TLMoments
is a set of functions whose main functionality is the calculation of Trimmed L-moments and their parameter and quantile estimates. One of the goals is to reduce computation time compared to existing implementations (in packages like lmomco
, Lmoments
, Lmom
), therefore the core functions are written in C++ (see vignette “comparison of computation time” for speed comparisons). Furthermore, the package expands the combinations of trimmings that can be used to estimate distribution parameters in comparison to existing packages (which mainly supports parameter estimation with L-moments). To ensure an easy usage, the package only contains a small set of functions. This vignette gives a short introduction to the most important ones and their usage.
library(TLMoments)
sessionInfo()$otherPkgs$TLMoments$Version
## [1] "0.7.4"
First we have a look at the basic functionality of calculating TL-moments and parameter and quantile estimates. Let assume we have a simple random data vector generated from a GEV distribution:
xvec <- rgev(100, loc = 10, scale = 5, shape = .2)
TL-moments are calculated by the function TLMoments
with arguments leftrim
, rightrim
, and max.order
(generating an object of class TLMoments
):
TLMoments(xvec)
## $lambdas
## L1 L2 L3 L4
## 14.285317 4.200885 1.273578 1.078051
##
## $ratios
## T1 T2 T3 T4
## NA 0.2940702 0.3031690 0.2566246
TLMoments(xvec, leftrim = 0, rightrim = 1, max.order = 2)
## $lambdas
## L1 L2
## 10.08443 2.19548
##
## $ratios
## T1 T2
## NA 0.2177099
We can generate parameters estimates by putting a TLMoments
-object to the function parameters
and specifying argument distr
:
tlm <- TLMoments(xvec)
parameters(tlm, distr = "gev")
## loc scale shape
## 10.3040897 4.8653262 0.1981018
tlm <- TLMoments(xvec, rightrim = 1)
parameters(tlm, distr = "gev")
## loc scale shape
## 10.50996766 5.00744917 0.08798852
This generates an object of class parameters
, which can be transmitted to quantiles
to calculate quantile estimations:
tlm <- TLMoments(xvec)
quantiles(parameters(tlm, distr = "gev"), c(.9, .99, .999))
## 0.9 0.99 0.999
## 24.10032 46.83789 82.23518
tlm <- TLMoments(xvec, rightrim = 1)
quantiles(parameters(tlm, distr = "gev"), c(.9, .99, .999))
## 0.9 0.99 0.999
## 22.97162 38.90495 58.10469
These three functions, TLMoments
, parameters
, and quantiles
, provide the main functionality of the package. In the code above we used single data vectors only, but the same functions can be used for data matrices, lists, and data.frames as well. To demonstrate this, let’s generate sample data of these four types:
xmat <- matrix(rgev(100), nc = 4)
xvec <- xmat[, 3]
xlist <- lapply(1L:ncol(xmat), function(i) xmat[, i])
xdat <- data.frame(station = rep(1:4, each = 25), hq = as.vector(xmat))
Note that the type of the dimensions lambdas
and ratios
returned by TLMoments
matches the input type:
TLMoments(xvec, leftrim = 0, rightrim = 1)
## $lambdas
## L1 L2 L3 L4
## -0.27716613 0.44331222 -0.00350671 0.07781896
##
## $ratios
## T1 T2 T3 T4
## NA -1.59944587 -0.00791025 0.17553985
TLMoments(xmat, leftrim = 0, rightrim = 1)
## $lambdas
## [,1] [,2] [,3] [,4]
## L1 -0.2218269150 -0.29940771 -0.27716613 -0.157893866
## L2 0.4776272172 0.37431685 0.44331222 0.496007697
## L3 0.0007514416 0.02522882 -0.00350671 0.097622005
## L4 0.0347470498 0.03554614 0.07781896 0.003938307
##
## $ratios
## [,1] [,2] [,3] [,4]
## T1 NA NA NA NA
## T2 -2.153152682 -1.25019110 -1.59944587 -3.141399404
## T3 0.001573281 0.06739963 -0.00791025 0.196815504
## T4 0.072749309 0.09496271 0.17553985 0.007940013
TLMoments(xlist, leftrim = 0, rightrim = 1)
## $lambdas
## $lambdas[[1]]
## L1 L2 L3 L4
## -0.2218269150 0.4776272172 0.0007514416 0.0347470498
##
## $lambdas[[2]]
## L1 L2 L3 L4
## -0.29940771 0.37431685 0.02522882 0.03554614
##
## $lambdas[[3]]
## L1 L2 L3 L4
## -0.27716613 0.44331222 -0.00350671 0.07781896
##
## $lambdas[[4]]
## L1 L2 L3 L4
## -0.157893866 0.496007697 0.097622005 0.003938307
##
##
## $ratios
## $ratios[[1]]
## T1 T2 T3 T4
## NA -2.153152682 0.001573281 0.072749309
##
## $ratios[[2]]
## T1 T2 T3 T4
## NA -1.25019110 0.06739963 0.09496271
##
## $ratios[[3]]
## T1 T2 T3 T4
## NA -1.59944587 -0.00791025 0.17553985
##
## $ratios[[4]]
## T1 T2 T3 T4
## NA -3.141399404 0.196815504 0.007940013
TLMoments(xdat, hq ~ station, leftrim = 0, rightrim = 1)
## $lambdas
## station L1 L2 L3 L4
## 1 1 -0.2218269 0.4776272 0.0007514416 0.034747050
## 2 2 -0.2994077 0.3743169 0.0252288170 0.035546143
## 3 3 -0.2771661 0.4433122 -0.0035067105 0.077818960
## 4 4 -0.1578939 0.4960077 0.0976220050 0.003938307
##
## $ratios
## station T2 T3 T4
## 1 1 -2.153153 0.001573281 0.072749309
## 2 2 -1.250191 0.067399629 0.094962711
## 3 3 -1.599446 -0.007910250 0.175539851
## 4 4 -3.141399 0.196815504 0.007940013
This holds when parameter and quantile estimations are calculated:
tlm <- TLMoments(xvec, leftrim = 0, rightrim = 1)
parameters(tlm, "gev")
## loc scale shape
## -0.13251801 1.03618952 -0.06816311
tlm <- TLMoments(xmat, leftrim = 0, rightrim = 1)
parameters(tlm, "gev")
## [,1] [,2] [,3] [,4]
## loc -0.07509325 -0.2325888 -0.13251801 -0.1831963
## scale 1.11360818 0.8503835 1.03618952 1.0290182
## shape -0.04554581 0.1059676 -0.06816311 0.3784279
tlm <- TLMoments(xlist, leftrim = 0, rightrim = 1)
parameters(tlm, "gev")
## [[1]]
## loc scale shape
## -0.07509325 1.11360818 -0.04554581
##
## [[2]]
## loc scale shape
## -0.2325888 0.8503835 0.1059676
##
## [[3]]
## loc scale shape
## -0.13251801 1.03618952 -0.06816311
##
## [[4]]
## loc scale shape
## -0.1831963 1.0290182 0.3784279
tlm <- TLMoments(xdat, hq ~ station, leftrim = 0, rightrim = 1)
parameters(tlm, "gev")
## station loc scale shape
## 1 1 -0.07509325 1.1136082 -0.04554581
## 2 2 -0.23258882 0.8503835 0.10596763
## 3 3 -0.13251801 1.0361895 -0.06816311
## 4 4 -0.18319630 1.0290182 0.37842792
tlm <- TLMoments(xvec, leftrim = 0, rightrim = 1)
quantiles(parameters(tlm, "gev"), c(.99, .999))
## 0.99 0.999
## 3.959147 5.575842
tlm <- TLMoments(xmat, leftrim = 0, rightrim = 1)
quantiles(parameters(tlm, "gev"), c(.99, .999))
## [,1] [,2] [,3] [,4]
## 0.99 4.546612 4.808569 3.959147 12.60257
## 0.999 6.524446 8.427293 5.575842 34.22047
tlm <- TLMoments(xlist, leftrim = 0, rightrim = 1)
quantiles(parameters(tlm, "gev"), c(.99, .999))
## [[1]]
## 0.99 0.999
## 4.546612 6.524446
##
## [[2]]
## 0.99 0.999
## 4.808569 8.427293
##
## [[3]]
## 0.99 0.999
## 3.959147 5.575842
##
## [[4]]
## 0.99 0.999
## 12.60257 34.22047
tlm <- TLMoments(xdat, hq ~ station, leftrim = 0, rightrim = 1)
quantiles(parameters(tlm, "gev"), c(.99, .999))
## station 0.99 0.999
## 1 1 4.546612 6.524446
## 2 2 4.808569 8.427293
## 3 3 3.959147 5.575842
## 4 4 12.602568 34.220473
TLMoments
offers functions (distributions, density, quantile, random number generation) for the generalized extreme value distribution (gev
), Gumbel distribution (gum
), generalized Pareto distribution (gpd
), and three-parameter lognormal distribution (ln3
) in the common p|d|q|r
-syntax. The parameter (and quantile) estimation functionality works for all of them, but more complex functionality like estimation of the covariance matrix of parameter or quantile estimators only works for GEV by now.
Version 0.7.4 added functionality to plot TL-moment ratio diagrams of arbitrary trimming orders. Simply plot an object of TLMoments
. Argument distr
can be used to specify displayed theoretical distributions. Note that ggplot2
is used. Therefore changes or additions have to be made by adding ggplot2
-specific functions.
tlm <- TLMoments(xmat, leftrim = 0, rightrim = 1)
plot(tlm)
plot(tlm, distr = c("gev", "gpd", "exp", "gum"))
The functions as.TLMoments
and as.parameters
can be used to construct TLMoments
- or parameters
-objects of theoretical values (not calculated from data). These objects can be used in the same way like before (to convert between TL-moments and their parameters or to calculate the corresponding quantiles):
(tlm <- as.TLMoments(c(14.1, 4.3, 1.32)))
## $lambdas
## L1 L2 L3
## 14.10 4.30 1.32
##
## $ratios
## T1 T2 T3
## NA 0.3049645 0.3069767
parameters(tlm, distr = "gev")
## loc scale shape
## 10.0134305 4.9448851 0.2034746
quantiles(parameters(tlm, distr = "gev"), c(.9, .99, .999))
## 0.9 0.99 0.999
## 24.12668 47.67693 84.80024
(param <- as.parameters(loc = 10, scale = 5, shape = .2, distr = "gev"))
## loc scale shape
## 10.0 5.0 0.2
quantiles(param, c(.9, .99, .999))
## 0.9 0.99 0.999
## 24.21069 47.73413 84.51684
TLMoments(param)
## $lambdas
## L1 L2 L3 L4
## 14.1057429 4.3279754 1.3204343 0.9436158
##
## $ratios
## T1 T2 T3 T4
## NA 0.3068236 0.3050928 0.2180271
TLMoments(param, rightrim = 1)
## $lambdas
## L1 L2 L3 L4
## 9.7777681 2.2556564 0.2512127 0.2553529
##
## $ratios
## T1 T2 T3 T4
## NA 0.2306924 0.1113701 0.1132056
Note, that we can simply use the TLMoments
-function to calculate TL-moments corresponding to a parameters
-object.
Objects of type TLMoments
, parameters
, or quantiles
(i.e. results from the functions of the same name) feature summary
-functions, which give confidence intervals and an overview of the data.
tlm <- TLMoments(rgev(100), leftrim = 0, rightrim = 1)
summary(tlm)
## 1 data row(s) with n = 100.
## TL(0,1) calculated.
##
## Approximate 0.9% confidence interval of TL moments:
## LCL lambda_hat UCL
## L1 -0.31304673 -0.168268506 -0.02349028
## L2 0.31014955 0.367669806 0.42519006
## L3 -0.02161505 0.009469396 0.04055384
## L4 0.04533674 0.060865230 0.07639372
## Approximate 0.9% confidence interval of TL moment ratios:
## LCL tau_hat UCL
## T2 -4.14641326 -2.18501854 -0.2236238
## T3 -0.05825758 0.02575516 0.1097679
## T4 0.12429576 0.16554318 0.2067906
summary(tlm, ci.level = .95, select = 3:4)
## 1 data row(s) with n = 100.
## TL(0,1) calculated.
##
## Approximate 0.95% confidence interval of TL moments:
## LCL lambda_hat UCL
## L3 -0.02757001 0.009469396 0.04650880
## L4 0.04236189 0.060865230 0.07936857
## Approximate 0.95% confidence interval of TL moment ratios:
## LCL tau_hat UCL
## T3 0.06543582 0.1655432 0.2656505
## T4 0.11639385 0.1655432 0.2146925
summary(parameters(tlm, "gev"))
## 1 data row(s) with n = 100.
## TL(0,1) used to generate GEV parameters.
##
## Approximate 0.9% confidence interval of parameters:
## LCL param UCL
## loc -0.2345662 -0.07298919 0.08858783
## scale 0.7319655 0.85056337 0.96916120
## shape -0.1487695 0.01120871 0.17118690
summary(quantiles(parameters(tlm, "gev"), .99))
## 1 data row(s) with n = 100.
## TL(0,1) used to generate GEV parameters to calculate 0.99 quantile estimates.
##
## Approximate 0.9% confidence interval of quantiles:
## LCL quantile UCL
## 0.99 2.487728 3.942359 5.396989
At the moment, the summary functions does not work for data in lists or data.frames.
TLMoments
is built to support the use in magrittr
syntax. The nesting of functions can be written more readable as:
library(magrittr)
TLMoments(xvec, leftrim = 0, rightrim = 1) %>%
parameters("gev") %>%
quantiles(c(.99, .999))
## 0.99 0.999
## 3.959147 5.575842