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The brglm2 package

brglm2 provides tools for the estimation and inference from generalized linear models using various methods
for bias reduction. Reduction of estimation bias is achieved either through the mean-bias reducing adjusted
score equations in Firth (1993) and Kosmidis and Firth (2009), or through the direct subtraction of an
estimate of the bias of the maximum likelihood estimator from the maximum likelihood estimates as prescribed
in Cordeiro and McCullagh (1991), or through the median-bias reducing adjusted score equations in Kenne
Pagui, Salvan, and Sartori (2017).

In the special case of generalized linear models for binomial and multinomial responses, the adjusted score
equations approach returns estimates with improved frequentist properties, that are also always finite, even
in cases where the maximum likelihood estimates are infinite, like in complete and quasi-complete separation
as defined in Albert and Anderson (1984).

The workhorse function is brglmFit, which can be passed directly to the method argument of the glm function.
brglmFit implements a quasi Fisher scoring procedure, whose special cases result in various explicit and
implicit bias reduction methods for generalized linear models (the classification of bias reduction methods
into explicit and implicit is given in Kosmidis 2014).

This vignette

This vignette

e presents the supported bias-reducing adjustments to the score functions for generalized linear models
e describes the fitting algorithm at the core of brglm?2

Other resources

The bias-reducing quasi Fisher scoring iteration is also described in detail in the bias vignette of the
enrichwith R package. Kosmidis and Firth (2010) describe a parallel quasi Newton-Raphson procedure.

Most of the material in this vignette comes from a presentation by Ioannis Kosmidis at the useR! 2016
international R User conference at University of Stanford on 16 June 2016. The presentation was titled
“Reduced-bias inference in generalized linear models” and can be watched online at this link.

Generalized linear models

Model

Suppose that y1,...,y, are observations on independent random variables Y7, ...,Y,,, each with probability
density /mass function of the form

fri(y) = exp { v - bq(ji% al) _ %a <m) + 62(y)}
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for some sufficiently smooth functions b(.), ¢1(.), a(.) and ¢z(.), and fixed observation weights my, ..., m,.
The expected value and the variance of Y; are then

E(Y;) = p; = b'(6;)

Var(vi) = 2576, = v ()

m; mg

Hence, in this parameterization, ¢ is a dispersion parameter.

A generalized linear model links the mean p; to a linear predictor 7; as

p

glpi) =ni = Biis

t=1

where g(.) is a monotone, sufficiently smooth link function, taking values on R, x;; is the (¢, t)th component
of a model matrix X, and 8= (B1,...,08,) .

Score functions and information matrix

Suppressing the dependence of the various quantities on the model parameters and the data, the derivatives
of the log-likelihood about 8 and ¢ (score functions) are

with ¥y = (Y1, ¥n) ", = (1, pin) ", W = diag{wy,...,w,} and D = diag{ds,...,d,}, where
w; = m;d?/v; is the ith working weight, with d; = dp;/dn; and v; = V(p;). Furthermore, ¢; = —2m;{y;0; —
b(6;) — c1(y:)} and p; = mya) with ai = a’(—m;/¢). The expected information matrix about 5 and ¢ is
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where 0, is a p-vector of zeros, and a = a”(—m;/¢).

Maximum likelihood estimation

The maximum likelihood estimators 3 and (;AS of B and ¢, respectively, can be found by the solution of the
score equations sg = 0, and sy = 0.

Mean bias-reducing adjusted score functions

Let Ag = —iggbg and Ay = —igebys, where bg and by are the first terms in the expansion of the mean bias of
the maximum likelihood estimator of the regression parameters § and dispersion ¢, respectively. The results
in Firth (1993) can be used to show that the solution of the adjusted score equations
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results in estimators 3 and ¢ with bias of smaller asymptotic order than the maximum likelihood estimator.

The results in either Kosmidis and Firth (2009) or Cordeiro and McCullagh (1991) can then be used to
re-express the adjustments in forms that are convenient for implementation. In particular, and after some
algebra the bias-reducing adjustments for generalized linear models are

Ag=XTW¢,
4, =2 Siymial

where & = (&1,...,&,)T with & = hyd,/(2dw;), d, = d*w;/dn?, a! = o' (—m;/¢), a' = a"'(—m;/¢), and h;
is the “hat” value for the ith observation (see, e.g. Thatvalues).

Median bias-reducing adjusted score functions

The results in Kenne Pagui, Salvan, and Sartori (2017) can be used to show that if

Ag = X TW(E+ Xu)
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then the solution of the adjusted score equations sg + Ag = 0, and sy + A, = 0 results in estimators B
and ¢ with median bias of smaller asymptotic order than the maximum likelihood estimator. In the above
expression, u = (u1,...,u,) with

o (1o /(601) — 5 /(2d1))
wy = [(XTWX) X7 ;
oy (dav)/ (60,) — )/ (2d,)}

where [A]; denotes the jth row of matrix A as a column vector, v} = V'(u;), and h;; is the ith diagonal
element of X K; XTW, with K; = [(XTWX) ' ;[(XTWX)~ 1 /[(XTWX)™];.

Fitting algorithm in brglmFit

brglmFit implements a quasi Fisher scoring procedure for solving the adjusted score equations sz + Ag = 0,
and sy + Ay = 0. The iteration consists of an outer loop and an inner loop that implements step-halving.
The algorithm is as follows:

Input

* 56, ips, Ap

* 56, Tgps Ao

« Starting values 3(© and ¢(©

e ¢ > 0: tolerance for the L1 norm of the direction before reporting convergence
e M: maximum number of halving steps that can be taken



Iteration

Initialize outer loop

1. k<0
2. 0§ {igg (B, 6©)} " {55 (B9, 6©) + 4g (B, 6©) }

8. 0 {ia (50.00)} 7 {56 (8,60 + 4, (5,0)}
Initialize inner loop

4. m<+0
5. bm) o gk
6. f(m) — (k)
7. 0™ vék)

(m) (k)
8. v U,

(m) (m)
9. de‘vﬁ ‘1+‘U¢ ‘
Update parameters
10. b0 ¢ plm) 4 2= my(™)
m—+1 m —m, (m)
1. flmtl) e fOm) 42 Y
Update direction
m—+1 . m m —1 m m m "
12. 0" e Ligg (b)), fOmED) LT (g (b0, fOnED) 4 A (D), fOmeD)) )
. —1
13. vém-&-l) — {Z¢¢ (b(m+1),f(m+1))} {s¢ (b(m+1),f(m+1)) + A¢ (b(m+1),f(m+1))}
Continue or break halving within inner loop
14. it m+1 < M and ‘vémﬂ)‘l + ’vfbmﬂ)’ >d
141. m+<—m+1
14.2. GO TO 10
15. else
15.1. B+ plm+1)
15.2. pk+1) « flm+1)
15.3. o T e pfm Y
(k+1) (m+1)
15.4. Vg vy
Continue or break outer loop
16. if k+1 < K and ‘Ugcﬂ)’l + ’U((;H)‘ > €

161 k<« k+1



17.

16.2. GO TO 4
else

17.1. B« p&+D
17.2. ¢ + ¢ktD)
17.3. STOP

Notes

For K =M =1, p© = 3 and ¢ = (ﬁ, the above iteration computes the bias-corrected estimates
proposed in Cordeiro and McCullagh (1991). This is achieved with the brglmFit method is used with
type = "correction" (see ?brglmFit).

The mean-bias reducing adjusted score functions are solved when the brglmFit method is used with
type = "AS_mean", and the median-bias reducing adjusted score functions with type = AS_median
(see 7brglmFit).

The steps where ¢ and the ¢ direction are updated are ignored for generalized linear models with known

dispersion parameter, like in models with binomial and poisson responses. Also, in that case, vé') and
’Ué) in steps 9, 14 and 16 are set to zero.

The implementation of the adjusted score functions requires ready implementations of d?u;/dn?, a'(.),
a’(.) and a”'(.). The enrichwith R package is used internally to enrich the base family and 1link-glm
objects with implementations of those functions (see ?enrich.family and ?enrich.link-glm).

The above iteration can be used to implement a variety of additive adjustments to the score function,
by supplying the algorithm with appropriate adjustment functions Ag and Ay

Contributions to this vignette

The first version of the vignette has been written by Ioannis Kosmidis. Eugene Clovis Kenne Pagui and
Nicola Sartori contributed the first version of the section “Median bias-reducing adjusted score functions”,
and loannis Kosmidis brought the expressions for the median bias-reducing adjustments in the reduced form
that is shown above and is implemented in brglmFit.

Citation

If you found this vignette or brglm2 in general useful, please consider citing brglm?2 using

citation("brglm2")
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