subGraphList)
> plotAnn("path:00010_1", subGraphList, ann)

5.2 Visualize sub-pathways based on KEGG Orthology (KO)
using the function plotKOAnn

Visualize sub-pathways based on KO.

> subGraphList <- getKcSubGraph(k = 4, graphlList = getDefaultKOUndirectedGraph())
> ann <- getKOAnn(genelList, graphList = subGraphList)
> plotKOAnn ("path:00010_1", subGraphList, ann)

5.3 Visualize pathways or sub-pathways through linking to KEGG

web site

> subGraphList <- getKcSubGraph(k = 4)
ann <- getAnn(genelist, graphList =
> gotoKEGG("path:00010_1", ann)

A\

> subGraphList <- getKcSubGraph(k = 4, graphList = getDefaultKOUndirectedGraph())

> ann <- getKOAnn(genelist, graphList
> gotoKEGG("path:00010_1", ann)

Visualize pathways.

> ann <- getAnn(geneList)
> gotoKEGG("path:00010", ann)

subGraphList)

subGraphList)

6 How to set organism and gene identifier

Users that want to annotate genes to pathways or sub-pathways should ensure that
the type of organism and gene identifiers accord with the return value of the function
getOrgAndIdType that can check the type of organism and identifier in the current study.
You can do:

> getOrgAndIdType ()
[1] "hsa" "ncbi-geneid"

The return values mean that the type of organism and identifier in the current study
are Homo sapiens and Entrez gene identifiers. If they are different from the type of your
genes, you need to change them with some functions, e.g., updateOrgAndIdType, data,
loadKe2g.

6.1 Set or update the organism and the type of gene identifier

The existing tools mainly use DBMS (data base management system) to store all data
relative to analysis of pathways and the update process of the data is transparent to
users, which means that the annotation results users get from these tools may become
outdated. We don’t use DBMS to store data. We present a new method that enables
users to update data by themselves. Users are firstly required to set organism and type
of gene identifier before annotateing genes to the pathways. According to the setting,
the system can download all data relative to analysis of pathways in the organism, and
then treat and store them in an environment variable in R. Through the method the
system can synchronize the data with the KEGG GENE database and support most
organisms and cross reference identifiers in the KEGG GENE database.

The code below means that the type of organism and identifier in the current study
are setted as Saccharomyces cerevisiae and sgd identifier in Saccharomyces Genome
Database. When we run it, the system will download all data relative to analysis of
pathways in the organism, and then treat and store them in an environment variable in
R. Finally, Users can use our system to annotate and identify pathways or sub-pathways.

> updateOrgAndIdType("sce", "sgd-sce")

6.2 Load and save the environment variable of the system

We have considered that our method to store and update data may be time consuming
for large organisms that have many genes in common. Thus, the system provide two
functions to easily save and load the environment variable of the system, which make
users update all data relative to analysis of pathways in the organism one time only and
repeatedly use them in the future.

The code below is used to save the environment variable of Saccharomyces cerevisiae.
Note that the data is saved to the working directory.

10

> saveKe2g("sce_sgd-sce.rda")

When one needs to use the environment variables of Saccharomyces cerevisiae next
time, one can use the function loadKe2g to load the last environment variable.

The code below is used to load the environment variables of Saccharomyces cerevisiae.
Note that you need to set your working directory to the directory of the data file.

> loadKe2g("sce_sgd-sce.rda")

6.3 Select the organism provided by the system

The environment variables of organisms with well annotated genomes are provided by
the system and users can use the function data to load them.

The code below is used to load the environment variables of Saccharomyces cerevisiae
provided by our system. the type of gene identifier is ncbi-geneid.

> data("sce_ncbi-geneid")

7 Use our flexible model to annotate genes to user-
defined sub-pathways

Our system provides a flexible model for supporting the user-defined sub-pathways. To
date, many algorithms in concepts of graph are vailable in the R packages (Huber et al.,
2007). Through our model users can use easily these algorithms to annotate genes to
the sub-pathways themselves.

7.1 Simplification version of metabolic pathways

Generally, A metabolic pathway can be considered as a graph with chemical compounds
as nodes and enzymes as edges. We simplify metabolic pathways. Each metabolic
pathway is converted to an undirected graph with enzymes as nodes. Two enzymes
are connected by an edge if their corresponding reactions have a common compound.
Chemical compounds are then omitted from graphs. If we consider the direction of
reaction. The pathway will be a directed graph. We use the XML package to take out
the relationship of enzymes from the XML version of the metabolic pathway maps, and
then save simplification version of metabolic pathways to a list of graph.
The code below can get the data from the environment variable of the system.

> uGraph <- getDefaultUndirectedGraph ()
> uGraph[1:2]

11

$ path:00010"

A graphNEL graph with undirected edges
Number of Nodes = 40

Number of Edges 127

$ path:00020"

A graphNEL graph with undirected edges
Number of Nodes = 23

Number of Edges = 73

The return value of the function getDefaultUndirectedGraph is a list of graph. The
first graph in the list is the graph representation of the pathway "path:00010”. The
pathway’s name is Glycolysis / Gluconeogenesis. One can use the function getPathway-
NameFromId to get it.

> getPathwayNameFromId("path:00010")

00010
"Glycolysis / Gluconeogenesis"

One can also use the function plot to display the graph.

> plot (uGraph$'"path:00010", "neato")

12

You can now see that each pathway of metabolic pathways is converted to a graph
with enzymes as nodes. All graphs are saved in a list. each element in the list is a graph
and its name is pathway identifier.

7.2 Create a subGraph with the algorithms based on the con-
cepts of graph

Users can mine sub-pathways of metabolic pathways by using certain sub-graph mining
methods. The code below gives a simple example of mining sub-pathways by using the
function maxClique in RBGL package that can look for all the cliques in a graph.

> graphList <- getDefaultUndirectedGraph()

> graphlist <- graphList[sapply(graphList, function(x) length(x) >
+ 0)]

> index <- 0

> mySubGraph <- list()

> mySubNames <- character()

> for (i in 1:length(graphList)) {

13

+ mc <- maxClique(graphList[[i]])

+ if (length(mc) > 0) {

+ for (j in 1:length(mc[[1]])) {

+ index <- index + 1

+ mySubGraph [index] <- subGraph(mc[[1]1][[j]], graphList[[i]])
+ mySubNames [index] <- paste(names(graphList) [i], j,
+ sep = "_")

+ }

+ }

+ }

> names (mySubGraph) <- mySubNames

After running the code, You can get a variable mySubGraph. a list of subgraph is saved
in the variable.
We display a sub-graph in the list.

> mySubGraph[1]
$>path:00010_1"
A graphNEL graph with undirected edges

Number of Nodes = 8
Number of Edges = 28

> plot (mySubGraph[[1]], "neato")

14

You can now see
that it is a clique in a graph and its name is path:00010 1. The name means that
the graph is first subgraph of the pathway path:00010.

7.3 annotate genes to sub-pathways defined by yourself

After mining user-defined sub-pathways, you can easily annotate genes to these sub-
pathways.
You can do:

> genelist <- getAexample(k = 100)
> ann <- getAnn(geneList, graphList = mySubGraph)
> printAnn(ann) [1:10, 2:5]

annGeneRatio annBgRatio pvalue qvalue
path:00272_6 3/100 30/24143 0.000258079971682368 1
path:00272_4 3/100 32/24143 0.000313401211840314 1
path:00510_3 3/100 48/24143 0.00104165366927156 1
path:00361_2 2/100 14/24143 0.00149628019333981 1

15

path:00363_2
path:00361_1
path:00300_19
path:00565_15
path:00930_13
path:00565_1

You can also do:

> plotAnn("path:00361_2", mySubGraph,

2/100
2/100
1/100
1/100
1/100
2/100

15/24143
18/24143
1/24143
1/24143
1/24143
28/24143

.00172182209288430
.00248871367445813
.00414198732551885
.00414198732551885
.00414198732551885
.00598523175842292

O O O O O O

ann)

Of course, you can use other functions provided by the system.

16

R

