
Exploring data from complex systems using

Additive Bayesian Networks in R

Fraser I. Lewis

Abstract

This vignette describes the abn package of R which comprises of model fitting and
selection functionality for exploring multivariate data using additive Bayesian network
models. These are directed acyclic graphs where each node in the graph comprises a
generalized linear model, where a greedy search heuristic is used to identify high scoring
models that attempt to identify relationships between all variables in the data. Currently
implemented are models for data comprising of categorical and/or continuousqq variables
where a logit link is used with the former. Laplace approximations are used to estimate
marginal likelihoods and compute marginal posterior densities.

Keywords: R, Bayesian Networks, additive models, structure discovery.

1. Introduction

Bayesian network (BN) modeling (Buntine 1991; Heckerman, Geiger, and Chickering 1995;
Lauritzen 1996; Jensen 2001) is a form of graphical modeling which attempts to separate
out indirect from direct association in complex multivariate data, a process typically referred
to as structure discovery (Friedman and Koller 2003). Unlike other widely used multivariate
approaches where dimensionality is reduced through exploiting linear combinations of random
variables, such as in principal component analysis, graphical modeling does not involve any
such dimension reduction. Bayesian networks have been developed for analyzing multinomial,
multivariate Gaussian or conditionally Gaussian networks (a mix categorical and Gaussian
variables). A number of libraries for fitting such BNs are available from CRAN. These types
of BN have been constructed to ensure conjugacy, that is, enable posterior distributions for
the model parameters and marginal likelihood to be calculated analytically. The purpose of
abn is to provide a library of functions for more flexible BNs which do not rely on conjugacy,
which opens up an extremely rich modeling framework but at some considerable additional
computational cost.

Currently abn includes functionality for fitting non-conjugate BN models which are multi-
dimensional analogues of combinations of Binomial (logistic) and Gaussian regression. It is
planned to extend this to include Poisson distributions for count data and then more complex
distributions for overdispersed data such a beta-binomial and negative binomial models.

The general objective in BN modeling/structure discovery is to perform a model search on
the data to identify a locally optimal model. Recall that BN models have a vast search
space - super-exponential in the number of nodes - and it is generally impossible to determine
a globally optimal model. How best to summarize a set of locally optimal networks with



2 The abn package

different structural features is an open question, and there are a number of widely used and
intuitively reasonable possibilities. For example, one option is to conduct a series of heuristic
searches and then simply select the best model found (Heckerman et al. 1995); alternatively,
a single summary network can be constructed using results across many different searches
(Hodges, Dai, Xiang, Woolf, Xi, and He 2010; Poon, Lewis, Pond, and Frost 2007). There are
obvious pros and cons to either approach and both are common in the literature and provide a
good first exploration of the data. For a general non-technical review of BN modeling applied
in biology see Needham, Bradford, Bulpitt, and Westhead 2007. A case study in applying
BN models to epidemiological data using the conjugate BN functionality in abn can be found
in Lewis, Brulisauer, and Gunn 2011.

In this vignette we consider a series of examples illustrating how to fit different types of
models and run different searches and summary analyzes to a (synthetic) data set comprising
of 250 observations from a joint distribution comprising of 17 categorical and 16 continuous
variables which is included as part of the library. This data set is a single realization from
a network of the same structure as that presented in Lewis et al. 2011, which is sufficiently
complex to provide a realistic example of data mining using Bayesian Network modeling.

2. Case Study Data

Figure 1 shows the structure of the distribution which generated the data set var33 included

1

2

3

4

6

5

7

8

9

10

11

12

13

14

15

16

17 1819

20

21

26 2223 32

2425

27

28

29

30

31

33

Figure 1: Directed acyclic graph representation of the joint probability distribution which
generated data set var33 which is included with abn. The square nodes are categorical
(binary) and the oval nodes continuous variables.



Fraser I. Lewis 3

with abn. This diagram was created using the tographviz() function of abn (see later
examples) which translates a matrix which defines a network - a directed acyclic graph - into
a text file of suitable format for processing in Graphviz, where this processing was done outside
of R. Graphviz is freely available and operates on most platforms and can be downloaded from
www.graphviz.org, there is also an R package which interfaces to Graphviz available from
the Bioconductor project (requires an installation of Graphviz).

3. Fitting a single BN model to data

In the next four sections we illustrate how to fit a BN model to different kinds of data. The
main purpose of BN analyses is to estimate the joint dependency structure of the random
variables in the available data, and this is achieved by heuristically searching for optimal
models and comparing their goodness of fit using the (log) marginal likelihood, typically
referred to as the network score.

3.1. Fitting a BN model to categorical data

A conjugate Bayesian network applied to categorical data is the classical application of
Bayesian network analysis. Here the data are considered as a contingency table of frequency
counts and the model describes conditional dependencies between different cells. Note these
are not additive models.

The function fitbn(data.df, dag.m, prior.obs.per.node=NULL, useK2=FALSE, ...) fits
a multinomial conjugate BN model to the data in data.df where the model structure is de-
fined in matrix dag.m. There are two choices of priors/goodness of fit metrics; the BDe metric
and the K2 metric (see Heckerman et al. 1995). In brief, in the BDeu metric it is assumed
that a number, prior.obs.per.node, of prior observations have been observed at each node
and these are uniformly distributed across all the hyperparameters at each node. For example
in Figure 1, node 4 is conditionally dependent upon node 3, these are binary nodes and the
parameter to be estimated is P (v4 = T |v3 = T ) where this has a Beta distributed prior of
Beta(α1, α2) and supposing prior.obs.per.node=16, then with the BDeu metric we have
a prior of Beta(8, 8). Similarly, if there were two parents for node 4 then there would be
four parameters to estimate (assuming both parents were binary) and in this case the prior
for each parameter would be Beta(2, 2) where again the sum of the hyperparameters equals
16. In contrast, in the K2 metric each and every parameter has a flat prior of Beta(1, 1) for
binary nodes and Dirichlet Dir(1, . . . , 1) for multinomial nodes. An advantage of the BDeu
metric is that it is likelihood equivalent and so DAGs which are probabilistically equivalent
will have identical BDeu network scores. The K2 metric, however, uses identical uninforma-
tive priors for each and every parameter which may also be desirable, but in which case the
network scores for probabilistic identical networks may differ (although in practice such dif-
ferences may be small). In fitbn, if the useK2 argument is TRUE then prior.obs.per.node

is ignored.

The following code fits a network to the subset of the variables from var33 which are categor-
ical. In this data these are all binary but fitbn works analogously for multinomial variables.
Note that all categorical variables should be set as factors - and will be coerced if necessary.

> library(abn);# load library



4 The abn package

> bin.nodes<-c(1,3,4,6,9,10,11,12,15,18,19,20,21,26,27,28,32);

> var33.cat<-var33[,bin.nodes];#categorical nodes only

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v9

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v18

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v26

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #v32

+ ),byrow=TRUE,ncol=17);

> colnames(mydag)<-rownames(mydag)<-names(var33.cat);#set names

> ## now fit the model defined in mydag - full independence model

> fitbn (data.df=var33.cat, dag.m=mydag,useK2=TRUE);

[1] -2807.897

> # this is the network score goodness of fit = log marginal likelihood

The structure of the network definition matrix is where each row is a “child” and each column
is its “parents”, where a 1 denotes a parent (or arc) is present. Now lets fit a model with
some conditional dependencies, for example where v11 is conditionally dependent upon v12

and v10, and v4 is conditionally dependent upn v3.

> # now fit model with some conditional dependencies let v11

> ## depend jointly on v12 and v10

> mydag["v11","v12"]<-1;

> mydag["v11","v10"]<-1;

> ## let v4 depend on v3

> mydag["v4","v3"]<-1;

> fitbn (data.df=var33.cat, dag.m=mydag,useK2=TRUE);

[1] -2794.079

> # network score for a model with conditional independence



Fraser I. Lewis 5

The network score is considerably improved and therefore suggests support for these new
structural features. To produce a visual description of the model then we can export to
graphviz as follows

> tographviz(dag=mydag,data.df=var33.cat,outfile="mydag.dot");#create file

> # mydag.dot can then be processed with graphviz

> # unix shell "dot -Tpdf mydag.dot -o mydag.pdf" or use gedit if on Windows

v1 v3

v4

v6 v9 v10

v11

v12 v15 v18 v19 v20 v21 v26 v27 v28 v32

Figure 2: Directed acyclic graph mydag created using tographviz() and Graphviz

In tographviz() the data.df argument is used to determine whether the variable is a factor
or not, where factors are displayed as squares and non-factors as ovals. To use the full range
of visual Graphviz options simply use the file created by tographviz() as a template and
manually edit this in a text editor.

3.2. Fitting an additive BN model to categorical data

An additive BN model for categorical data can be constructed by considering each individual
variable as a logistic regression of the other variables in the data, and hence the network
model comprises of many combinations of local logistic regressions. The parameters in this
model are the additive terms in a usual logistic regression and independent Gaussian priors
are assumed for each covariate. The covariates here must all be binary, and so multinomial
variables need to be split into separate binary factors (and added to the original data.frame)
in order to form the network model - this is analogous to forming the design matrix in a
conventional additive model analysis. Similarly, interaction terms can be added by including
appropriate additional columns in the data.frame. In these models the log marginal likelihood
(network score) is estimated using Laplace approximations at each node. Hyperparameters
for the mean and standard deviations in the Gaussian priors can be specified but some care
is required if informative priors are needed at different nodes (see manual page for fitabn).

To fit an additive model use fitabn(data.df,dag.m, ...). In the following code we fit first
the independence model with no arcs and then the same dependence model as above. Turning
on verbose=TRUE simply gives the individual log marginal likelihoods for each node (n.b. the
numbering is that used internally and simply denotes the variables in the data.frame from
left to right).

> ## move back to independence model

> mydag["v11","v12"]<-0;mydag["v11","v10"]<-0;mydag["v4","v3"]<-0;

> fitabn (data.df=var33.cat,dag.m=mydag,verbose=TRUE);

Binary node=0 score=-178.004211

Binary node=1 score=-178.414495



6 The abn package

Binary node=2 score=-168.248843

Binary node=3 score=-102.675919

Binary node=4 score=-167.644794

Binary node=5 score=-178.679732

Binary node=6 score=-174.534904

Binary node=7 score=-178.293870

Binary node=8 score=-143.134495

Binary node=9 score=-173.338554

Binary node=10 score=-174.152823

Binary node=11 score=-177.448401

Binary node=12 score=-177.448401

Binary node=13 score=-167.644794

Binary node=14 score=-178.735970

Binary node=15 score=-174.900353

Binary node=16 score=-163.647060

#################################################################

### log marginal likelihood for Model: -2856.9476195086

#################################################################

[1] -2856.948

> # now fit the model with some conditional dependencies

> mydag["v11","v12"]<-1;mydag["v11","v10"]<-1;mydag["v4","v3"]<-1;

> fitabn (data.df=var33.cat, dag.m=mydag,verbose=TRUE);

Binary node=0 score=-178.004211

Binary node=1 score=-178.414495

Binary node=2 score=-166.945426

Binary node=3 score=-102.675919

Binary node=4 score=-167.644794

Binary node=5 score=-178.679732

Binary node=6 score=-168.972182

Binary node=7 score=-178.293870

Binary node=8 score=-143.134495

Binary node=9 score=-173.338554

Binary node=10 score=-174.152823

Binary node=11 score=-177.448401

Binary node=12 score=-177.448401

Binary node=13 score=-167.644794

Binary node=14 score=-178.735970

Binary node=15 score=-174.900353

Binary node=16 score=-163.647060

#################################################################

### log marginal likelihood for Model: -2850.0814800302

#################################################################

[1] -2850.081



Fraser I. Lewis 7

> # network score for a model with conditional independence

3.3. Fitting an additive BN model to continuous data

We now consider analogous models to those in Section 3.2 but where the network comprises
of Gaussian linear regressions rather than logistic regressions. The structure of these models
again assumes independent Gaussian priors for each of the coefficients in the additive com-
ponents for the mean response at each node, and as the model is parameterized in terms of
precision (1/σ2), independent Gamma priors are used for the precision parameter at each
node.

> var33.cts<-var33[,-bin.nodes];#drop categorical nodes

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v8

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v13

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v17

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v25

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v30

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #v33

+ ),byrow=TRUE,ncol=16);

> colnames(mydag)<-rownames(mydag)<-names(var33.cts);#set names

> ## now fit the model defined in mydag - full independence

> fitabn (data.df=var33.cts,dag.m=mydag,verbose=TRUE);

Gaussian node=0 score=-396.151434

Gaussian node=1 score=-395.967082

Gaussian node=2 score=-468.252121

Gaussian node=3 score=-384.496529

Gaussian node=4 score=-334.199036

Gaussian node=5 score=-436.487935

Gaussian node=6 score=-358.952748

Gaussian node=7 score=-450.626527

Gaussian node=8 score=-381.688832

Gaussian node=9 score=-379.543123

Gaussian node=10 score=-460.360575

Gaussian node=11 score=-480.835063



8 The abn package

Gaussian node=12 score=-378.705867

Gaussian node=13 score=-458.988366

Gaussian node=14 score=-360.273962

Gaussian node=15 score=-447.594152

#################################################################

### log marginal likelihood for Model: -6573.1233504991

#################################################################

[1] -6573.123

> ## uses default priors of N(mu=0,var=1000), 1/var=Gamma(0.001,1/0.001)

> # this is the network score goodness of fit = log marginal likelihood

Now fit a model with conditional independencies, for example

> # now fit model with some conditional dependencies let v33

> ## depend on v31, and v24 depend on 23, and v14 depend on v13

> mydag["v33","v31"]<-1;

> mydag["v24","v23"]<-1;

> mydag["v14","v13"]<-1;

> fitabn (data.df=var33.cts, dag.m=mydag,verbose=TRUE);

Gaussian node=0 score=-396.151434

Gaussian node=1 score=-395.967082

Gaussian node=2 score=-468.252121

Gaussian node=3 score=-384.496529

Gaussian node=4 score=-334.199036

Gaussian node=5 score=-360.076962

Gaussian node=6 score=-358.952748

Gaussian node=7 score=-450.626527

Gaussian node=8 score=-381.688832

Gaussian node=9 score=-379.543123

Gaussian node=10 score=-379.696223

Gaussian node=11 score=-480.835063

Gaussian node=12 score=-378.705867

Gaussian node=13 score=-458.988366

Gaussian node=14 score=-360.273962

Gaussian node=15 score=-360.706854

#################################################################

### log marginal likelihood for Model: -6329.1607281852

#################################################################

[1] -6329.161

> # network score for a model with conditional independence

> tographviz(dag=mydag,data.df=var33.cts,outfile="mydagcts.dot");#create file

> # mydag.dot can then be processed with graphviz

> # unix shell "dot -Tpdf mydagcts.dot -o mydagcts.pdf" or use gedit if on Windows



Fraser I. Lewis 9

v2 v5 v7 v8 v13

v14

v16 v17 v22 v23

v24

v25 v29 v30 v31

v33

Figure 3: Directed acyclic graph mydag for continuous variables only created using
tographviz() and Graphviz

3.4. Fitting an additive BN model to mixed data

To conclude the fitting of a single pre-specified model to data we consider an additive BN
model which comprises both binary and Gaussian nodes and this comprises of a combination
of Binomial (logistic) and Gaussian linear models. Again fitabn() is used and the code is
almost identical to the previous examples.

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#8

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#9

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#13

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#17

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#18

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#25

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#26

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#30



10 The abn package

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#32

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #33

+ ),byrow=TRUE,ncol=33);

> colnames(mydag)<-rownames(mydag)<-names(var33);#set names

> ## now fit the model defined in mydag - full independence

> fitabn (data.df=var33,dag.m=mydag,verbose=TRUE);

Binary node=0 score=-178.004211

Gaussian node=1 score=-396.151434

Binary node=2 score=-178.414495

Binary node=3 score=-168.248843

Gaussian node=4 score=-395.967082

Binary node=5 score=-102.675919

Gaussian node=6 score=-468.252121

Gaussian node=7 score=-384.496529

Binary node=8 score=-167.644794

Binary node=9 score=-178.679732

Binary node=10 score=-174.534904

Binary node=11 score=-178.293870

Gaussian node=12 score=-334.199036

Gaussian node=13 score=-436.487935

Binary node=14 score=-143.134495

Gaussian node=15 score=-358.952748

Gaussian node=16 score=-450.626527

Binary node=17 score=-173.338554

Binary node=18 score=-174.152823

Binary node=19 score=-177.448401

Binary node=20 score=-177.448401

Gaussian node=21 score=-381.688832

Gaussian node=22 score=-379.543123

Gaussian node=23 score=-460.360575

Gaussian node=24 score=-480.835063

Binary node=25 score=-167.644794

Binary node=26 score=-178.735970

Binary node=27 score=-174.900353

Gaussian node=28 score=-378.705867

Gaussian node=29 score=-458.988366

Gaussian node=30 score=-360.273962

Binary node=31 score=-163.647060

Gaussian node=32 score=-447.594152

#################################################################

### log marginal likelihood for Model: -9430.0709700077

#################################################################

[1] -9430.071



Fraser I. Lewis 11

We now fit a BN model which has the same structure as the joint distribution used to generate
the data and then create a visual graph of this model

> # define a model with many independencies

> mydag[2,1]<-1;

> mydag[4,3]<-1;

> mydag[6,4]<-1; mydag[6,7]<-1;

> mydag[5,6]<-1;

> mydag[7,8]<-1;

> mydag[8,9]<-1;

> mydag[9,10]<-1;

> mydag[11,10]<-1; mydag[11,12]<-1; mydag[11,19]<-1;

> mydag[14,13]<-1;

> mydag[17,16]<-1;mydag[17,20]<-1;

> mydag[15,14]<-1; mydag[15,21]<-1;

> mydag[18,20]<-1;

> mydag[19,20]<-1;

> mydag[21,20]<-1;

> mydag[22,21]<-1;

> mydag[23,21]<-1;

> mydag[24,23]<-1;

> mydag[25,23]<-1; mydag[25,26]<-1;

> mydag[26,20]<-1;

> mydag[33,31]<-1;

> mydag[33,31]<-1;

> mydag[32,21]<-1; mydag[32,31]<-1;mydag[32,29]<-1;

> mydag[30,29]<-1;

> mydag[28,27]<-1; mydag[28,29]<-1;mydag[28,31]<-1;

> fitabn (data.df=var33, dag.m=mydag);

[1] -8646.333

> # network score for a model with conditional independence

> tographviz(dag=mydag,data.df=var33,outfile="mydag_all.dot");#create file

> # mydag.dot can then be processed with graphviz

> # unix shell "dot -Tpdf mydag_all.dot -o mydag_all.pdf" or use gedit if on Windows

3.5. Model fitting validation

In order to validate the conjugate models, network scores, for both overall networks and indi-
vidual nodes using the Bayesian Dirichlet equivalence uniform (BDeu) metric were compared
with the deal library available from CRAN. This metric can be used by useK2=FALSE and
providing an explicit value for prior.obs.per.node. A wide range of models for multinomial
data were compared and these were always identical to those values produced by deal. To
validate the additive models mixed categorical and continuous models, estimates of the pos-
terior distributions for the model parameters using Laplace approximations (see later) were



12 The abn package

v1

v2

v3

v4

v6

v5

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17 v18v19

v20

v21

v26 v22v23 v32

v24v25

v27

v28

v29

v30

v31

v33

Figure 4: Directed acyclic graph mydag for mixed continuous and discrete variables

compared with those estimated using Markov chain Monte Carlo. These were always in very
close agreement for the range of models and data examined. This is an indirect validation of
the Laplace estimate of the network score, e.g. if the posterior densities match closely then
this implies that the denominator (the marginal likelihood - network score) must also be ac-
curately estimated, as a “gold standard” estimate of the network score is generally unavailable
for such non-conjugate models.

4. Searching for Optimal Models

A key purpose of BN modeling is to estimate the dependency structure in multivariate data
- that is, find a DAG which is robust and representative of the dependency structure of the
(unknown) system of processes which generated the observed data. The challenge here is that
with such a vast model space it is impossible to enumerate over all possible DAGs, and there
may be very many different DAGs with similar goodness of fit. In the next sections we first
consider searching for categorical (conjugate) BN models, then additive models.

4.1. Single search for optimal BN model for categorical data

To run a single search heuristic use searchbn() which starts from a randomly chosen DAG
(created by randomly adding arcs to an empty network init.permuts times) and then
searches stepwise for an improved structure, where three stepwise operations are possible:
i) add an arc; ii) remove and arc; or iii) reverse and arc. The stepwise search is subject to
a number of conditions, firstly only moves that do not generate a cycle are permitted, sec-



Fraser I. Lewis 13

ondly, a parent limit is imposed which fixes the maximum number of parents which each child
node can have (arcs go from parent to child), and thirdly it is possible to use ban or retain
constraints. If provided, banned.m is a matrix which defines arcs that are not allowed to be
considered in the search process (or in the creation of the initial random network). Similarly,
retain.m includes arcs which must always be included in any model, and again this includes
the initial random network. It is also possible to specific an explicit starting matrix, start.m.
Note that only very rudimentary checking is done to make sure that the ban, retain and start
networks - if user supplied - are not contradictory.

To improve the computational performance of searchbn() by default a node cache is used,
this is where rather than re-calculate the score for each individual node in the network (the
overall network score is the product of all the scores for the individual nodes) the score for
each unique node found during the search is stored in a lookup table. This can make very
significant improvements in speed and the default is for a search to terminate prematurely if
the node cache is exceeded, this behaviour can be turned off by enforce.db.size=FALSE),
but it is generally advisable to use a sufficiently large value for db.size to avoid this (a
warning will appear to say this limit has been reached if enforce.db.size=FALSE).

> bin.nodes<-c(1,3,4,6,9,10,11,12,15,18,19,20,21,26,27,28,32);

> var33.cat<-var33[,bin.nodes];#categorical nodes only

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v9

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v18

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v26

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #v32

+ ),byrow=TRUE,ncol=17);

> colnames(mydag)<-rownames(mydag)<-names(var33.cat);#set names

> ## create empty DAGs

> banned.cat<-matrix(rep(0,dim(var33.cat)[2]^2),ncol=dim(var33.cat)[2]);

> colnames(banned.cat)<-rownames(banned.cat)<-names(var33.cat);#set names

> retain.cat<-matrix(rep(0,dim(var33.cat)[2]^2),ncol=dim(var33.cat)[2]);

> colnames(retain.cat)<-rownames(retain.cat)<-names(var33.cat);#set names

> start.cat<-matrix(rep(0,dim(var33.cat)[2]^2),ncol=dim(var33.cat)[2]);

> colnames(start.cat)<-rownames(start.cat)<-names(var33.cat);#set names

> myres<-searchbn(data.df=var33.cat,



14 The abn package

+ banned.m=banned.cat,

+ retain.m=retain.cat,

+ start.m=start.cat,

+ useK2=TRUE,max.parents=2,init.permuts=0,db.size=1000);

4.2. Single search for optimal additive BN model for categorical data

To run a single search heuristic for an additive BN use searchabn() which is very similar
to searchbn(), the main difference is in the parameter prior specifications. It only makes
sense to use uninformative priors for the parameters for each variable as these are fixed for
all DAG structures e.g. parameter priors are not structure specific. By default diffuse priors
of Gaussians of mean zero and precision of 1000 are used, where these parameters are for the
usual additive terms in a logistic regression. These can be overridden in the command line
arguments if desired (not advisable). Several additional arguments are available which relate
to the numerical routines used in the Laplace approximation to calculate the network score.
The defaults appear to work reasonably well in practice and if it is not possible to calculate a
robust value for this approximation in any model, for example due to a singular design matrix
at one or more nodes, then this model is simply assigned a log network score of −∞ which
effectively removes it from the model search.

> ## just use default priors

> myres.add<-searchabn(data.df=var33.cat,

+ banned.m=banned.cat,

+ retain.m=retain.cat,

+ start.m=start.cat,

+ max.parents=2,

+ init.permuts=0,db.size=1000,error.verbose=TRUE);

4.3. Single search for optimal BN model for continuous data

As above but for a network of Gaussian nodes.

> var33.cts<-var33[,-bin.nodes];#drop categorical nodes

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v8

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v13

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v17

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v25



Fraser I. Lewis 15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v30

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #v33

+ ),byrow=TRUE,ncol=16);

> colnames(mydag)<-rownames(mydag)<-names(var33.cts);#set names

> banned.cts<-matrix(rep(0,dim(var33.cts)[2]^2),ncol=dim(var33.cts)[2]);

> colnames(banned.cts)<-rownames(banned.cts)<-names(var33.cts);#set names

> retain.cts<-matrix(rep(0,dim(var33.cts)[2]^2),ncol=dim(var33.cts)[2]);

> colnames(retain.cts)<-rownames(retain.cts)<-names(var33.cts);#set names

> start.cts<-matrix(rep(0,dim(var33.cts)[2]^2),ncol=dim(var33.cts)[2]);

> colnames(start.cts)<-rownames(start.cts)<-names(var33.cts);#set names

> #

> myres.add<-searchabn(data.df=var33.cts,

+ banned.m=banned.cts,

+ retain.m=retain.cts,

+ start.m=start.cts,

+ max.parents=2,

+ init.permuts=0,db.size=1000,error.verbose=TRUE);

initial network: (log) network score = -6573.123350

search iteration...1 new score=-6486.236053

search iteration...2 new score=-6401.043802

search iteration...3 new score=-6320.379450

search iteration...4 new score=-6242.083760

search iteration...5 new score=-6165.672787

search iteration...6 new score=-6097.414657

search iteration...7 new score=-6045.701536

search iteration...8 new score=-6044.623774

4.4. Single search for optimal additive BN model for mixed data

Model searching for mixed data is again very similar to the previous examples. Note that in
this example the parameter priors are specified explicitly (although those given are the same
as the defaults). The +1 in the hyperparameter specification is because a constant term is
included in the additive formulation for each node.

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#8



16 The abn package

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#9

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#13

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#17

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#18

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#25

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#26

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#30

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#32

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #33

+ ),byrow=TRUE,ncol=33);

> colnames(mydag)<-rownames(mydag)<-names(var33);#set names

> ## create empty DAGs

> banned<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(banned)<-rownames(banned)<-names(var33);#set names

> retain<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(retain)<-rownames(retain)<-names(var33);#set names

> start<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(start)<-rownames(start)<-names(var33);#set names

> ## giving diffuse priors - same as default but explicitly stated

> myres.add<-searchabn(data.df=var33,

+ banned.m=banned,

+ retain.m=retain,

+ start.m=start,

+ hyper.params=list(

+ mean=rep(0,dim(var33)[2]+1),

+ sd=rep(sqrt(1000),dim(var33)[2]+1),

+ shape=rep(0.001,16),## 16 Gaussian nodes

+ scale=rep(1/0.001,16)## 16 Gaussian nodes

+ ),

+ max.parents=2,

+ init.permuts=0,db.size=10000,



Fraser I. Lewis 17

+ error.verbose=TRUE,enforce.db.size=TRUE);

5. Multiple Search Strategies

To estimate a robust BN or additive BN for a given dataset is it necessary to run many
searches and then summarize the results of these searches. The functions hillsearchbn()

and hillsearchabn() are similar searchbn() and searchabn() but run multiple searches.
There are some differences. Firstly, it is necessary to provide a list of starting networks - these
can all be the null network - but must be explicitly given, and must have the same number of
entries as the number of searches requested. Secondly, these functions also use a node cache
for speed and there is the option now to either use a single joint node cache over all searches,
or else use a local node cache which is reset to empty at the start of each new search. The
parameter which governs this is localdb and defaults to true which resets the cache at the
start of each new search.

Conceptually it may seem more efficient to use one global node cache to allow node information
to be shared between different searches, however, in practice as the search space is so vast
for some problems this can result in extremely slow searches. As the cache becomes larger it
can take much more time to search it (and it may need to be searched a very large number
of times) than to simply perform the appropriate numerical computation. Profiling using
the google performance tool google-pprof suggests that more than 80% of the computation
time may be taken up by lookups. When starting searches from different random places
in the model space the number of individual node structures in common between any two
searches, relative to the total number of different node structures searched over can be very
small meaning a common node cache is inefficient. This may not be the case when starting
networks are relatively similar.

It is suggested to use localdb=FALSE with some caution as it may lead to computations, the
duration of which, is hard to estimate as each successive search becomes slower as the node
cache increases. To help with performance monitoring it is possible to turn on timings using
timing=TRUE which then outputs the number of seconds of CPU time each individual search
takes (using standard libc functions declared in time.h).

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#8

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#9

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#13



18 The abn package

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#17

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#18

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#25

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#26

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#30

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#32

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #33

+ ),byrow=TRUE,ncol=33);

> colnames(mydag)<-rownames(mydag)<-names(var33);#set names

> ## create empty DAGs

> banned<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(banned)<-rownames(banned)<-names(var33);#set names

> retain<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(retain)<-rownames(retain)<-names(var33);#set names

> start<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(start)<-rownames(start)<-names(var33);#set names

> set.seed(10000);## only affects init.permuts

> start.list<-list();

> n.searches<-10;#example only - must be much larger in practice

> for(i in 1:n.searches){start.list[[i]]<-retain;} ## empty networks

> myres<-hillsearchabn(data.df=var33,banned.m=banned,retain.m=retain,

+ start.m=start.list,

+ hyper.params=list(

+ mean=rep(0,dim(var33)[2]+1),

+ sd=rep(sqrt(1000),dim(var33)[2]+1),

+ shape=rep(0.001,16),## 16 Gaussian nodes

+ scale=rep(1/0.001,16)## 16 Gaussian nodes

+ ),

+ max.parents=2,

+ num.searches=n.searches,

+ init.permuts=20,db.size=20000,

+ localdb=TRUE,timing=TRUE);

>



Fraser I. Lewis 19

5.1. Creating a Summary Network - Majority Consensus

One approach to producing a single robust BN model of the data is to mimic the approach
used in phylogenetics to create majority consensus trees. A DAG is constructed comprising
of all the arcs present in more than 50% of the DAGs found from the search heuristics, that is
all the locally optimal models found are combined into a single summary network. Combining
results from different runs of searchbn() or searchabn() is straightforward, although note
that it is necessary to check for duplicate random starting networks (unlikely generally but
not impossible). The following code provides a simple way to produce a majority consensus
network and Figure 5 shows the resulting network - note that this is an example only and
many thousands of searches may need to be conducted to achieve robust results. One simple
ad-hoc method for assessing how many searches are needed is to run a number of searches
and split the results into two (random) groups, and calculate the majority consensus network
within each group. If these are the same then it suggests that sufficient searches have been
run.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17 v18

v19

v20

v21

v23

v22

v24v25

v26 v27

v28

v29

v30 v32

v31

v33

Figure 5: Example majority consensus network (from the results of only 10 searches)

> # use results from above searches which are stored in ``myres''

> #step 1. discard any duplicate searches (these are unlikely)

> indexes<-uniquenets(myres$init.dag);

> all.res<-list();

> all.res$init.score<-myres$init.score[indexes];

> all.res$final.score<-myres$final.score[indexes];

> all.res$init.dag.<-myres$init.dag[indexes];

> all.res$final.dag<-myres$final.dag[indexes];

> # for every possible arc calculate how many times it appears in the searches

> mypruneddags<-prunenets(all.res$final.dag,round(0.51*length(all.res$final.dag)));

> # now get a matrix/DAG for the majority network comprising of 1/0s

> myfunc<-function(arg1,threshold,netdata){#trivial helper for apply()

+ if(arg1>=round(threshold*length(netdata$final.dag)))

+ {return(1);} else {return(0);}}

> dag.con<-apply(mypruneddags$arcs.sum,c(1,2),FUN=myfunc,threshold=0.51,



20 The abn package

+ netdata=all.res);

> tographviz(dag=dag.con,data.df=var33,outfile="dagcon.dot");#create file

> # dagcon.dot can then be processed with graphviz

> # unix shell "dot -Tpdf dagcon.dot -o dagcon.pdf" or use gedit if on Windows

>

6. Larger Scale Problems

Determining an optimal DAG (e.g. a majority consensus model) for data sets with larger
numbers of variables can require additional ad-hoc measures beyond limiting the number
number of parents per node. One approach is to iteratively limit the search space by adaptively
adjusting the ban and retain lists. Initially set the parent limit to one and conduct a large
number of searches, and check that the majority consensus network is robust. Next, for those
variables in the majority consensus network which had (strictly) less than the current number
of parent limit arcs (e.g. one) append these to the “ban list” so that future searches will not
again consider adding further arcs to these variables. Then create a “retain list” containing all
those arcs in the current majority consensus network so that in all subsequent searches those
arcs that are currently supported will be retained automatically through all searches (and set
the start network to the retain network - plus some random permutations). Now increase
the parent limit (e.g. to two) and repeat the whole procedure. This approach successively
limits the search space finally narrowing to a summary majority consensus network, although
a number of iterations might be needed. Each iteration of this approach can still take many
hours on a multi-processor compute server depending on the number of variables in the data.

7. Estimating Posterior Densities

After determining an appropriate BN model it is typical to estimate the parameter effects,
e.g. 95% posterior intervals, which is done using the function getmarginal() which again
uses Laplace approximations. An appropriate domain (range) for each parameter needs to be
supplied which can either be done by some trial and error, searching for where the mode of the
posterior density is, or else by using the classic glm() function in R to provide an approximate
range. Given below are three examples, and note that this function works with one node and
one parameter in that node at a time.

> #specific a DAG model

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#8

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#9



Fraser I. Lewis 21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#13

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#17

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#18

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#25

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#26

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#30

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#32

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #33

+ ),byrow=TRUE,ncol=33);

> colnames(mydag)<-rownames(mydag)<-names(var33);#set names

> ## now fit the model defined in mydag - full independence

> # define a model with many independencies

> mydag[2,1]<-1;

> mydag[4,3]<-1;

> mydag[6,4]<-1; mydag[6,7]<-1;

> mydag[5,6]<-1;

> mydag[7,8]<-1;

> mydag[8,9]<-1;

> mydag[9,10]<-1;

> mydag[11,10]<-1; mydag[11,12]<-1; mydag[11,19]<-1;

> mydag[14,13]<-1;

> mydag[17,16]<-1;mydag[17,20]<-1;

> mydag[15,14]<-1; mydag[15,21]<-1;

> mydag[18,20]<-1;

> mydag[19,20]<-1;

> mydag[21,20]<-1;

> mydag[22,21]<-1;

> mydag[23,21]<-1;

> mydag[24,23]<-1;

> mydag[25,23]<-1; mydag[25,26]<-1;

> mydag[26,20]<-1;



22 The abn package

> mydag[33,31]<-1;

> mydag[33,31]<-1;

> mydag[32,21]<-1; mydag[32,31]<-1;mydag[32,29]<-1;

> mydag[30,29]<-1;

> mydag[28,27]<-1; mydag[28,29]<-1;mydag[28,31]<-1;

> #now get the marginal distribution for the parameters of v33

> marg1<-getmarginal(data.df=var33,

+ dag.m=mydag,

+ whichnode="v33",

+ whichvar="constant",#this is the intercept

+ hyper.params=list(

+ mean=rep(0,dim(var33)[2]+1),

+ sd=rep(sqrt(1000),dim(var33)[2]+1),

+ shape=rep(0.001,16),## 16 Gaussian nodes

+ scale=rep(1/0.001,16)## 16 Gaussian nodes

+ ),

+ post.x=seq(from=-1.5,to=-0.5,len=1000),

+ verbose=TRUE);

Gaussian node=32 score=-360.706854

> cum.marg<-cumsum(marg1[,"f"])/sum(marg1[,"f"])

> marg<-cbind(marg1,cum.marg);

> marg[which(marg[,3]>0.5)[1]];#approx.median

[1] -1.071572

> ## now for the precision at node v33

> marg2<-getmarginal(data.df=var33,

+ dag.m=mydag,

+ whichnode="v33",

+ whichvar="precision",#this is the intercept

+ hyper.params=list(

+ mean=rep(0,dim(var33)[2]+1),

+ sd=rep(sqrt(1000),dim(var33)[2]+1),

+ shape=rep(0.001,16),## 16 Gaussian nodes

+ scale=rep(1/0.001,16)## 16 Gaussian nodes

+ ),

+ post.x=seq(from=0.5,to=1.5,len=1000),

+ verbose=TRUE);

Gaussian node=32 score=-360.706854

> cum.marg<-cumsum(marg2[,"f"])/sum(marg2[,"f"])

> marg<-cbind(marg2,cum.marg);

> marg[which(marg[,3]>0.5)[1]];#approx.median



Fraser I. Lewis 23

[1] 1.114615

> ## now for a covariate effect at node v6

> marg3<-getmarginal(data.df=var33,

+ dag.m=mydag,

+ whichnode="v6",

+ whichvar="v4",#this is the covariate effect

+ hyper.params=list(

+ mean=rep(0,dim(var33)[2]+1),

+ sd=rep(sqrt(1000),dim(var33)[2]+1),

+ shape=rep(0.001,16),## 16 Gaussian nodes

+ scale=rep(1/0.001,16)## 16 Gaussian nodes

+ ),

+ post.x=seq(from=-1.5,to=2.5,len=1000),

+ verbose=TRUE);

Binary node=5 score=-87.882271

> cum.marg<-cumsum(marg3[,"f"])/sum(marg3[,"f"])

> marg<-cbind(marg3,cum.marg);

> marg[which(marg[,3]>0.5)[1]];#approx.median

[1] 0.5900901

Figure 6 shows an example of posterior densities estimated using getmarginal(), all posterior
densities for all parameters in the additive BN can be estimated in the same way.



24 The abn package

log odds

D
en

si
ty

−2 −1 0 1 2 3
0

2

4

6

8
intercept node v33
Precision node v33
effect of v4 at node v6

Figure 6: Some Posterior densities



Fraser I. Lewis 25

References

Buntine W (1991). “Theory refinement on Bayesian networks.” In Proceedings of Seventh
Conference on Uncertainty in Artificial Intelligence, pp. 52–60. Morgan Kaufmann, Los
Angeles, CA, USA.

Friedman N, Koller D (2003). “Being Bayesian about network structure. A Bayesian approach
to structure discovery in Bayesian networks.” Machine Learning, 50(1-2), 95–125.

Heckerman D, Geiger D, Chickering DM (1995). “Learning Bayesian Networks - The Combi-
nation of Knowledge And Statistical-Data.” Machine Learning, 20(3), 197–243.

Hodges AP, Dai D, Xiang Z, Woolf P, Xi C, He Y (2010). “Bayesian Network Expansion
Identifies New ROS and Biofilm Regulators.” PLoS ONE, 5(3), e9513–.

Jensen FV (2001). Bayesian Network and Decision Graphs. Springer-Verlag, New York.

Lauritzen SL (1996). Graphical Models. Oxford Univ Press.

Lewis FI, Brulisauer F, Gunn GJ (2011). “Structure discovery in Bayesian networks: An
analytical tool for analysing complex animal health data.” Preventive Veterinary Medicine,
100(2), 109–115. doi:10.1016/j.prevetmed.2011.02.003.

Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2007). “A Primer on Learn-
ing in Bayesian Networks for Computational Biology.” PLoS Comput Biol, 3(8), e129.
doi:10.1371/journal.pcbi.0030129.

Poon AFY, Lewis FI, Pond SLK, Frost SDW (2007). “Evolutionary interactions between
N-linked glycosylation sites in the HIV-1 envelope.” Plos Computational Biology, 3(1),
110–119.

Affiliation:

F. I. Lewis
Applied Statistician
Vetsuisse Faculty, University of Zurich
Winterthurerstrasse 270, Zurich 8057
Switzerland
E-mail: fraseriain.lewis@uzh.ch

http://dx.doi.org/10.1016/j.prevetmed.2011.02.003
http://dx.doi.org/10.1371/journal.pcbi.0030129
mailto:fraseriain.lewis@uzh.ch

	Introduction
	Case Study Data
	Fitting a single BN model to data
	Fitting a BN model to categorical data
	Fitting an additive BN model to categorical data
	Fitting an additive BN model to continuous data
	Fitting an additive BN model to mixed data
	Model fitting validation

	Searching for Optimal Models
	Single search for optimal BN model for categorical data
	Single search for optimal additive BN model for categorical data
	Single search for optimal BN model for continuous data
	Single search for optimal additive BN model for mixed data

	Multiple Search Strategies
	Creating a Summary Network - Majority Consensus

	Larger Scale Problems
	Estimating Posterior Densities

