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This tutorial covers various statistical approaches for estimating rates of lineage
diversification (speciation — extinction) from phylogentic trees using the R package
TESS. TESS provides a flexible Bayesian framework for specifying an effectively
infinite array of diversification models—where diversification rates are constant,
vary continuously, or change episodically through time—and implements numerical
methods to estimate parameters of these models from molecular phylogenies. We
provide robust Bayesian methods for assessing the relative fit of these models of
lineage diversification to a given study tree—e.g., where stepping-stone simulation
is used to estimate the marginal likelihoods of competing models, which can then
be compared using Bayes factors. We also provide Bayesian methods for evaluating
the absolute fit of these branching-process models to a given study tree—i.e., where
posterior-predictive simulation is used to assess the ability of a candidate model
to generate the observed phylogenetic data.
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1 Getting Started

We assume that the reader has some experience using R and has installed the
TESS package (including all dependent packages, such as ape). We also assume
some familiarity with Bayesian inference and models of lineage diversification.
Nevertheless, we intend this guide to be relatively self-contained: we provide brief
explanations of the methods and models in the corresponding tutorials, and direct
the reader to the relevant primary literature for more detailed descriptions of the
corresponding topics.

We originally developed TESS as a tool for efficiently simulating phylogenies
in order to test and validate new inference methods and models (Héhna, 2013).
However, TESS has since evolved to include several methods for estimating diver-
sification rates from empirical phylogenies (e.g., Hohna, 2014; May et al., 2015).
This is a natural extension, as both simulation and inference methods are based
on the same equations and inference machinery.

1.1 Scope of research questions
There are three fundamental questions that can be addressed using TESS:

1. What are the rates of the process that gave rise to my study tree?
2. Have diversification rates changed through time in my study tree?

3. Is there evidence that my study tree experienced mass extinction?

Questions regarding diversification rates can be addressed using TESS simply by
estimating the parameters of the branching-process model—i.e., rates of speciation
(A), extinction (u), net-diversification (A — u), and relative-extinction (- \). We
estimate these parameters in a Bayesian statistical framework, which provides a
natural means to accommodate our uncertainty in estimates of the parameters—
i.e., rather than estimating rate parameters as point values, TESS provides es-
timates as marginal posterior probability densities. We describe the branching-
process models implemented in TESS—and the methods for estimating parameters
of these models—in Section 2 of this guide.

Questions regarding temporal variation in diversification rates can be addressed
using TESS by comparing the relative fit of the study tree to candidate branching-
process models—i.e., by performing Bayes factor comparisons to assess the rela-
tive support for models in which diversification rates are either constant or change
through time. Note that the models we have implemented in TESS assume that
diversification rates are homogeneous across lineages. Accordingly, even though
diversification rates may change—gradually or episodically—through time, diver-
sification rates are nevertheless identical across all lineages at any instant in time.



We describe how to use TESS to compare the fit of candidate diversification models
to a given dataset in Section 4 of this guide.

Questions regarding mass-extinction events can be inferred using TESS by per-
forming specific hypothesis tests (see Section 2.4.4) or analyses under the CPP
on Mass-Extinction Times (CoMET) model (May et al., 2015). These analyses can
identify whether your study tree has been impacted by mass extinction, and if
so, can identify the number and timing of these events. Note that the CoMET
model is comprised of three compound Poisson process (CPP) models that de-
scribe three corresponding types of events: (1) instantaneous tree-wide shifts in
speciation rate; (2) instantaneous tree-wide shifts in extinction rate, and; (3) in-
stantaneous tree-wide mass-extinction events. In principle, the CoMET model could
therefore be used to explore events other than mass extinction—such as the num-
ber of tree-wide diversification-rate shifts, the timing of those events, and the rate
parameters (e.g., speciation and extinction rates) associated with those events.
In practice, however, the diversification-rate components of the CoMET model are
included as nuisance parameters that improve estimation of the focal parameters—
i.€., those associated with mass-extinction events. The ability to detect tree-wide
diversification-rate shifts is currently being explored, but we caution users against
overinterpretation of these nuisance parameters. We describe how to use TESS to
explore mass-extinction events in Section 4.3 of this guide.

1.2 Loading empirical data

Rates of lineage diversification are typically estimated from phylogenies that, in
turn, have been inferred from molecular sequence data. For example, consider the
conifer phylogeny that is included with the TESS distribution:

library(TESS)
data(conifers)

More information on this phylogeny can be found in Leslie et al. (2012). You
will, of course, want to use your own tree for your diversification-rate analyses.
You can do this using the read.nexus function provided in the ape package:

myTree <- read.nexus("data/myTree.nex")
You can extract the node ages from the tree using the ape function branching. times.

We often use the node ages for estimating parameters of birth-death processes, so
we’ll extract them and store them in a variable for later use.



times <- as.numeric( branching.times(conifers) )

You then can view the phylogeny (Figure 1).
plot(conifers,show.tip.label=FALSE,no.margin=TRUE)

Figure 1: Conifer phylogeny from Leslie et al. (2012) without taxon labels.

Notice that this is an ultrametric tree; that is, it is rooted and all of the tips are
sampled at the same time horizon (i.e., the present). The models implemented in



TESS are only valid for ultrametric trees. Other trees—e.g., where tips are sampled
sequentially through time (Heath et al., 2014)—are currently not supported.
Additionally, you can look at the lineage-through-time (LTT) plot (Figure 2).

1tt.plot(conifers,log="y")
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Figure 2: Lineage-through-time plot of the conifer phylogeny.

The LTT plot allows us to visualize the phylogenetic information that is used



for estimating diversification rates. For example, we it appears that the slope of
the LTT plot changes slightly at ~ 175,70, and 20 million years ago.



2 Models

We begin this section with a general introduction to the stochastic birth-death
branching process that underlies inference of diversification rates in TESS. This
primer will provide some details on the relevant theory of stochastic-branching
process models. We appreciate that some readers may want to skip this somewhat
technical primer; however, we believe that a better understanding of the relevant
theory provides a foundation for performing better inferences. We then disscuss a
variety of specific birth-death models, but emphasize that these examples represent

only a tiny fraction of the possible diversification-rate models that can be specified
in TESS.

2.1 The birth-death branching process

Our approach is based on the reconstructed evolutionary process described by Nee
et al. (1994); a birth-death process in which only sampled, extant lineages are
observed. Let N(t) denote the number of species at time ¢. Assume the process
starts at time ¢; (the ‘crown’ age of the most recent common ancestor of the study
group, tyrea) when there are two species. Thus, the process is initiated with two
species, N(t1) = 2. We condition the process on sampling at least one descendant
from each of these initial two lineages; otherwise ¢; would not correspond to the
tvrea of our study group. Each lineage evolves independently of all other lineages,
giving rise to exactly one new lineage with rate b(¢) and losing one existing lineage
with rate d(t) (Figure 3 and Figure 4). Note that although each lineage evolves
independently, all lineages share both a common (tree-wide) speciation rate b(t)
and a common extinction rate d(t) (Nee et al., 1994; Hohna, 2013, 2014, 2015; May
et al., 2015). Additionally, at certain times, fy;, a mass-extinction event occurs and
each species existing at that time has the same probability, p, of survival. Finally,
all extinct lineages are pruned and only the reconstructed tree remains (Figure 3).

To condition the probability of observing the branching times on the survival
of both lineages that descend from the root, we divide by P(N(T) > 0|N(0) = 1)2.
Then, the probability density of the branching times, T, becomes

both initial lineages have one descendant
N\

speciation rate  singleton lineage has one descendant

_ PN =1INO) =1 T —
P(T) = POVT) = 0| N(0) = 1 xH ixb(ty) x P(N(T)=1|N(t;)=1),

both initial lineages survive

and the probability density of the reconstructed tree (topology and branching
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Extinction event ~ Mass-extinction event ~ Speciation event

Figure 3: A realization of the birth-death process with mass extinction.
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Figure 4: Examples of trees produced under a birth-death process. The
process is initiated at the first speciation event (the ‘crown-age’ of the MRCA) when
there are two initial lineages. At each speciation event the ancestral lineage is replaced
by two descendant lineages. At an extinction event one lineage simply terminates. (A)
A complete tree including extinct lineages. (B) The reconstructed tree of tree from A
with extinct lineages pruned away. (C) A wuniform subsample of the tree from B, where
each species was sampled with equal probability, p. (D) A diversified subsample of the
tree from B, where the species were selected so as to maximize diversity.

times) is then

i P(N(T)=1| N(0) =1)\?
PO = =i (P(N(T) > 0| N(0) = 1))
x []ixb(ts) x P(N(T) =1| N(t;) = 1) (1)

We can expand Equation (1) by substituting P(N(T') > 0 | N(t) = 1)?exp(r(¢,T))
for P(N(T) = 1| N(t) = 1), where r(u,v) = [ d(t) — b(t)dt; the above equation



becomes

g P(N(T) > 0] N(0) = 1)*exp(r(0,T))
P(Y) n!(n—l)!x< P(N(T) > 0| N(0) =1) )

x ﬁ@ x b(t;) x P(N(T) > 0 | N(t;) = 1)2exp(r(t;, T))

_ 2:: < (PIN(T) > 0| N(0) = 1) exp(r(0. 7))
x 1:[ b(t:) x PIN(T) > 0| N(t) = 1)? exp(r(ti, T)). (2)

For a detailed description of this substitution, see Hohna (2015). Additional infor-
mation regarding the underlying birth-death process can be found in (Thompson,
1975, Equation 3.4.6) and Nee et al. (1994) for constant rates and Lambert (2010);
Hohna (2013, 2014, 2015) for arbitrary rate functions.

To compute the equation above we need to know the rate function, r(¢,s) =
J7d( r)dx, and the probability of survival, P(N(T) > 0|N(t) = 1). Yule
(1925) and later Kendall (1948) derived the probability that a process survives
(N(T') > 0) and the probability of obtaining exactly n species at time 7' (N (7T') =
n) when the process started at time ¢ with one species. Kendall’s results were
summarized in Equation (3) and Equation (24) in Nee et al. (1994)

P(N(T)>0|N(t)=1) = 1+/(u(s)exp(r(t,s)))ds (3)
P(N(T)=n|N(t)=1) = (1= P(N(T)>0|N(#t)=1)exp(r(t,T))"""
xP(N(T)>O0[N(t)=1) exp(r(t,T)) (4)

An overview for different diversification models is given in Héhna (2015).

2.2 The space of birth-death branching-process models

Our preceding discussion of the birth-death process makes it clear that we can de-
fine countless birth-death models that specify different speciation- and extinction-
rate functions over time. We could assume, for example, that the extinction rate is
constant over time, d(t) = u, or that the speciation rate decreases exponentially,
b(t) = A x exp(—a * t). Furthermore, the constant-rate birth-death process can
be parameterized in various ways, for example, by adopting parameters for the
rate of speciation, b(t) = A, and extinction, d(t) = p. Alternatively, we could
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describe the birth-death process using parameters for the net-diversification rate,
0 = A — p, and relative-extinction rate, € = p/A, such that b(t) = 6/(1 — €) and
d(t) = ex (0/(1 —¢€)). Finally, we could describe the birth-death process using
parameters for the net-diversification rate, 6 = A — u, and turnover rate, 7 = p,
such that b(t) = 6 + 7 and d(t) = 7. Depending on the inference scenario, each of
these parameterizations may offer advantages in terms of interpretation.

Below, we list several birth-death process models (e.g., used in Héhna, 2014)
to provide a sense of the types of models that can be specified and how they are
parametrized in TESS (Table 1).

Table 1: Six different birth-death models with the corresponding parameters.

Model b(t) d(t)
Model 1 Ag 0
Model 2 Ay * exp(—a * t) 0
Model 3 Ag 7
Model 4 Ao+ Ay xexp(—a*t) 0
Model 5 A; * exp(—a x t) I
Model 6 Ao+ Ay xexp(—a *t) pu

e Model 1: A constant-rate pure-birth (Yule) process (Yule, 1925). Under this
process, the number of species increases monotonically and exponentially.

e Model 2: A decreasing-rate pure-birth process where the speciation rate
declines toward zero. This process is equivalent to the decreasing-rate pure-
birth process used in Rabosky and Lovette (2008). Under this process, the
number of species increases monotonically.

e Model 3: A constant-rate birth-death process, as used in Thompson (1975).
Under this process, the expected number of species increases exponentially.

e Model 4: A pure-birth process with a decaying rate of speciation but a
constant, non-zero speciation rate the longer the process continues (A(t) =
Ao + A1k exp(—a x t)). Thus, the process does not stop producing new
species after the initial burst, as in Model 2. As in the other two pure-birth
processes, the number of species increases monotonically.

e Model 5: A birth-death process with an initial expansion phase (where the
speciation rate exceeds the extinction rate) that subsequently converges to
a critical-branching process, i.e., where the speciation and extinction rates
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are equal, A(t) = p+ Ay xexp(—a*t) and p(t) = p. Although one might as-
sume that the expected number of species will remain constant for a critical-
branching process, this does not hold if the process is conditioned on survival.

e Model 6: A birth-death process where the extinction rate remains constant,
but speciation rate has an initially constant phase followed by a decreasing
phase. This model corresponds to an early phase of radiation, followed by a
phase of steady increase, A\(t) = A\g + A1 x exp(—a * t) and pu(t) = p.

The parametrizations of these models are listed in Table 1, and the expected
number of species, E[N(T')], at time 7" under each model is depicted in Figure 5.
We derive E[N(T')] analytically by using the fact that N(7') is geometrically dis-
tributed (see Equation 5 in Héhna, 2013). Note that the process is conditioned on
survival to the present, such that E[N(T')] increases even if A(t) = u(t).

Model 1 Model 2 Model 3

= speciation rate
- extinction rate
— E[N®)]

nt  past present past present

Species Number

past present  past Time present  past present
Figure 5: Six possible birth-death models. Each plot shows the speciation and extinc-
tion rates over time, and also the expected number of species (E[N(t)]). Model 1: A
constant-rate pure-birth process. Model 2: A decreasing-rate pure-birth process with
speciation rate declining to zero. Model 3: A constant-rate birth-death process. Model
4: A pure-birth process, where the speciation rate passes through a constant phase to
a decreasing phase. Model 5: A birth-death process with an initial expansion phase
(speciation rate > extinction rate) that later converges to a critical-branching process.
Model 6: A birth-death process with a constant extinction rate, where the speciation
rate is initially constant and later decreases.
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2.3 Simulating data

Simulating phylogenies is critical for validating methods/models of lineage diver-
sification, and is also invaluable for developing our intuition about the behavior
of these models. Simulations are also crucial for assessing the adequacy (absolute
fit) of a model for a given dataset, which we will describe later. In the previ-
ous section we described the expected form of lineage-accumulation curves under
different branching-process models. We will now briefly explain how to simulate
phylogenies using TESS.

We will explore some common diversification models, including the constant-
rate pure-birth process, the constant-rate birth-death process, and the exponen-
tially decaying pure-birth process. Specifically, we will use TESS to simulate 50
trees under these models and look at the corresponding LTT plots. You can ex-
periment with the parameter settings to better understand their impact, e.g., the
influence of the extinction rate.

We will first simulate trees under a constant-rate pure-birth process, where we
specify a speciation rate of 1.0 and the duration of the process as 3.0 time units.

speciation <- 1.0
extinction <- 0.0
tmrca <- 3.0

Here, we are explicitly conditioning the simulation on the time of the process.
Because it is a stochastic process, this will result in simulated trees of different
sizes (number of species), which may be relevant to our question. We might, for
example, wish to know whether the observed species diversity in our study tree is
improbable under the current model and parameterization. In the next subsection
we will show how to simulate trees conditioned on the number of extant species.

We simulate 50 trees under the specified model as follows:

trees <- tess.sim.age(n = 50,
age = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE)

Note that we are initializing the simulation with two species; i.e., from the
‘crown age’ of the most recent common ancestor (MRCA). Accordingly, the re-
sulting trees will not have ‘stem’ branches subtending their root nodes; instead,
these trees begin at the root node that corresponds to the first speciation event
in each tree (c.f., Figure 4). This scenario corresponds well with empirical trees,
where (by definition) at least one species from both of these two initial lineages
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will survive to the present (otherwise we would not recognize this node as the root
of our study tree).
Next, we will generate the lineage-through-time plots for all 50 simulated trees.

mltt.plot(trees,
log = "y",
dcol = FALSE,
legend = FALSE,
backward = FALSE)

For a fully specified model, TESS can calculate the expected number of lineages
through time. We will overlay a curve describing the the expected number of
lineages on the LTT plot.

expected <- function(t)
tess.nTaxa.expected(begin = 0,

t =t,
end = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE,
reconstructed = TRUE)

curve (expected,add=FALSE,col="red",1ty=2,1wd=5)
legend("topleft",col="red",1ty=2,"Expected Diversity")

The results of this simulation are shown in Figure 6A. Here, you can see that
the shape of the LTT curve is clearly linear (in log-scale) under a constant-rate
pure-birth process. All other curves will be rendered in log-scale for convenience.
Notice also that we used the argument reconstructed = TRUE which means that
we compute the expected number of species (diversity) of a reconstructed phy-
logeny. This must be a monotonically increasing function. You could plot the
expected diversity at any given time and compare it to the diversity of recon-
structed phylogeny.

We will now repeat the above simulation under a constant-rate birth-death
process. First, we set the parameters of the model.

speciation <- 5.0

extinction <- 4.0
tmrca <- 3.0

14



Then simulate 50 trees under these parameters.

trees <- tess.sim.age(n = 50,
age = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE)

Next, we plot the lineage-through-time curves for the simulated trees:

mltt.plot(trees,
log = "y",
dcol = FALSE,
legend = FALSE,
backward = FALSE)

Finally, we overlay the expected number of lineages on our LTT plot. In this
example you may notice that the expected number of lineages under the birth-
death process diverges from the expected number of lineages in the reconstructed
tree. This is simply because the expected number of lineages in the reconstructed
tree only considers lineages that have at least one descendant sampled at the
present time, whereas the expected number of lineages gives the expected diversity
at the time without that constraint.

expected <- function(t)
tess.nTaxa.expected(begin = 0,

t =t,
end = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE,
reconstructed = TRUE)

curve (expected,add=TRUE, col="red",1ty=2,1wd=5)
legend("topleft",col="red",1ty=2,"Expected Diversity")

The results of this simulation are shown in Figure 6B. Notice that the slope
of the LTT plot increases sharply near the present: this is commonly referred the
‘pull-of-the-present’ effect. This effect becomes more pronounced as the relative-
extinction rate (i.e., extinction =+ speciation) increases.
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Finally, we will consider a pure-birth process with exponentially decreasing
speciation rate. In TESS you can either specify a simple numeric value for the
speciation and extinction rates or you can specify a function that takes the time ¢
as a parameter. Here, we will use the second option.

speciation <- function(t) 0.5 + 2 * exp(-1.0%t)
extinction <- 0.0
tmrca <- 3.0

We again simulate 50 trees conditioned on the survival of the two initial lin-
eages.

trees <- tess.sim.age(n = 50,
age = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE)

We generate the LTT plots for the simulated trees.

mltt.plot(trees,
log = "y",
dcol = FALSE,
legend = FALSE,
backward = FALSE)

And then add the expected number of lineages in the reconstructed phylogeny.

expected <- function(t)
tess.nTaxa.expected(begin = 0,

t =1,
end = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE,
reconstructed = TRUE)

curve (expected,add=TRUE, col="red",1ty=2,1lwd=5)
legend("topleft",col="red",1ty=2,"Expected Diversity")

The results of the three simulations are shown in Figure 6.
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Figure 6: Lineage-through-time curves for pure-birth trees (panel A), birth-death trees
(panel B), and pure-birth trees with exponentially decreasing speciation rate (panel C).

2.4 Estimating parameters using Markov chain Monte Carlo
(MCMC)

In the previous section we introduced some stochastic-branching process models,
and demonstrated how to simulate trees under those models. Here, we turn to the
issue of estimating parameters of branching-process models from empirical data.
We estimate parameters within a Bayesian statistical framework, which adopts the
perspective that parameters are random variables. Accordingly, it is necessary to
specify a probability distribution for each parameter that describes the nature of
that random variation. These prior probability distributions describe our beliefs
about the parameter values before evaluating the data at hand. Prior probabilities
are updated by the information in the data (via the likelihood function) to provide
the corresponding posterior probability distributions. These posterior probability
distributions reflect our belief about the parameter values after incorporating the
new information in our data. We estimate the joint posterior probability density
of the model parameters from the data using numerical methods—Markov chain
Monte Carlo (MCMC) algorithms.

2.4.1 Birth-death processes with constant rates

We first consider the constant-rate birth-death process. Although we do not ex-
plicitly consider the constant-rate pure-birth process, it can easily be specifed by
simply setting the extinction rate of the constant-rate birth-death process to zero.

First, we specify prior distributions for our parameters. The constant-rate
birth-death process has two parameters; the speciation rate and extinction rate.
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There are many possible prior distributions that we might adopt for these two
parameters, e.g., the exponential, gamma, lognormal distributions. Here, we will
use an exponential distribution, which has a single parameter (the rate parameter)
that describes the shape of the distribution. We will specify a value of 0.1 for the
rate parameter (such that the mean of the exponential is 1/rate = 10.0). We will
use identical priors for both the speciation- and extinction-rate parameters.

In TESS the prior distribution must be functions that can be computed for all
values that can be realized by the corresponding parameter (e.g., priors for rates
must only include positive-real values). Furthermore, the prior distributions need
to return log-transformed probabilities (this is a standard convention adopted to
avoid underflow in computer memory).

prior_delta <- function(x) { dexp(x,rate=10.0,log=TRUE) }

prior_tau <- function(x) { dexp(x,rate=10.0,log=TRUE) }

priorsConstBD <- c("diversification"=prior_delta,
"turnover"=prior_tau)

If you provide names for the prior distributions, as we did here, then these
names will be used to label that parameters in the MCMC output. Currently,
only the names of the priors are used.

Next, we set up the likelihood of the constant-rate birth-death process as an
R function. Here, the actual likelihood computation is performed by the function
tess.likelihood. It is necessary to wrap the TESS likelihood into another R
function because you need to specify how the speciation and extinction rates are
assembled and which assumptions/conditions are applied. This approach enables
maximal flexibility for using TESS.

likelihoodConstBD <- function(params) {

speciation <- params[1] + params[2]
extinction <- params/[2]

1nl <- tess.likelihood(times,
lambda = speciation,
mu = extinction,
samplingProbability = 1.0,
log = TRUE)

return (1nl)
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It is also possible to specify prior distributions on other parameterizations of the
constant-rate birth-death model, e.g., using parameters for the net-diversification
rate (speciation—extinction) and the relative-extinction rate (extinction/speciation).
This alternative parmaterization of the model would, of course, require modifica-
tion of the likelihood function.

Next, we use the function tess.mcmc to run an MCMC simulation. The func-
tion takes in several arguments to describe the MCMC algorithm. Specifically,
you must specify the likelihoodFunction, priors, and initial values for the
parameters. Additionally, you can specify whether the MCMC proposal mech-
anisms should operate on the log-transformed parameters, which is advisable for
rate parameters but not for location parameters.

We will also specify the value for the delta parameter, which defines the (ini-
tial) width of the sliding-window proposal mechanism. This delta tuning param-
eter determines the scale (severity) of the proposal mechanism: larger values will
specify more severe changes to the current parameter value when that parameter
is being updated during the MCMC. We will discuss these issues in more detail
in Section 5 of this guide. The remaining parameters specify the number of itera-
tions of the MCMC simulation, the number of iterations for the pre-burnin phase,
the thinning schedule, and whether the scale of the poposal mechanisms are to be
automatically tuned.

set.seed(12345)

samplesConstBD <- tess.mcmc(likelihoodFunction = likelihoodConstBD,
priors = priorsConstBD,
parameters = runif(2,0,1),
logTransforms = c(TRUE,TRUE),
delta = c(1,1),
iterations = 2000,
burnin = 200,
thinning = 10,
adaptive = TRUE,
verbose = TRUE)

## Burning-in the chain ...

# 0——————- 26-——————- 50-————--- 75-———————- 100
#H

## Finished burnin period!

##

## Running the chain ...

# 00—~ 25-——————- 50-————--- 75-———————- 100
##
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## Finished MCMC!

##

## Parameter | delta | Acceptance Probability
##
## diversification | 0.768 | 0.480
## turnover | 0.244 | 0.372

Note that we have specified a starting seed for the random-number generator.
We have done this only to ensure that your results will be identical to those in
this guide. However, you should not specify the starting seed for your analyses,
but instead use a random starting seed that is automatically generated from the
system clock. This is important, as you will want to perform multiple independent
MCMC simulations to assess convergence. The basic idea is to compare parameter
estimates from multiple independent analyses: if the chains have converged to the
target (joint posterior probability) distribution, then the parameter estimates from
the replicate chains should be similar. However, this important diagnostic would
be rendered meaningless if the replicate analyses were performed under the same
starting seed; in this case, the results are guaranteed to be identical.

Note that we ran a very short MCMC simulation above for covenience. In
practice, MCMC simulations are commonly run for 10° to 10® iterations. We will
use the R package coda (which is automatically loaded with TESS) to summarize
the samples from our MCMC simulation. TESS saves samples in the coda format,
which allows us to easily summarize our samples:

summary (samplesConstBD)

##

## Iterations = 1:201

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 201

##

## 1. Empirical mean and standard deviation for each variable,
#i# plus standard error of the mean:

##

#it Mean SD Naive SE Time-series SE
## diversification 0.0060 0.002262 0.0001596 0.0001873
## turnover 0.1512 0.013622 0.0009608 0.0009608
##

## 2. Quantiles for each variable:

##

20



#it 2.5% 25% 50% 75%  97.5Y%
## diversification 0.001824 0.00449 0.005951 0.007532 0.01051
## turnover 0.124930 0.14165 0.151321 0.160658 0.17833

We can also visualize the trace plots and marginal posterior probability densi-
ties for these samples (Figure 7).

plot (samplesConstBD)

2.4.2 Birth-death processes with continuously varying rates

Here we consider a birth-death process with an exponentially decreasing speciation
rate. Specifically, we define the speciation rate as A(t) = J + Aexp(—a * t) and
extinction rate as u(t) = 6 (Hohna, 2014). It is not possible to analytically compute
the probability density (or likelihood) under this process. Instead, we approximate
these quantities using numerical integration techniques. These numerical methods
are implemented in TESS and will be performed automatically if you provide
functions instead of numerical arguments for the speciation and/or extinction rate.
The numerical integration is very convenient but, of course, imposes a higher
computational cost that will make these analyses run more slowly.

The decreasing speciation rate birth-death model has three parameters: §, Ay,
and a. We will use an exponential prior probability distribution with a rate of
0.1 (i.e., with a mean of 10.0) for all three parameters. As before, the prior
distributions must be functions that return the log-transformed probability for a
given value of the parameter.

prior_delta <- function(x) { dexp(x,rate=0.1,log=TRUE) }
prior_lambda <- function(x) { dexp(x,rate=10.0,log=TRUE) }
prior_alpha <- function(x) { dexp(x,rate=0.1,10g=TRUE) }
priorsDecrBD <- c("turnover"=prior_delta,
"initial speciation"=prior_lambda,
"speciation decay"=prior_alpha)

We now specify the speciation and extinction rates as functions and pass them
into the likelihood, which again must be provided as a function.

likelihoodDecrBD <- function(params) {

speciation <- function(t) params[1] + params[2] * exp(-params[3]*t)
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Figure 7: Trace plots (left) and marginal posterior probability densities (right) for the
speciation rate (variable 1) and extinction rate (variable 2) from the MCMC simulation
under the constant-rate birth-death process.

extinction <- function(t) params[1]

1nl <- tess.likelihood(times,
lambda = speciation,
mu = extinction,
samplingProbability = 1.0,
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log = TRUE)

return (1nl)

Next, we start the analysis by calling the MCMC function in TESS. (The details
of this MCMC simulation are similar to those described in the constant-rate birth-
death example, above.)

set.seed(12345)

samplesDecrBD <- tess.mcmc(likelihoodFunction = likelihoodDecrBD,
priors = priorsDecrBD,
parameters = runif(3,0,1),
logTransforms = c(TRUE,TRUE,TRUE),
delta = c(1,1,1),
iterations = 2000,
burnin = 200,
thinning = 10,
adaptive = TRUE,
verbose = TRUE)

## Burning-in the chain ...

# 0-———————- 25-——————- 50----—--- 75———————- 100
#Hit

## Finished burnin period!

##

## Running the chain ...

# 0-———————- 25-——-————- 50----—--- 75———————- 100
##

## Finished MCMC!

##

## Parameter | delta | Acceptance Probability
##

## turnover | 0.193 | 0.415
## initial speciation | 2.219 | 0.514
## speciation decay | 2.389 | 0.481

We then summarize the parameter estimates from our MCMC samples:
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summary (samplesDecrBD)

##

## Iterations = 1:201

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 201

#i#

## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:

#it

#i# Mean SD Naive SE Time-series SE

## turnover 0.1622 0.01121 0.0007907 0.0009085

## initial speciation 0.1117 0.10594 0.0074726 0.0074726

## speciation decay 9.0703 8.92827 0.6297515 0.5847390

#it

## 2. Quantiles for each variable:

#i#

#it 2.5% 25% 50% 75%  97.5%
## turnover 0.140330 0.15455 0.16246 0.1693 0.1839

## initial speciation 0.001673 0.02818 0.08409 0.1655 0.3817
## speciation decay 0.299961 2.50382 6.91353 12.6620 34.7207

We can also visualize the trace plots and marginal posterior probability densi-
ties for these samples:

plot(samplesDecrBD)

2.4.3 Birth-death processes with episodically varying rates

The next model we consider is a birth-death process with piecewise-constant rates.
Under this model, rates of speciation and extinction change at some (discrete)
number of events; between these rate-shift events, however, the diversification-
rate parameters remain constant (Hohna, 2015).

The number of parameters included in the episodic model varies depending
on the number of rate-shift events. In general, there are kg + 1 speciation-rate
parameters and kp + 1 extinction-rate parameters, where kg is the number of
speciation-rate shifts and kp is the number of extinction-rate shifts.

In this example, we will assume there is a single speciation-rate shift and a single
extinction-rate shift, both occurring at the mid-point of the duration spanned by
the conifer tree. First, we specify the time of the rate-shift event.
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Figure 8: Trace plots and estimated posterior distribution of the parameter under the
decreasing speciation rate birth-death model.
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rateChangeTime <- max( times ) / 2

Next, we specify priors for the parameters. There are a total of four param-
eters (the speciation and extinction rates before and after the rate-shift event).
Accordingly, we specify four identical exponential priors for these parameters, all
with a rate of 10.0 (and a mean of 0.1).

prior_delta_before <- function(x) { dexp(x,rate=10.0,log=TRUE) }

prior_tau_before <- function(x) { dexp(x,rate=10.0,10g=TRUE) }

prior_delta_after <- function(x) { dexp(x,rate=10.0,log=TRUE) }

prior_tau_after <- function(x) { dexp(x,rate=10.0,1log=TRUE) }

priorsEpisodicBD <- c("diversification before"=prior_delta_before,
"turnover before'"=prior_tau_before,
"diversification after'"=prior_delta_after,
"turnover after"=prior_tau_after)

Next, we specify a likelihood function using the rate-shift model implemented
in TESS, tess.likelihood.rateshift.

likelihoodEpisodicBD <- function(params) {

speciation <- c(params[1]+params[2],params[3]+params[4])
extinction <- c(params[2],params([4])

Inl <- tess.likelihood.rateshift(times,
lambda = speciation,
mu = extinction,
rateChangeTimesLambda = rateChangeTime,
rateChangeTimesMu = rateChangeTime,
samplingProbability = 1.0,
log = TRUE)

return (1nl)

Now we can start the analysis by calling the MCMC function in TESS. (The
details of this MCMC simulation are similar to those described in the constant-rate
birth-death example, above.)
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set.seed(12345)
samplesEpisodicBD <- tess.mcmc(likelihoodFunction = likelihoodEpisodicBD,

#i#
#i#
#i#
#it
#i#
#i#
#i#
#i#
#i#t
#i#
#i#
#i#
#i#t
#it
#i#t
#i#

priors = priorsEpisodicBD,

parameters = runif(4,0,1),
logTransforms = c(TRUE,TRUE,TRUE, TRUE),
delta = c(1,1,1,1),

iterations = 2000,

burnin = 200,

thinning = 10,

adaptive = TRUE,

verbose = TRUE)

Burning-in the chain ...

Finished burnin period!

Running the chain ...

Finished MCMC!

Parameter | delta | Acceptance Probability

diversification before | 0.980 | 0.531
turnover before | 1.592 | 0.430
diversification after | 1.058 | 0.417
turnover after | 0.222 | 0.385

We then summarize the parameter estimates from our MCMC samples:

summary (samplesEpisodicBD)

#i#
#i#t
#i#
#i#t
#i#
#i#t
#i#
#i#

Iterations = 1:201

Thinning interval = 1
Number of chains = 1

Sample size per chain = 201

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
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#i#

## Mean SD Naive SE Time-series SE

## diversification before 0.010951 0.006429 0.0004535 0.0005027

## turnover before 0.113643 0.073380 0.0051759 0.0051759

## diversification after 0.006036 0.002500 0.0001764 0.0001764

## turnover after 0.146843 0.011637 0.0008208 0.0008208

##

## 2. Quantiles for each variable:

##

#i 2.5% 25% 50% 75%  97.5%
## diversification before 0.001098 0.006567 0.009774 0.016035 0.02347
## turnover before 0.011698 0.063437 0.099464 0.145658 0.26717
## diversification after 0.001683 0.004280 0.005758 0.007679 0.01105
## turnover after 0.126521 0.138313 0.146133 0.154644 0.16911

Finally, we can visualize the trace plots and marginal posterior probability
densities for these samples:

plot(samplesEpisodicBD)

2.4.4 Birth-death processes with explicit mass-extinction events

The final model we consider is one where speciation and extinction rates are con-
stant, but where there is a single mass-extinction event at some unknown time.
We'll assume that 10% of the species survive the mass-extinction event.

survivalProbability <- 0.1

There are three parameters in the model: the speciation rate, the extinction
rate, and the mass-extinction time. We must specify priors for each of these
parameters. For simplicity, we’ll assume a priori that the mass-extinction event
could happen at any time in the most recent half of the tree with equal probability.

prior_delta <- function(x) { dexp(x,rate=10.0,log=TRUE) }
prior_tau <- function(x) { dexp(x,rate=10.0,log=TRUE) }
prior_time <- function(x) { dunif (x,min=max(times)/2,max=max(times),log=TRUE)}
priorsMassExtinctionBD <- c("diversification"=prior_delta,
"turnover"=prior_tau,
"mass-extinction time"=prior_time)
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Next, we specify a likelihood function. We can use either the standard likeli-
hood function tess.likelihood or the likelihood function of the rate-shift model

tess.likelihood.rateshift.
likelihoodMassExtinctionBD <- function(params) {

speciation <- params[1]+params[2]
extinction <- params[2]

time <- params[3]

1nl <- tess.likelihood(times,

return (1nl)

lambda = speciation,

mu = extinction,

massExtinctionTimes = time,

massExtinctionSurvivalProbabilities =
survivalProbability,

samplingProbability = 1.0,

log = TRUE)

Now we can start the analysis by calling the MCMC function in TESS. (The
details of this MCMC simulation are similar to those described in the constant-rate

birth-death example, above.)

set.seed(12345)

samplesMassExtinctionBD <- tess.mcmc(likelihoodFunction =

likelihoodMassExtinctionBD,

priors = priorsMassExtinctionBD,

parameters = c(runif(2,0,1) ,max(times)*3/4)
logTransforms = c(TRUE,TRUE,FALSE),

delta = c(1,1,1),

iterations = 2000,

burnin = 200,

thinning = 10,

adaptive TRUE,

verbose = TRUE)

## Burning-in the chain ...
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#i#
#it
#it
#H#
#i#t
#i#t
#i#t
#it
##
##
#it
#i#t
#it
##

0-———- 25-———————- 50-——————- 75-——————- 100
Finished burnin period!

Running the chain ...

0-———- 25-————-—- 50-——————- 75———————- 100
Finished MCMC!

Parameter | delta | Acceptance Probability

diversification | 0.370 | 0.386
turnover | 0.174 | 0.505
mass-extinction time | 1.668 |

summary (samplesMassExtinctionBD)

##
#i#
#i#
#it
##
##
#i#
#i#t
#it
##
#H#
#i#t
#i#t
#it
##
##
#i#t
#i#t
#Hit
#it

Iterations = 1:201

Thinning interval = 1
Number of chains = 1

Sample size per chain = 201

0.431

We then summarize the parameter estimates from our MCMC samples:

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean
diversification 0.01912
turnover 0.12706
mass-extinction time 262.02657

2. Quantiles for each variable:

2.5Y%
diversification 0.01457
turnover 0.10449

SD Naive SE Time-series SE
0.002312 0.0001631
0.011475 0.0008094
2.242028 0.1581405

25%
0.01778
0.11963

50%
0.01904
0.12697

0.0001631
0.0008094
0.4675061

75% 97.5%
0.02058 0.02417
0.13415 0.14789

mass-extinction time 253.51488 261.81437 262.82410 263.22746 263.70129

Finally, we visualize the trace plots and marginal posterior probability densities
for these samples:
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plot(samplesMassExtinctionBD)
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3 Accommodating Incomplete Species Sampling

Most phylogenies do not contain all species of the group under study. Instead,
only an incomplete sample—or subsample—of all described species are included.
Assuming complete species sampling for trees that are actually incomplete is known
to bias estimates of diversification rates (Cusimano and Renner, 2010; Hohna et al.,
2011). Additionally, the sampling strategy (e.g., whether species are sampled at
random or to maximize diversity) also influences the parameter estimates (Hohna
et al., 2011; Hohna, 2014). Fortunately, methods for modeling incomplete species
sampling exist to correct for the introduced bias.

Here we consider two approach of incomplete species sampling: uniform sam-
pling and diversified sampling. A sketch of the two sampling methods was provided
in Figure 4. As we will demonstrate below, the sampling strategy has a substan-
tial influence on the distribution of branching times in the tree, which results in
different patterns in the lineage-through-time curves for the different sampling
schemes. Additionally, we note that the patterns induced by incomplete sampling
can mimic patterns of decreasing rates of lineage diversification (Pybus and Har-
vey, 2000; Cusimano and Renner, 2010; Hohna et al., 2011), and thus it is critical
to incorporate incomplete sampling in any study of lineage diversification rates.

We will begin by simulating trees under different kinds of sampling schemes,
and then demonstrate how we can incorporate these sampling schemes into branching-
process models in TESS.

3.1 Patterns of incomplete sampling

To demonstrate the impact of incomplete species sampling, we will simulate trees
under each sampling strategy and plot the resulting LTT curves. We simulate
n = 50 trees, each conditioned on the specified age. First, we simulate trees with
complete species sampling to compare against the other sampling schemes. Next,
we simulate trees under uniform species sampling with a sampling probability of
p = 0.25 (which means that each species at the present has the same probability
of p = 0.25 being included in the phylogeny; if a species is not sampled then its
lineage is removed from the reconstructed tree). Finally, we simulate trees under
diversified species sampling with a sampling probability of p = 0.25 (i.e., only the
oldest 25% of divergence events are included in the reconstructed phylogeny, and
all later divergence events are excluded).

birthDeathSpeciationSampling <- 2.0
birthDeathExtinctionSampling <- 1.0
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birthDeathTreesComplete <- tess.sim.age(n = 50,
age = 3.0,
lambda = birthDeathSpeciationSampling,
mu = birthDeathExtinctionSampling,
MRCA = TRUE)

birthDeathTreesUniform <- tess.sim.age(n = 50,
age = 4.0,
lambda = birthDeathSpeciationSampling,
mu = birthDeathExtinctionSampling,
samplingProbability = 0.25,
samplingStrategy = "uniform",
MRCA = TRUE)

birthDeathTreesDiversified <- tess.sim.age(n = 50,
age = 4.0,
lambda = birthDeathSpeciationSampling,
mu = birthDeathExtinctionSampling,
samplingProbability = 0.25,
samplingStrategy = "diversified",
MRCA = TRUE)

par (mfrow=c(1,3) ,mar=c(5,4,3,0.1),las=1)

# Plot the trees

mltt.plot(birthDeathTreesComplete,log = "y",dcol = FALSE,
legend = FALSE,backward = FALSE)

mtext ("A", line = 1)

mltt.plot(birthDeathTreesUniform,log = "y",dcol = FALSE,
legend = FALSE,backward = FALSE)
mtext ("B", line = 1)

mltt.plot(birthDeathTreesDiversified,log = "y",dcol = FALSE,
legend = FALSE,backward = FALSE)
mtext("C", line = 1)

For the remainder of this section, we focus on the biases stemming from in-
complete species sampling. We will simulate a single incompletely sampled tree
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Figure 10: Lineage-through-time plots for completely sampled trees (panel A), in-
complete trees with uniform sampling (panel B), and incomplete trees with diversified
sampling (panel C).

under a diversified sampling strategy with sampling fraction p = 0.25, and in the
following sections we will estimate parameters under various birth-death processes
from this tree. We have simulated the tree under diversified sampling with known
speciation and extinction rates, which allows us to compare estimates of parame-
ter value using various approaches to the true parameter values in order to better
understand the influence of the sampling strategy on parameter estimates.

tree.diversified <- tess.sim.age(n = 1

age = 4.0,
lambda = 2.0,
mu = 1.0,

samplingProbability = 0.25,
samplingStrategy = "diversified",
MRCA = TRUE) [[1]]

times.diversified <- as.numeric( branching.times(tree.diversified) )

First, we will take a look at the simulated tree: it looks similar to many
empirical phylogenies.
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plot(tree.diversified,show.tip.label=FALSE,no.margin=TRUE)

Figure 11: The simulated tree under diversified sampling with sampling fraction p =
0.25.

3.2 Uniform species sampling

Uniform species sampling, which is sometimes also called random species sampling,
assumes that every species at present has the same probability p of being included
in the sample. That is, regardless of age or phylogenetic relationship, this method
assumes that a researcher flips a coin for each species to decide whether it will
be included in the analysis. This sampling scheme may not be realistic, as many
factors typically influence the probability that a researcher will include a species in
their study. However, the uniform species sampling scheme was initially adopted
because it is mathematically convenient. Moroever, the approximation to uniform
sampling scheme improves when the sampling fraction is large, i.e., if more than
80% of the species are included.

In principle, we could treat the sampling probablity p as a random variable and
estimate it from the data. However, estimating all three parameters of the sampled
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constant-rate birth-death process model—the speciation rate, the extinction rate
and the sampling probability—is not possible because the parameters are noniden-
tifiable (Stadler, 2009). Therefore, we use the empirical sampling fraction; simply
the number of included species divided by the total number of known species (630
for conifers).

samplingFraction <- (conifers$Nnode + 1) / 630

We can then use this empirical sampling fraction as our sampling probability.
All the likelihood functions in TESS, as described in the previous sections, have
an argument called samplingProbability. You can incorporate incomplete sam-
pling in any of these analyses by setting this argument to the empirical sampling
probability.

How well does the uniform species sampling scheme perform on our simulated
phylogeny? We will assess the performance of this method by estimating the joint
posterior density of the diversification-rate parameters by performing an MCMC
simulation. As usual, we start by specifying the prior distributions. Here, we use
the constant-rate birth-death process with the net-diversification rate (speciation
— extinction) and turnover rate (extinction). We choose exponential prior distri-
butions with a mean of 1.0, which corresponds to the true value. Notice that this
is essentially an ideal setting, as the true parameter values are clearly unknown for
empirical analyses. Therefore, this represents a best case scenario for the impact
of species sampling on parameter estimates.

prior_delta <- function(x) { dexp(x,rate=1.0,log=TRUE) }

prior_tau <- function(x) { dexp(x,rate=1.0,log=TRUE) }

priorsSampling <- c("diversifiation"=prior_delta,
"turnover"=prior_tau)

We then define the likelihood function. This is similar to the likelihood function
used previously for the constant-rate birth-death process. However, in this case

we will specify the sampling probability (p = 0.25) and the sampling strategy.

likelihoodUniform <- function(params) {

speciation <- params[1] + params[2]
extinction <- params[2]

1nl <- tess.likelihood(times.diversified,
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lambda = speciation,

mu = extinction,
samplingProbability = 0.25,
samplingStrategy = "uniform",
log = TRUE)

return (1nl)

Now we are ready to estimate the diversification-rate parameters. The settings
for the MCMC simulation are the same as those used previously (c.f., Section 2.4).

set.seed(12345)

samplesUniform <- tess.mcmc(likelihoodFunction = likelihoodUniform,
priors = priorsSampling,
parameters = runif(2,0,1),
logTransforms = c(TRUE,TRUE),
delta = c(1,1),
iterations = 2000,
burnin = 200,
thinning = 10,
adaptive = TRUE,
verbose = TRUE)

## Burning-in the chain ...

## 0-———————- 25-————-—- 50-————--- 75=———————= 100
#Hit

## Finished burnin period!

#it

## Running the chain ...

## 0-———————- 25-————-—- 50-—————-- 75=——===——= 100
#Hit

## Finished MCMC!

#it

## Parameter | delta | Acceptance Probability
#i#

## diversifiation | 0.269 | 0.407
## turnover | 2.321 | 0.454
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Recall that the true parameter values are A = 2.0 and p = 1.0. This correspods
to a diversification rate of 1.0 and a turnover rate of 1.0. The estimated parameters
under uniform species sampling are

summary (samplesUniform)

##

## Iterations = 1:201

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 201

#i#

## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:

#i#

#i# Mean SD Naive SE Time-series SE
## diversifiation 1.1159 0.1249 0.008812 0.008812
## turnover 0.1568 0.1566 0.011045 0.011045
#it

## 2. Quantiles for each variable:

##

#i# 2.5, 26Y% 50% 75% 97.5%
## diversifiation 0.880858 1.03295 1.1167 1.2074 1.3543
## turnover 0.006634 0.04304 0.1073 0.2095 0.5373
plot(samplesUniform)

Our estimate of the diversification rate is actually quite good. This is be-
cause most information about the diversification rate comes from the age of the
phylogeny and the number of sampled species, which does not depend on the sam-
pling scheme or the divergence times. However, the estimated turnover rate is
quite biased. As a result, the speciation- and extinction-rate estimates are both
biased. This is caused by the underestimation of the extinction rate (Hoéhna et al.,
2011). The bias is quite severe: the true values are not even contained in the 95%
credible interval (see Figure 12).

3.3 Diversified species sampling

Now we will consider diversified sampling in more detail. We assume that our
study group contains m species from which we have n sampled species. Under
diversified sampling, this means that the most recent m — n speciation events
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Figure 12: Trace plots (left) and marginal posterior probability densities (right) for
the diversification rate (speciation - extinction) and turnover rate (extinction) under
uniform sampling from the MCMC simulation.

have been discarded. This is the strictly mathematical interpretation of diversified
sampling (Hohna et al., 2011; Hohna, 2014).

This sampling strategy is intended to mimic empirical datasets where species
were selected to include “representatives” from some number of distinct lineages
(e.g., all families or all genera). This sampling implicitly maximizes species di-
versity and comes close to the mathematical description of diversified sampling.
However, diversified species sampling is not a perfect mathematical description
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of this sort of sampling. For example, not all “major lineages” are of the same
age and size, and we may therefore sometimes include species that are recently
diverged.

As we did for uniform species sampling, we want to test how well the method
performs in estimating parameters given the simulated phylogeny. We will use the
same constant-rate birth-death process with the only difference being the sampling
strategy. We therefore use the same prior distributions as in the uniform sampling
analysis. The likelihood function is adapted by changing the samplingStrategy
to “diversified”.

likelihoodDiversified <- function(params) {

speciation <- params[1] + params[2]
extinction <- params[2]

1nl <- tess.likelihood(times.diversified,
lambda = speciation,
mu = extinction,
samplingProbability = 0.25,
samplingStrategy = "diversified",
log = TRUE)

return (1nl)

Then, we perform a very short MCMC simulation to sample from the posterior
distribution of the parameters.

samplesDiversified <- tess.mcmc(likelihoodFunction = likelihoodDiversified,
priors = priorsSampling,
parameters = runif(2,0,1),
logTransforms = c(TRUE,TRUE),
delta = c(1,1),
iterations = 2000,
burnin = 200,
thinning = 10,
adaptive = TRUE,
verbose = TRUE)

## Burning-in the chain ...
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## O-——————- 25———————- 50-—————-- T5—=——=—— 100
##
## Finished burnin period!

##

## Running the chain ...

## O-———————- 25——————— 50-—————-- 75—~ 100
##
## Finished MCMC!

##

## Parameter | delta | Acceptance Probability
##
## diversifiation | 0.614 | 0.372
## turnover | 0.830 | 0.407

Finally, our estimates of the diversification rate and a turnover rate under
diversified species sampling are

summary (samplesDiversified)

##

## Iterations = 1:201

## Thinning interval = 1

## Number of chains =1

## Sample size per chain = 201

##

## 1. Empirical mean and standard deviation for each variable,
#i#t plus standard error of the mean:

H##

## Mean SD Naive SE Time-series SE
## diversifiation 0.7966 0.3178 0.02241 0.03897
## turnover 1.2958 0.6549 0.04619 0.06287
##

## 2. Quantiles for each variable:

##

#i# 2.5% 25% 50%  75% 97.5%
## diversifiation 0.2089 0.5602 0.8083 1.044 1.370

## turnover 0.1876 0.7759 1.2273 1.782 2.699

plot (samplesDiversified)

Here we see that the true values fall within the 95% credible interval. The mean
estimate of the diversification rate might be slightly worse, but the transformed
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Figure 13: Trace plots (left) and marginal posterior probability densities (right) for
the diversification rate (speciation - extinction) and turnover rate (extinction) under
diversified sampling from the MCMC simulation.

speciation and extinction rate estimates are significantly better. Thus, we can
conclude that only if we know the true sampling strategy, and sampling fraction,
are we able to make unbiased estimates the speciation and extinction rates.

You may wish to repeat the above experiment for the case when you simulate
the tree under uniform species sampling, and/or when you assume an incorrect
sampling fraction (i.e., that is either too large or too small).

For more information about incomplete species sampling, we refer the reader
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to Hohna et al. (2011) and Hohna (2014).
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4 Model Evaluation

Model-based inference is, by definition, based on the model. The model describes
the process that gave rise to our observed data—in the present case, it describes
the stochastic-branching process that gave rise to our study tree. Accordingly, if
the model provides a ‘poor fit’ to the data—i.e., provides a poor description of
the process that gave rise to the observed data—then all bets are off.

The model must balance two competing criteria: (1) it must include the rele-
vant parameters to describe important aspects of the diversification process, but;
(2) it must exclude any superfluous parameters that only capture stochastic fluc-
tuations in the data. Failure to satisfy criterion (1) will result in biased estimates
of parameters; e.g., speciation and extinction rates. Failure to satisfy criterion
(2) will inflate the error variance of the parameter estimates; we only have a fixed
amount of data at hand, such that the inclusion of additional parameters decreases
the data available for estimating each parameter.

Accordingly, we must be vigilant both regarding our choice of model and also
with respect to assessing our ability to perform reliable inference under the chosen
model. Model evaluation entails three closely related issues. Model selection
entails assessing the relative fit of our dataset to the pool of candidate models. In
a Bayesian statistical framework, we compare the relative fit of candidate models
based on their marginal likelihood (which measures the average fit of the candidate
models to the data). Model adequacy—an equally important but relatively
neglected issue—entails assessing the absolute fit of the dataset to a given model.
Model uncertainty is related to the common (and commonly ignored) scenario
when multiple candidate models provide a similar fit to the data: in this scenario,
conditioning on any single model (even the best) will lead to biased estimates, and
so model averaging is required to accommodate uncertainty in the choice of model.

Below, we demonstrate how to address each of these model-evaluation issues using
TESS.

4.1 Comparing models with Bayes factors

For most groups of species, several (possibly many) branching-process models of
varying complexity are plausible a priori. We therefore need a way to objectively
identify the model that balances estimation bias and inflated error variance as-
sociated with under- and over-parameterized models, respectively. Increasingly,
model selection is based on Bayes factors (e.g., Kass and Raftery, 1995; Suchard
et al., 2001; Lartillot and Philippe, 2006; Xie et al., 2011; Fan et al., 2011; Baele
et al., 2012, 2013). This procedure requires that we first calculate the marginal
likelihood of each candidate model, and we then compare the ratio of the marginal
likelihoods for the set of candidate models.
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Note that interpreting Bayes factors (BF) involves a measure of subjectivity.
That is, it is up to you to decide what BF values appropriately reflect the level
of significance in the competing models. Despite the absence of an absolutely
objective model-selection threshold, we can refer to the scale (outlined by Jeffreys,
1961) that provides a “rule-of-thumb” for interpreting these measures (Table 2).

Table 2: The scale for interpreting Bayes factors by Harold Jeffreys (1961).

Strength of evidence BF(My, M) log(BF(My, My)) log,o(BF (M, M))
Negative (supports M) <1 <0 <0

Barely worth mentioning 1to0 3.2 0 to 1.16 0 to 0.5
Substantial 3.2 to 10 1.16 to 2.3 0.5to1
Strong 10 to 100 2.3to 4.6 1 to 2
Decisive > 100 > 4.6 > 2

For a detailed description of Bayes factors see Kass and Raftery (1995)

Given two candidate models, My and M, the Bayes-factor comparison to assess
the relative fit of each model to the data, BF (M, M), is:

L P(My | X)  P(Mo) P(X | My)
BF(My, M) = P(M, | X) P(M)PX | M)’

where P(X | M;) is the marginal likelihood of the data (this may be familiar to
you as the denominator of Bayes Theorem, which is variously referred to as the
model evidence or integrated likelihood). Formally, the marginal likelihood is the
probability of the observed data (X) under a given model (M;) that is averaged
over all possible values of the parameters of the model (6;) with respect to the
prior density on 6;

P(X | M,) = / P(X | 0,)B(6,)d0. (5)

This makes it clear that more complex (parameter-rich) models are penalized by
virtue of the associated prior: each additional parameter entails integration of the
likelihood over the corresponding prior density.

Exact solutions for calculating marginal likelihoods are not avaiable for most
models, which requires that we resort to numerical integration methods to ap-
proximate these values. Below, we first provide a brief description of a robust
method for estimating marginal likelihoods—stepping-stone simulation (Xie et al.,
2011; Fan et al., 2011)—and then demonstrate how to use the implementation of
the stepping-stone algorithm in TESS to estimate the marginal likelihoods for two
birth-death branching-process models.
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4.1.1 Stepping-stone simulation

Recent developments provide robust methods for estimating marginal likelihoods,
including stepping-stone Xie et al. (2011); Fan et al. (2011) and path-sampling
estimators Lartillot and Philippe (2006); Baele et al. (2012). These algorithms
are similar to the familiar MCMC algorithms, which are intended to sample from
(and estimate) the joint posterior probability of the model parameters. Stepping-
stone algorithms are like a series of MCMC simulations that iteratively sample
from a specified number of discrete steps between the posterior and the prior
probability distributions. The basic idea is to estimate the probability of the
data for all points between the posterior and the prior—effectively summing the
probability of the data over the prior probability of the parameters to estimate
the marginal likelihood. Technically, the steps correspond to a series of power-
posteriors: a series of numbers between 1 and 0 that are iteratively applied to the
posterior. When the posterior probability is raised to the power of 1 (typically the
first stepping stone), samples are drawn from the (untransformed) posterior. By
contrast, when the posterior probability is raised to the power of 0 (typically the
last stepping stone), samples are drawn from the prior (Figure 14).

1.0 4 A 1.0 + B
08 | 0.8 Bvalue
6/6 posterior
posterior 5/6
> 0.6 1 > 4/6
30
© 04 ° 2/6
1/6
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0.2 - prior '
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Figure 14: Estimating marginal likelihoods using stepping-stone simulation. Estimat-
ing the marginal likelihood involves integrating the likelihood of the data over the entire
prior probability density for the model parameters. MCMC algorithms target the pos-
terior probability density, which is typically concentrated in a small region of the prior
probability density (A). Accordingly, standard MCMC simulation cannot provide unbi-
ased estimates of the marginal likelihood because it will typically fail to explore most
of the prior density. (B) Stepping-stone algorithms estimate the marginal likelihood by
means of a series of MCMC-like simulations, where the likelihood is iterativey raised to a
series of powers, effectivey forcing the simulation to more fully explore the prior density
of the model parameters. Six uniformly spaced stones span the posterior, where the
power posterior is § = 6/6 = 1, to the prior, where the power posterior is  =0/6 = 0.
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To perform a stepping-stone simulation, we need to specify (1) the number of
stepping stones (power posteriors) that we will use to traverse the path between
the posterior and the prior (e.g., we specify 50 or 100 stones), (2) the spacing of
the stones between the posterior and prior (e.g., we may specify that the stones
are distributed according to a beta distribution), (3) the number (and thinning)
of samples to be drawn from each stepping stone, and (4) the direction we will
travel (i.e., from the posterior to the prior or vice versa).

This method computes a vector of powers from a beta distribution, then exe-
cutes an MCMC run for each power step while raising the likelihood to that power.
As implementated in TESS, the vector of powers starts with 1, initially sampling
the likelihood close to the posterior, and incrementally sampling closer and closer
to the prior as the simulation progresses across the stepping stones.

4.1.2 Estimating marginal likelihoods of birth-death models

To estimate the marginal likelihoods of the branching-process models, we will
again make use of the corresponding likelihood functions that we defined in the
previous section. However, rather than using the tess.mcmc function to sample
from (and so estimate) the posterior distribution of model parameters, we will use
the tess.steppingStoneSampling function to estimate the marginal likelihood
of the data under the various models. The commands to execute this function for
each of the three branching-process models are as follows:

set.seed(12345)
marginallLikelihoodConstBD <- tess.steppingStoneSampling(
likelihoodFunction = likelihoodConstBD,
priors = priorsConstBD,
parameters = runif(2,0,1),
logTransforms = c(TRUE,TRUE),
iterations = 200,
burnin = 200,
K = 10)

marginalLikelihoodDecrBD <- tess.steppingStoneSampling(
likelihoodFunction = likelihoodDecrBD,
priors = priorsDecrBD,
parameters = runif(3,0,1),
logTransforms = c(TRUE,TRUE,TRUE),
iterations = 200,
burnin = 200,
K = 10)
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marginalLikelihoodEpisodicBD <- tess.steppingStoneSampling(
likelihoodFunction = likelihoodEpisodicBD,
priors = priorsEpisodicBD,
parameters = runif(4,0,1),
logTransforms = c(TRUE,TRUE, TRUE,TRUE),
iterations = 200,
burnin = 200,
K = 10)

marginalLikelihoodMassExtinctionBD <- tess.steppingStoneSampling(
likelihoodFunction = likelihoodMassExtinctionBD,
priors = priorsMassExtinctionBD,
parameters = c(runif(2,0,1) ,max(times)*3/4),
logTransforms = c(TRUE,TRUE,FALSE),
iterations = 200,
burnin = 200,
K = 10)

We can now use the estimated marginal likelihoods to perform Bayes factor
comparisons of these three candidate branching-process models.

# First, construct a wvector of the marginal likelhoods named by the

# model to which they refer.

candidateModels <- c("ConstBD"=marginalLikelihoodConstBD,
"DecrBD"=marginallLikelihoodDecrBD,
"EpisodicBD"=marginallLikelihoodEpisodicBD,
"MassExtinctionBD"=marginallLikelihoodMassExtinctionBD)

# Make all possible combinations of the models.
marginalLikelihoodGrid <- expand.grid(MO=names(candidateModels),
Mi=names (candidateModels))

# Add a column that ts the 2 ln BF for each pair of models.
marginallikelihoodGrid$BF <- 2 * (candidateModels[marginallLikelihoodGrid$M0O] -
candidateModels[marginalLikelihoodGrid$M1])

# Sort the comparisons by their 2 ln BF in descending order.

marginallLikelihoodGrid <- marginallikelihoodGrid[order (marginallikelihoodGrid$BF,
decreasing=TRUE),]
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marginallLikelihoodGrid

## MO M1 BF
## 13 ConstBD MassExtinctionBD 31.816729
## 15 EpisodicBD MassExtinctionBD 27.020702
## 14 DecrBD MassExtinctionBD 23.956544
## 5 ConstBD DecrBD 7.860185
## 9 ConstBD EpisodicBD  4.796027
## 7 EpisodicBD DecrBD  3.064158
## 1 ConstBD ConstBD 0.000000
##t 6 DecrBD DecrBD 0.000000
## 11 EpisodicBD EpisodicBD 0.000000
## 16 MassExtinctionBD MassExtinctionBD 0.000000
## 10 DecrBD EpisodicBD -3.064158
## 3 EpisodicBD ConstBD -4.796027
##t 2 DecrBD ConstBD -7.860185
## 8 MassExtinctionBD DecrBD -23.956544
## 12 MassExtinctionBD EpisodicBD -27.020702
## 4 MassExtinctionBD ConstBD -31.816729

If we compare these computed Bayes factor values to the thresholds in Table
2, we see that there is decisive support for the constant-rate model (e.g., this
model is decisively preferred over either of the variable-rate models; BF > 4.6).
Furthermore, we see that the decreasing-rate model is decisively preferred over the
episodic model.

4.2 Assessing model adequacy with posterior predictive
simulation

Bayes factors, dicussed in the previous section, allow us to assess the relative fit
of two or more competing models to a given dataset. However, even the very best
of the competing models may nevertheless be woefully inadequate in an absolute
sense. Fortunately, we can assess the absolute fit of a candidate model to a given
dataset using posterior-predictive simulation. The basic premise of this approach
is as folows: if the model under consideration provides an adequate description of
the process that gave rise to our observed dataset, then we should be able to use
that model generate new datasets that are in some sense ‘similar’ to our dataset.
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4.2.1 Posterior-predictive simulation

Posterior-predictive simulation involves six main steps:

1.

We first calculate a summary statistic for our observed dataset. This is
intended to capture—in a single number—a relevant feature of our dataset.
For models of lineage diversification, for example, we might use number
of species in the tree or the 7-statistic (Pybus and Harvey, 2000) as our
summary statistic.

. We then estimate parameters of the candidate model from our oberved

dataset. This simply involves performing an MCMC simulation to estimate
the posterior probability distribution of the candidate model parameters.

Next, we specify parameters of the candidate model by drawing values from
the inferred joint posterior probability distributions. For example, we would
parameterize the diversification model under consideration by drawing rate
parameters from the joint posterior densities that we inferred from the study
tree.

We then use this parameterized model to simulate a tree, and calculate the
summary statistic for the resulting tree.

We repeat steps 3 —4 many times to generate a distribution of the summary
statistic. This is the distribution that is predicted by simulating datasets
under the candidate model that has been parameterized using posterior es-
timates on the observed dataset.

Finally, we compare the summary statistic calculated for the observed dataset
to the posterior-predictive distribution. If the candidate model provides an
adequate description of the process that gave rise to the original dataset,
then the statistic for the observed dataset will fall near the center of the
simulated distribution. Otherwise, the statistic from the observed data will
fall near the tails of the null distribution, indicating that the model cannot
be used to predict future data that look like the observed dataset.

We can formalize the relative position of the statistic for the observed data
to the posterior-predictive distribution by calculating the posterior-predictive p-
value. To do so, we simply sum the number of simulated summary statistics that
are greater than or equal to the observed value, and divide this by the number of
simulated values.
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4.2.2 Assessing the adequacy of branching-process models

To assess the adequacy of branching-process models in TESS, we will use the
number of species and the v-statistic (Pybus and Harvey, 2000) as our example
test statistics. We will demonstrate how to perform posterior-predictive simulation
to assess the absolute fit of the constant-rate birth-death process model to the
conifer dataset. Note that we have already estimated the joint posterior probability
distribution of this model using MCMC (described in Section 2.4.1, above).

We will condition our simulate trees on the age of conifer phylogeny.

tmrca <- max( times )

We first define the function that will perform the simulation. This is analogous
to the specification of the likelihood function, which means that it is possible to
perform posterior-predictive simulation under any birth-death model.

simConstBD <- function(params) {

speciation <- params[1] + params[2]
extinction <- params[2]

repeat {

tree <- tess.sim.age(n = 1,
age = tmrca,
lambda = speciation,
mu = extinction,
samplingProbability = 1.0,
MRCA = TRUE) [[1]]

if (tree$Nnode > 1) break

}

return (tree)

Note that the simulation function needs to return a single tree. The next step is
to simulate trees by sampling parameter values (for the speciation and extinction
rate) from the corresponding posterior probability distributions that we inferred
from the conifer tree (these are referred to as the ‘posterior-predictive samples’).
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# simulate trees from the posterior-predictive distribution
treesConstBD <- tess.PosteriorPrediction(simConstBD,samplesConstBD)

We will specify the number of species as the summary statistic:

# compute the number of species in each simulate tree
numTaxaConstBD <- c()
for (i in 1:length(treesConstBD)){

numTaxaConstBD[i] <- treesConstBD[[i]]$Nnode + 1

}

We then compute the posterior-predictive quantiles for the number of species
and plot the posterior-predictive distribution and quantiles. Finally, we compare
the observed number of species to the posterior-predictive distribution.

# Compute the 95) posterior-predictive interval of the
# number of taza.
numTaxaPPDI <- quantile(numTaxaConstBD,prob=c(0.025,0.975))

# Plot the posterior—predictive distribution with the
# quantiles. Then, compare it to the observed number
# of spectes, z.
plot(density(numTaxaConstBD) ,main="Number of taxa",xlab="",
ylab="Posterior Predictive Density",lwd=2)
abline (v=numTaxaPPDI,1ty=2,col="gray",lwd=2)
points(conifers$Nnode+1,0,pch="x")
We can plot the posterior-predictive distribution of the lineage-accumulation
curves (i.e., the LTT plots for the simulated trees), and compare this predictive

distribution to the LTT plot for the observed tree.

1tt.plot(treesConstBD[[1]],backward=FALSE,col="gray",log="y",
ylim=c(1,max (numTaxaConstBD)) ,main="LTT-plot")

for (i in 2:min(100,length(treesConstBD))) 1ltt.lines(treesConstBD[[i]],
backward=FALSE, col="gray")

1tt.lines(conifers,backward=FALSE,1wd=3)
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Additional to using species number as the summary statistic, we can also use
the gamma statistic. To do so, we simply compute the value of the gamma statistic
for the observed tree, and then compare it to the posterior-predictive distribution
of the gamma statistic (i.e., the distribution of ~-statistics computed from the
simulated trees).

observedGamma <- gammaStat(conifers)

ppt <- tess.PosteriorPredictiveTest(treesConstBD,conifers,
gammaStat)
gammaPPDI <- quantile(ppt[[1]],prob=c(0.025,0.975))

plot(density(ppt[[1]]) ,main="Gamma Statistic",xlab="",

ylab="Posterior Predictive Density",lwd=2)
abline (v=gammaPPDI,1ty=2,col="gray",lwd=2)
points(observedGamma,0,pch="x")

Encouragingly, the observed values for both summary statistics—the number of
species and the gamma statistic—fall near the center of their respective posterior-
predictive distributions (see Figure 15 A and C, respectively). This means that
the model under consideration—the constant-rate birth-death model-—can be used
to simulate trees that look like our conifer study tree, indicating that it provides
a good absolute fit to our dataset. (This conclusion is consistent with the Bayes
factor comparisons that we performed in Section 4.1.2, which indicated that the
constant-rate birth-death model provided the best relative fit to the conifer tree.)
Conversely, if we had found that the observed values for the summary statistics
fell outside the 95% credible intervals of the posterior-predictive distributions, we
would conclude that the contant-rate birth-death model cannot be used to predict
trees that look like our conifer stuy tree.

We could further quantify the relative position of the observed summary statis-
tic within the posterior-predictive distribution by calculatig the posterior-predictive
p-value as follows:

mean (ppt [[1]] >= observedGamma)

## [1] 0.1854305
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Figure 15: Assessing the absolute fit of the conifer tree to the constant-rate birth-death
model using posterior-predictive simulation. (A) The posterior-predictive distribution
for the number of species; the dashed gray lines indicate the 95% credible interval,
and the ‘x’ indicates the location of the observed species number. (B) LTT plots for
the simulated trees (gray) and for the conifer study tree (black). (C) The posterior-
predictive distribution for the gamma statistic; the dashed gray lines indicate the 95%
credible interval, and the ‘x’ indicates the location of the value of the gamma statistic
calculated for the conifer tree.
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These posterior-predictive p-values can be used to compare the absolute fit of
two or more models to a given dataset.
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4.3 Model averaging with CoMET

In the preceding sections, we assessed the relative and absolute fit of birth-death
process models using Bayes factors and posterior-predictive simulation. These
methods are computationally intensive and so are only practical when the set of
candidate branching-process models is quite small; however, the number of total
birth-death models is vast. Consider, for example, the episodic birth-death process
models: there is an infinite array of nested models that differ in the number of
events, and for a specific number of events, there is an infite number of times
at which those events could occur. Clearly, the vast space of possible branching-
process models precludes their exhaustive pairwise comparison using Bayes factors.
This issue may be addressed by means of Bayesian model-averaging approaches
that treat the model as a random variable, such that inferences are averaged over
all birth-death process models.

The CoMET method performs Bayesian model averaging over all possible episodi-
cally varying birth-death processes with explicitly modeled mass-extinction events.
Briefly, this method treats the number of specation-rate shifts, extinction-rate
shifts, and mass-extinction events—as well as the parameters associated with these
events—as random variables, and estimates their joint posterior distribution using
reversible jump Markov chain Monte Carlo. To perform a full CoMET analysis,
we must therefore specify values for the following quantities: (1) the expected
number of speciation-rate shifts, extinction-rate shifts, and mass-extinction events
(A, Ap, Am, respectively); (2) the hyperpriors describing the speciation and ex-
tinction rates (up, op and up, op, respectively); and (3) the hyperpriors describing
the mass-extinction survival probability (a, 3). The settings and accompanying
arguments are summarized in Table 3. Note that the method currently assumes
that A\g = Ap, although the actual number, timing and magnitude of speciation-
and extinction-rate shifts are independent of each other. For the full details of this
method, and a more complete description of the model parameters, see May et al.
(2015).

4.3.1 Specifying hyperpiors a priori

Before we can run a CoMET analysis, we must specify prior distributions for each
of the parameters in the model. We will begin with the most complex model in
this section, and then show how to specify special cases of the full model in later
sections.

We will start by specifying the prior distributions for the expected number of
speciation- and extinction-rate shifts, Az = Ap, and mass-extinction events Ay.
These values should reflect the number of events you expect to have impacted the
study tree based on external/prior information, such as paleontological data. The
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Table 3: Settings for the CoMET model. The left column lists the priors and hyperpriors
used by the CoMET model. The middle column lists the associated arguments for use with
the tess.analysis command. The right column lists the interpretation of the prior or
hyperprior.

Prior  Argument Interpretation
Expected number of
E h _ .
AB numExpectedRateChanges speciation-rate shifts
Expected number of
AD numExpectedRateChanges extinction-rate shifts
E ted ber of
Am numkExpectedMassExtinctions XPeCted. nimber o

mass-extinction events
UB speciationRatePriorMean Mean speciation rate
Standard deviation of the
speciation rate

UD extinctionRatePriorMean Mean extinction rate
Standard deviation of the

;) speciationRatePriorStDev

oD extinctionRatePriorStDev ..

extinction rate

Sh t f th ted
o pMassExtinctionPriorShapel ape DR ejr.o P

survival probability

Sh t f th ted
6] pMassExtinctionPriorShape2 ape parafeter ol the expecte

survival probability

prior expected number of mass-extinction events should reflect information from
the fossil record. For example, the conifer tree is approximately 350 million years
old, so we suspect that this group may have been exposed to three mass-extinction
events: the Permo-Triassic event, the Triassic-Jurassic event, and the Cretaceous-
Paleogene event. Accordingly, we specify Ay to reflect the fossil record as follows:

numExpectedMassExtinctions <- 3

By contrast, it can be difficult to specify an empirically informed prior on the
number of diversification-rate shifts; for this reason, we recommend doing many
analyses with various values of A\ = Ap to assess the sensitivity of conclusions to
this prior. For this example, we only use a single value:

numExpectedRateChanges <- log(2)

Next, we consider the prior densities for the diversification-rate parameters
themselves. Speciation and extinction rates must be greater than 0, so we will
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use lognormal prior densities to reflect this fact. We must therefore specify the
mean and standard deviation hyperparameters of each lognormal distribution. We
start by specifying the hyperparameters in real space; i.e., the mean and standard
deviation of the actual speciation and extinction rates.

# Spectify the mean and standard deviation of the lognormal
# prior on the speciation rate in rTeal space
speciationPriorMu <- 0.2

speciationPriorSigma <- 0.5

# Spectify the mean and standard deviation of the lognormal
# prior on the extinction rate inm real space
extinctionPriorMu <- 0.15

extinctionPriorSigma <- 0.5

We then transform the hyperparameters to reflect the mean and standard of the
log-transformed speciation and extinction rates. These are the y and o parameters
of the lognormal priors on speciation and extinction rates.

# Transform the priors on the speciation rate into log space.

speciationRatePriorMean <- log((speciationPriorMu~2)
/sqrt(speciationPriorSigma”2+
speciationPriorMu~2))

speciationRatePriorStDev <- sqrt( log(l+speciationPriorSigma~2
/(speciationPriorMu~2)))

# Transform the priors on the extinction rate wnto log sSpace.
extinctionRatePriorMean <- log((extinctionPriorMu~2)
/sqrt (extinctionPriorSigma~2+
extinctionPriorMu~2))

extinctionRatePriorStDev <- sqrt( log(l+extinctionPriorSigma”2
/(extinctionPriorMu~2)))

Finally, we need to specify the prior density on the survival probability of a
mass-extinction event. This value reflects the probability that a lineage survives
a particular mass-extinction event, and therefore must be between 0 (each lineage
will always go extinct) and 1 (each lineage will always survive). A convenient prior
density for this parameter is the beta distribution, which has two shape parameters,
a and . We note that the ability to distinguish mass-extinction events from more
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prosaic temporal variation in speciation and extinction rates depends critically on
this density: high survival probabilities and relatively flat prior densities on the
survival probability will greatly decrease our power to disentangle mass-extinction
events from temporal variation in diversification rates. Again, we use the fossil
record to inform our prior density on this parameter.

We begin parameterizing this distribution by specifying the expected survival
probability. The fossil record suggests that between 70% and 95% of species di-
versity was lost during the relevant mass-extinction events, therefore the expected
survival probability should be quite low. In this example, we assume a prior: a
survival probability of 10%.

expectedSurvivalProbability <- 0.1

Using the expected survival probability, we compute the o and § parameters
of the beta distribution. We set the value of 8 to be large, which focuses the prior
density more tightly around the expected survival probability. Then, we compute
a based on the expected survival probability and the specified § value.

pMassExtinctionPriorShape2 <- 18

pMassExtinctionPriorShapel <- - pMassExtinctionPriorShape2 *
expectedSurvivalProbability /
(expectedSurvivalProbability - 1)

We can inspect this beta distribution to confirm that it accurately reflects our
prior belief regarding the survival probability (Figure 16).

curve (dbeta(x,shapel=pMassExtinctionPriorShapel,
shape2=pMassExtinctionPriorShape2) ,n=1001,
xlab='survival probability',ylab='density',las=1)

abline(v = gbeta(c(0.025,0.975),shapel=pMassExtinctionPriorShapel,
shape2=pMassExtinctionPriorShape2),1ty=2)

This beta distribution seems to reflect our prior belief that the survival prob-
ability is expected to be ~ 10%, but can range from about 1% to about 25%.

Having specified prior distributions for all of the parameters of the COMET model,
we can now perform an analysis.
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Figure 16: Our prior density on the survival probability of a mass-extinction event.

set.seed(12345)
tess.analysis(conifers,
empiricalHyperPriors = FALSE,
initialSpeciationRate = speciationPriorMu,
speciationRatePriorMean = speciationRatePriorMean,
speciationRatePriorStDev = speciationRatePriorStDev,
initialExtinctionRate = extinctionPriorMu,
extinctionRatePriorMean = extinctionRatePriorMean,
extinctionRatePriorStDev = extinctionRatePriorStDev,
samplingProbability = samplingFraction,
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions,
pMassExtinctionPriorShapel,
pMassExtinctionPriorShape?2,

pMassExtinctionPriorShapel
pMassExtinctionPriorShape?2
MAX_ITERATIONS = 100000,

dir = "tess_analysis")
##
## Performing CoMET analysis.
##
## Burning-in the chain ...
# 00—~ 25-——————- 50-——————- 75-——————- 100
##
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#Hit
## Running the chain .

Now, we process the output using the function tess.process.output and
visualize the results using tess.plot.output (Figure 17).
output <- tess.process.output("tess_analysis",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

layout.mat <- matrix(1:6,nrow=3,ncol=2,byrow=TRUE)
layout (layout.mat)
tess.plot.output (output,
fig.types = c("speciation rates",
"speciation shift times",
"extinction rates",
"extinction shift times",
"mass extinction Bayes factors",
"mass extinction times"),
las=2)

There appears to be nearly decisive support for a mass-extinction event about
27 million years ago (21n BF = 10), as well as strong support for a mass-extinction
event about 173 million year ago (2In BF ~ 6). Additionally, there is support for
an extinction-rate shift near the present; however, we caution against interpreting
these rate shifts based on a single analysis and recommend assessing the sensitivity
of this conclusion to different priors on the expected number of diversification-rate
shifts.
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Figure 17: Visualizing the results of a CoMET analysis when diversification hyperpriors
are specified a priori.
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4.3.2 Empirical hyperpiors

As mentioned above, it can be difficult to specify the prior distributions for the
speciation- and extinction-rate parameters. TESS implements an automatic em-
pirical hyperprior procedure which performs an initial Bayesian MCMC analysis
under a constant-rate birth-death process model to determine reasonable values for
the hyperparameters of the diversification priors. To perform a hyperprior analy-

sis,

we simply have to set empiricalHyperPriors = TRUE. Additionally, we may

omit the parameters of the lognormal distributions, since they will automatically
be estimated from the data.

set.seed(12345)
tess.analysis(conifers,

##
##
##
#i#
#it
#it
##
##
#i#
#Hit
#it
##
##
#i#t
#i#
#it
##
##
#i#

empiricalHyperPriors = TRUE,

samplingProbability = samplingFraction,
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions,
pMassExtinctionPriorShapel
pMassExtinctionPriorShape?2
MAX_ITERATIONS = 100000,
dir = "tess_analysis_empirical_hyperpriors")

pMassExtinctionPriorShapel,
pMassExtinctionPriorShape2,

Estimating empirical hyper-parameters.

Burning-in the chain ...

Finished burnin period!

Running the chain ...

Finished MCMC!

Parameter | delta | Acceptance Probability

diversification | 0.192 | 0.406
turnover | 0.007 | 0.487

Performing CoMET analysis.
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## Burning-in the chain ...

# 0-——————- 25-——————- 50-—————-- 75=——==———= 100
##

##

## Running the chain ...

# 0——————- 25-————-—- 50-——————- 75———————- 100
##

As before, we process and visualize the output using tess.process.output
and tess.plot.output (Figure 18).

output <- tess.process.output("tess_analysis_empirical_hyperpriors",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

layout.mat <- matrix(1:6,nrow=3,ncol=2,byrow=TRUE)
layout (layout.mat)
tess.plot.output (output,
fig.types = c("speciation rates",
"speciation shift times",
"extinction rates",
"extinction shift times",
"mass extinction Bayes factors",
"mass extinction times"),
las=2)

Interestingly, these results are quite similar to those from our a prior: analysis
(Figure 17).
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Figure 18: Visualizing the results of a CoMET analysis with empirically estimated di-
versification hyperpriors.
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4.3.3 Without diversification-rate shifts

Based on the results of the Bayes factor comparisons (Section 4.1.2) and posterior-
predictive tests (Section 4.2.2)—which found support for a constant-rate birth-
death process—we may also be interested in performing a CoMET analysis without
diversification-rate shifts (i.e., where speciation and extinction rates are constant
through time). To do so, we use the argument estimateNumberRateChanges =
FALSE.

set.seed(12345)

tess.analysis(conifers,
empiricalHyperPriors = TRUE,
samplingProbability = samplingFraction,
estimateNumberRateChanges = FALSE,
numExpectedMassExtinctions = numExpectedMassExtinctions,
pMassExtinctionPriorShapel = pMassExtinctionPriorShapel,
pMassExtinctionPriorShape2 = pMassExtinctionPriorShape2,
MAX_ITERATIONS = 100000,
dir = "tess_analysis_empirical_no_rateshifts")

## Estimating empirical hyper-parameters.

##

## Burning-in the chain ...

## 0-———————- 25-————-—- 50-———---- 75=———————= 100
##

## Finished burnin period!

##

## Running the chain ...

## 0-———————- 25-————-—- 50-————--- 75=——=————= 100
##

## Finished MCMC!

##

## Parameter | delta | Acceptance Probability
##

## diversification | 0.192 | 0.406

## turnover | 0.007 | 0.487

##

## Performing CoMET analysis.

##

## Burning-in the chain ...

# 0——————- 25-———--—- 50-——---—- 75-——————- 100



#i#

##

## Running the chain ...

## 0-———————- 25-——————- 50-——=————- 75=—===———= 100
##

We visualize the output as before. However, since there are no diversification-
rate shifts, we only plot estimates related to mass-extinction events (Figure 19).

output <- tess.process.output("tess_analysis_empirical_no_rateshifts",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

layout.mat <- matrix(1:2,nrow=2,ncol=1)
layout (layout.mat)
tess.plot.output (output,
fig.types = c("mass extinction Bayes factors",
"mass extinction times"),
las=2)
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Figure 19: Visualizing the results of a CoMET analysis with empirically estimated di-
versification hyperpriors and without diversification rate-shifts.
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4.3.4 Without mass-extinction events

Finally, we can also perform a CoMET analysis where mass-extinction events are
disallowed. We do this with the argument estimateNumberMassExtinctions
= FALSE. Because mass-extinction events are precluded, we can omit the corre-
sponding parameters for survival probability, pMassExtinctionPriorShapel and
pMassExtinctionPriorShape2.

set.seed(12345)

tess.analysis(conifers,
empiricalHyperPriors = TRUE,
samplingProbability = samplingFraction,
estimateNumberMassExtinctions = FALSE,
MAX_ITERATIONS = 100000,
dir = "tess_analysis_empirical_no_mass_extinctions")

## Estimating empirical hyper-parameters.

##

## Burning-in the chain ...

# 00—~ 25-————-—- 50-————--- 75-——————- 100
##

## Finished burnin period!

##

## Running the chain ...

## 0——————- 25-——————- 50-————--- 75-——————- 100
##

## Finished MCMC!

##

## Parameter | delta | Acceptance Probability
##

## diversification | 0.192 | 0.406
## turnover | 0.007 | 0.487

##

## Performing CoMET analysis.

##

## Burning-in the chain ...

# 0-———————- 25-—=——-—- 50-————--- 75=—===———= 100
##

##

## Running the chain ...

# 0———————- 25-——————- 50-————--- 75-——————- 100
##
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We visualize the output as before, this time omitting estimates of the number
and timing of mass-extinction events (Figure 20).

output <- tess.process.output("tess_analysis_empirical_no_mass_extinctions",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

layout.mat <- matrix(1:4,nrow=2,ncol=2,byrow=TRUE)
layout (layout.mat)
tess.plot.output (output,
fig.types = c("speciation rates",
"speciation shift times",
"extinction rates",
"extinction shift times"),
las=2)
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Figure 20: Visualizing the results of a CoMET analysis with empirically estimated di-
versification hyperpriors and without mass-extinction events.
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5 MOCMC Diagnosis

Model-based inference requires us to be vigilant in our choice of models, and also
to rigorously assess our ability to obtain reliable estimates under the chosen model.
The first issue—related to model evaluation—has been discussed in Section 4 of
this guide. Here, we turn to the second issue. Bayesian inference is focussed on
the joint posterior probability density of the model parameters, which must be ap-
proximated using numerical methods (MCMC simulation). It may be comforting
to know that, in theory, an appropriately constructed and adequately run MCMC
simulation is guaranteed to provide an arbitrarily precise description of the joint
posterior probability density. In practice, however, even a given MCMC algorithm
that provides reliable estimates in most cases will nevertheless fail in some cases
and is not guaranteed to work for any given dataset. This raises an obvious ques-
tion: “When do we know that an MCMC simulation provides reliable estimates
for a given empirical analyses”. The answer is simple: Never. Convergence can
never be established with certainty, only non-convergence may be detected. We
will illustrate how to assess convergence of MCMC simulations for two examples:
1) for analyses under a constant-rate birth-death process and 2) for analyses under
the COMET model.

5.1 MCMC diagnosis for a constant-rate birth-death model

In order to properly assess convergence, we need to perform at least two indepen-
dent MCMC simulations. Otherwise, we run the risk in erroneously concluding
that an MCMC has converged when it may have been stuck in a subregion of the
joint posterior probability density.

We will use the same likelihood functions an MCMC methods described in
Section 2.4. We will first run two short MCMC simulations. For the sake of
this demonstration we will use a pre-burnin value of 0, a thinning of
1, and a chain length of 200 cycles to highlight that the runs have not
converged.

prior_delta <- function(x) { dexp(x,rate=10.0,log=TRUE) }

prior_tau <- function(x) { dexp(x,rate=10.0,log=TRUE) }

my_priors <- c("diversification"=prior_delta,
"turnover"=prior_tau)

my_likelihood <- function(params) {

speciation <- params[1] + params[2]
extinction <- params[2]
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}

Inl <- tess.likelihood(times,
lambda = speciation,
mu = extinction,

samplingProbability =

log = TRUE)

return (1nl)

samples_run_1 <- tess.mcmc(likelihoodFunction
priors = my_priors,
parameters = runif(2,0,10),
logTransforms = c(TRUE,TRUE),

#i#
#it
#i#t
#i#
#i#
#i#
#it
#i#t
#i#
#i#
#i#t
#i#
#i#t
#it

delta = c(1,1),
iterations = 200,
burnin = 0,
thinning = 1,
adaptive = TRUE,
verbose = TRUE)

Burning-in the chain ...

0-—=- 25-————-—- 50-————--- 75=-=—————= 100
Finished burnin period!

Running the chain ...

0-—=- 25-————-—- 50-————--- 75=———=———= 100
Finished MCMC!

Parameter | delta | Acceptance Probability

diversification | 1.000 | 0.425
turnover | 1.000 | 0.145

samples_run_2 <- tess.mcmc(likelihoodFunction
priors = my_priors,
parameters = runif(2,0,10),
logTransforms = c(TRUE,TRUE),

delta = c(1,1),

4

1.0,

= my_likelihood,

= my_likelihood,



iterations = 200,
burnin = 0,
thinning = 1,
adaptive = TRUE,
verbose = TRUE)

## Burning-in the chain ...

# 0——————- 26-————-—- 50-————--- 75-——————- 100
##

## Finished burnin period!

##

## Running the chain ...

# 0——————- 25-——————- 50-————--- 75-——————- 100
##

## Finished MCMC!

##

## Parameter | delta | Acceptance Probability

#i#t

## diversification | 1.000 | 0.355
## turnover | 1.000 | 0.105

We assess convergence using three diagnostics: the effective sample size, the

Geweke statistic, and the Gelman-Rubin statistic.

First, we compute the effective sample size (ESS). Samples drawn from an
MCMC simulation are correlated. Accordingly, each sample is not independent,
and so provides less information. We can compute the number of effectively in-
dependent samples by computing the ESS. This is important because we want to
draw statistical conclusions from the samples, such as the sample mean. Higher
ESS values should provide more precise inferences from the posterior sample. As

a rule of thumb, the ESS should be larger than 200.

effectiveSize(samples_run_1)

## diversification turnover
#it 24 .59086 29.87909

effectiveSize(samples_run_2)

## diversification turnover
#i# 2.691079 2.553857
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Next, we compute the Geweke diagnostic, which assesses convergence by com-
puting the probability that the samples collected during an early window of the
MCMC simulation are drawn from the same distribution as samples collected from
a later window.

geweke.diag(samples_run_1)

#

## Fraction in 1st window = 0.1

## Fraction in 2nd window = 0.5

##

## diversification turnover
## 0.9034 0.7872
geweke.diag(samples_run_2)

#t

## Fraction in 1st window = 0.1

## Fraction in 2nd window = 0.5

##

## diversification turnover
## 23054.2 137.7

Hence, we only need to test if the computed values is smaller than
gnorm(0.05/2)
## [1] -1.959964
and larger than
gnorm(1-0.05/2)
## [1] 1.959964

If this is the case, then we reject convergence. Note that we used a significance
threshold of o = 0.05, but you might use some other threshold, such as a = 0.01.

The final MCMC diagnostic—the Gelman-Rubin test—compares samples from
two independent simulations. This test compares the variance of sampled param-
eter values within each simulation to that between two simulations. This test
effectively assesses whether we can reject the null hypothesis that samples from
the two independent MCMC simulations are drawn from the same distribution.
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gelman.diag(x=1list(runl = samples_run_1,run2 = samples_run_2),
confidence = 0.95, transform = FALSE,
autoburnin = FALSE, multivariate=TRUE)$mpsrf

## [1] 1.151925

If the two independent MCMC simulations have converged to the stationary
distribution, the ratio of the within-sample variance to the between-sample vari-
ance (R) should be close to 1.0.

In general it is unlikely that those very short MCMC runs have converged.
You may observe this by the very low ESS values. Depending on the starting
values and your random seed, they actually may or may not have converged; and
thus we can not say anything definitely. As a rule-of-thumb, you should run your
MCMC simulations a bit longer, especially for more complex models than the
simple constant-rate birth-death process model.

5.2 MCMC diagnosis for the CoMET model
5.2.1 Single-chain diagnostics

Proper MCMC diagnosis for a CoMET analysis requires examining the convergence
and effective sample size of a large number of parameters, including the number of
diversification-rate shifts, the number of mass-extinction events, and the interval-
specific diversification-rate parameters.

First, we will assess the MCMC performance for the numerical parameters
of the CoOMET model (i.e., the number of diversification-rate shifts and mass-
extinction events).

output <- tess.process.output("tess_analysis_empirical_hyperpriors",

numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

effectiveSize (output$numSpeciationCategories)

#it varil
## 127.4808

geweke .diag(output$numSpeciationCategories)
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##

## Fraction in 1st window
## Fraction in 2nd window
##

## varl

## 2.271

o O
g =

# Compute the effective sample size and Geweke diagnostic for
# the number of extinction-rate shifts.
effectiveSize (output$numExtinctionCategories)

## varil
## 17.2843

geweke.diag(output$numExtinctionCategories)

##

## Fraction in 1st window
## Fraction in 2nd window
##

## varl

## 7.4

o O
g =

# Compute the effective sample size and Geweke diagnostic for
# the number of mass—-extinctionevents.
effectiveSize (output$numMassExtinctions)

#t varil
## 78.81995

geweke.diag(output$numMassExtinctions)

##

## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##

H## varil

## -7.912

Next, we will use the function tess.plot.singlechain.diagnostics to ex-
amine the effective sample size and Geweke diagnostic for the interval-specific
speciation- and extinction-rate parameters.
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layout.mat <- matrix(1:6,nrow=3,ncol=2,byrow=TRUE)
layout (layout.mat)
tess.plot.singlechain.diagnostics(output,
parameters = c("speciation rates",
"extinction rates",
"mass extinction times"),
las=2)

We can see from this single run that, according to the Geweke diagnostic, the
MCMC has failed to converge. Additionally, the ESS values for the interval-specific
rate-parameter estimates are quite low. We therefore need to extend the length of
this MCMC simulation to obtain adequate ESS values (we recommend a minimum
ESS of 500) and achieve satisfactory Geweke statics.
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Figure 21: Visualizing the single-chain MCMC diagnostics for a CoMET analysis with
empirically estimated diversification hyperpriors.

80



5.2.2 Comparing the posterior to the prior

The CoMET model is implemented in Bayesian statistical framework, where each
parameter is assigned a prior probability distribution. Often, we are interested
in whether there is sufficient information in the data to estimate a particular
parameter. When the marginal posterior distribution of a parameter is very similar
to its prior distribution, it suggests that there may not be sufficient information
in the data to estimate the value of this parameter. These are referred to as
‘weak parameters’. While weak parameters may not present a serious problem, we
caution against making biological interpretations regarding these parameters.
We can run CoMET under the prior as follows.

set.seed(12345)

tess.analysis(conifers,
empiricalHyperPriors = FALSE,
initialSpeciationRate = speciationPriorMu,
speciationRatePriorMean = speciationRatePriorMean,
speciationRatePriorStDev = speciationRatePriorStDev,
initialExtinctionRate = extinctionPriorMu,
extinctionRatePriorMean = extinctionRatePriorMean,
extinctionRatePriorStDev = extinctionRatePriorStDev,
samplingProbability = samplingFraction,
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions,
pMassExtinctionPriorShapel = pMassExtinctionPriorShapel,
pMassExtinctionPriorShape2 = pMassExtinctionPriorShape2,
MAX_ITERATIONS = 100000,
ADAPTIVE = FALSE,
priorOnly = TRUE,

dir = "tess_analysis_prior")
#it
## Performing CoMET analysis.
#i#
## Burning-in the chain ...
# 0-———————- 25-———————- 50-——————- 75———————- 100
#it
#i#
## Running the chain ...
## 0-———————- 25-————-—- 50-———---- 75———————= 100
#Hit
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We now load in the data from the prior and the posterior.

posterior_output <- tess.process.output("tess_analysis",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

prior_output <- tess.process.output("tess_analysis_prior",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

Next, we compare the posterior distribution for the number of speciation-rate
changes to the corresponding prior distribution.

# Plot the posterior distribution of the number of speciation
# categories (minimum 1)
plot(density(posterior_output$numSpeciationCategories,from=1),

col = "purple",

main = "number of speciation-rate categories',

lwd = 2)

# Overlay the prior number of categories.
lines(density(prior_output$numSpeciationCategories,from=1),

col = "purple",

lud = 2, 1ty = 2)
legend('topright',c("posterior","prior"),col=c("purple","purple"),lwd=c(2,2),1lty=c
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There seems to be little information in the data regarding the number of
speciation-rate changes. Notice that the posterior probability of a single rate
category (which corresponds to no speciation-rate changes) is slightly higher for
the posterior than the prior. Now we make the same comparison for the number
of mass-extinction events.

# Plot the posterior distribution of the number of speciation
# categories (minimum 0)
plot(density(posterior_output$numMassExtinctions,from=0),

col = "green",
main = "number of mass extinction events",
lwd = 2)

# Overlay the prior number of categories.
lines(density(prior_output$numMassExtinctions,from=0),
col = "green",
lud = 2, 1ty = 2)

legend('topright',c("posterior","prior"),col=c("green","green"),lwd=c(2,2),1lty=c(1
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There seems to be more information in the data regarding the number of mass-
extinction events. Accordingly, we should be hesitant about making conclusions
about the number of speciation-rate changes, we can be more confident regariding
the number of mass-extinction events (here between 2 and 4).
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5.2.3 Multiple-chain diagnostics

To perform multiple-chain diagnostics, we must first obtain samples from multiple
MCMC simulations. Accordingly, we will begin by repeating the above CoMET
analysis with empirically estimated hyperpriors four times, each time with the
same settings.

set.seed(12345)
posterior_directories <- paste("tess_analysis_empirical_hyperpriors_posterior_",
1:4,sep="")

for(dir in posterior_directories) {
tess.analysis(conifers,

empiricalHyperPriors = TRUE,
samplingProbability = samplingFraction,
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions,
pMassExtinctionPriorShapel = pMassExtinctionPriorShapel,
pMassExtinctionPriorShape2 = pMassExtinctionPriorShape2,
MAX_ITERATIONS = 100000,
dir = dir)

We use the function tess.plot.multichain.diagnostics to compute the
Rubin-Gelman convergence diagnostic for the interval-specific parameter estimates.
First, we have to process each of the CoOMET outputs individually.

output_1 <- tess.process.output("tess_analysis_empirical_hyperpriors_posterior_1",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

output_2 <- tess.process.output("tess_analysis_empirical_hyperpriors_posterior_2",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

output_3 <- tess.process.output("tess_analysis_empirical_hyperpriors_posterior_3",
numExpectedRateChanges = numExpectedRateChanges,

numExpectedMassExtinctions = numExpectedMassExtinctions)

output_4 <- tess.process.output("tess_analysis_empirical_hyperpriors_posterior_4",
numExpectedRateChanges = numExpectedRateChanges,
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numExpectedMassExtinctions = numExpectedMassExtinctions)

Next, we make a list of the MCMC outputs and use the Rubin-Gelman diag-
nostic on the parameters. For brevity, we analyze only a few of the parameters;
you should check each parameter to make sure they have all converged to the same
posterior distribution!

output_list <- list(output_1,output_2,output_3,output_4)

layout.mat <- matrix(1:3,nrow=3,ncol=1,byrow=TRUE)
layout (layout.mat)
tess.plot.multichain.diagnostics(output_list,
parameters = c("speciation rates",
"extinction rates",
"mass extinction times"),
las=2)

Generally speaking, those very short independent MCMC runs are unlikely to
have converged to their posterior distributions. Depending on the starting values
and your random seed, they may or may not have converged; and thus we can not
say anything definitely. We recommend running the chains until the PSRF values
have converged for all of the intervals.
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Figure 22: Visualizing the multiple-chain MCMC diagnostics for a CoMET analysis with
empirically estimated diversification hyperpriors.
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