Package bvpSolve, solving boundary value problems
in R

Karline Soetaert
Centre for Estuarine and Marine Ecology
Netherlands Institute of Ecology
The Netherlands

Abstract

This document is about package bvpSolve (Soetaert 2009a), designed for the numerical
solution of boundary value problems for ordinary differential equations (ODE) in R .

Package bvpSolve contains:

e function bvpshoot which implements the shooting method. This method makes use
of the initial value problem solvers from packages deSolve (Soetaert, Petzoldt, and
Setzer 2009) and the root-finding solver from package rootSolve (Soetaert 2009b).

e function bvptwp, the mono-implicit Runge-Kutta (MIRK) method with deferred
corrections, code TWPBVP (Cash and Wright 1991), for solving two-point boundary
value problems

The R functions have an interface which is similar to the interface of the solvers in

package deSolve

Keywords: ordinary differential equations, boundary value problems, shooting method, mono-
implicit Runge-Kutta, R.

1. Introduction

bvpSolve numerically solves boundary value problems (BVP) of ordinary differential equations
(ODE), which for one (second-order) ODE can be written as:

2
% =f(w,y,%)
a<z<b
91(y)|a=0
92(y)[p =0

where y is the dependent, x the independent variable, function f is the differential equation,
go and g, the boundary conditions at the end points a and b.

The problem must be specified as a first-order system. Thus, higher-order ODEs need to be
rewritten as a set of first-order systems. For instance:
d*y dy

@ :f(%?/,%)

2 Package bvpSolve, solving boundary value problems in R

can be rewritten as:

W_,
dr
d
== f@y.2)

Note that in the current implementation, the boundary conditions must be defined at the end
of the interval over which the ODE is specified (i.e. at a and/or b).

More examples of boundary value problems can be found in the packages examples sub-
director. They include a.o. all problems found in http://www.ma.ic.ac.uk/~jcash/BVP_
software.

examples
http://www.ma.ic.ac.uk/~jcash/BVP_software
http://www.ma.ic.ac.uk/~jcash/BVP_software

Karline Soetaert

2. A simple BVP example

Here is a simple ODE (which is problem 7 from a test problem available from http://www.
ma.ic.ac.uk/~jcash/BVP_software/readme.php):

&f +ay —y = —(1+&n?) cos(nx) — masin(mx)
y(=1) = -1
y(1) = 1

The second-order ODE is expanded as two first-order ODEs as:

vio= v
yh = 1/6-(—zys +y1 — (1 + &n?) cos(mx) — masin(nz))

with boundary conditions

yl(—l) = -1
y(l) = 1

This is implemented as:
> fun<- function(x,y,pars)
+ 1
+ list(c(y[2],
+ 1/ks* (—~x*y [2]+y[1] - (1+ks*pi*pi)*cos (pi*x)-pi*x*sin(pi*x)))
+)
+ }

and solved, using the two methods, as:

ks <- 0.1

x <- seq(-1,1,by=0.01)

print (system. time(

soll <- bvpshoot(yini=c(-1,NA),yend=c(1,NA),x=x,func=fun,guess=0)
))

+ + Vv v Vv

user system elapsed
0.050 0.000 0.052

v

print (system. time(
sol2 <- bvptwp(yini=c(-1,NA),yend=c(1,NA),x=x,func=fun, guess=0)
))

+ +

user system elapsed
0.170 0.000 0.171

http://www.ma.ic.ac.uk/~jcash/BVP_software/readme.php
http://www.ma.ic.ac.uk/~jcash/BVP_software/readme.php

4 Package bvpSolve, solving boundary value problems in R

test problem 7, ksi=0.1

- — buptwp
© X % bvpshoot
L\
X

sol2[, 3]
1
|
o
$3s.

-1.0 -0.5 0.0 0.5 1.0

sol2[, 1]

Figure 1: Solution of the simple BVP, for ksi=0.1 - see text for R -code

Note how the boundary conditions at the start (yini) and end yend of the integration interval
are specified, where NA is used for boundary conditions that are not known.

A reasonable guess of the unknown initial condition is also inputted.

As is often the case, the shooting method is faster than the other method. However, there are
particular problems where bvpshoot does not lead to a solution, whereas the MIRK method
does (see below).

The plot shows that the two methods give the same solution:

> plot(sol2[,1],s012[,3],type="1",main="test problem 7, ksi=0.1",
+ lwd=2,col="red")

> points(sol1l[,1],s0l11[,3],col="green",pch="x")

> legend("topright",c("bvptwp", "bvpshoot"),

+ lty=c(1,NA,NA), pch=c(NA,1,3),col=c("red", "green"))

When the parameter ¢ is decreased, bvpshoot cannot solve the problem anymore, due to the
presence of a zone of rapid change near x=0.

However, it can still easily be solved with the MIRK method:

> ks <-0.0001

> print(system.time(

+ sol2 <- bvptwp(yini=c(-1,NA),yend=c(1,NA),x=seq(-1,1,by=0.01),
+ func=fun, guess=0)

+

))

user system elapsed
1.940 0.000 1.941

v

plot(sol2[,1],s012[,3],type="1",main="test problem 7, ksi=0.0001",
1wd=2,col="red")

+

Karline Soetaert

test problem 7, ksi=0.0001

sol2[, 3]
1
|

T T T T T
-1.0 -0.5 0.0 0.5 1.0

sol2[, 1]

Figure 2: Solution of the simple BVP, for ksi=0.0001 - see text for R -code. Note that this
problem cannot be solved with bvpshoot

6 Package bvpSolve, solving boundary value problems in R

3. A more complex BVP example

Here the test problem referred to as "swirling flow III” is solved (Ascher, Mattheij, and Russell
1995).

The original problem definition is:

g9 = (9f - [fd)/¢
"= (=f" = 99)/¢

on the interval [0,1] and subject to boundary conditions:

9(0) = —1,£(0) =0, f'(0) =
g(1) =1,f(1)=0,f(1) =

This is rewritten as a set of 1st order ODEs as follows:

Y1 = 2
Yy = (y1 % ya — yz * y2) /&
y§=y4
Ys = Ys
?Jé:yﬁ

ys = (—y3ys — y1y2)/&
Its implementation in R is:

> fsub <- function (t,Y,pars)
+ { return(1list(c(f1 = Y[2],

+ f2 = (Y[1]*Y[4] - Y[3]*Y[2])/eps,

+ 3 = Y[4],

+ f4 = Y[5],

+ f5 = Y[6],

+ £f6 = (-Y[3]*Y[6] - Y[1]1*Y[2])/eps)))
+ }

> eps <- 0.001
> x <- seq(0,1,1en=100)

This model cannot be solved with the shooting method. However, it can be solved using
bvptwp:

> print(system.time(

+ Soltwp <- bvptwp(x=x,func=fsub,guess= c(2,0,0),

+ yini=c(-1,NA,0,0,NA,NA), yend=c(1,NA,0,0,NA,NA))
+))

user system elapsed
1.960 0.010 1.986

Karline Soetaert

swirling flow I, eps=0.01

T
°
©o,

-1.0 0.5 -0.015 0.015 -10 0 10
111
H ©
time ©
o
o
- TG0,
Te}
° 1 $
o
i = 200
|
B00 N
- <
U 2 : i
— o
[Te}
=
o
o
3 000
0
=
(=}
)
|
b o o

-10

20

D
0,
ol -I=€§;
o°°°
& "oao
(o))
-0.05 0.15

-500 -100

>

o

TTTTTT TTTTTT
00 0.6 048 14 -0.05 0.15 -500 -100

Figure 3: Solution of the swirling flow III problem - see text for R -code. Note that this
problem cannot be solved with bvpshoot

where the reported system time is in seconds

The problem cannot be solved with too small values of eps:

> eps <- le-9

> Soltwp2 <- NA

> Soltwp2 <- try(bvptwp(x=x,func=fsub,guess= c(2,0,0),

+ yini=c(-1,NA,0,0,NA,NA), yend=c(1,NA,0,0,NA,NA)),
+ silent = TRUE)

> cat (Soltwp2)

Error in bvptwp(x = x, func = fsub, guess = c(2, 0, 0), yini = c(-1, NA,
The Expected No. Of Subintervals Exceeds Storage Specificatioms.

> pairs(Soltwp, main="swirling flow III, eps=0.01", col="blue")

The problem is more efficiently solved if an initial guess of the solution is given:

+ + VvV V V.V VYV

Package bvpSolve, solving boundary value problems in R

eps <- 0.001

xguess <- x

yguess <- matrix(nr=6, nc=length(xguess), data=0.)

slope <- 0.375-0.9129

yguess[1,] <- 2*xguess -1

yguess[2,] <- 2

print (system.time(Sol2 <- bvptwp(x=x,func=fsub,guess= c(2,0,0),
xguess=xguess, yguess=yguess,yini=c(-1,NA,0,0,NA,NA),
yend=c(1,NA,0,0,NA,NA))))

user system elapsed
1.562 0.01 1.53

Karline Soetaert

4. More complex initial or end conditions

Problem musn was described in (Ascher et al. 1995).
The problem is:

~

= 0.5u(w —u)/v

—0.5(w — u)

(0.9 — 1000(w — y) — 0.5w(w — u))/z
0.5(w — u)

= —100(y — w)

~

~

~

SR SR SRS ~
I

on the interval [0,1] and subject to boundary conditions:
u(0) =v(0) =w(0) = 1
z(0) = —10
w(l) = y(1)
Note the last boundary conditions which expresses w as a function of y.

Implementation of the ODE function is simple:

> musn <- function(x,Y,pars)

+ {

+ with (as.list(Y),

+ 1

+ du=0. 5%u* (w-u) /v

+ dv=-0.5% (w-u)

+ dw=(0.9-1000% (w-y) -0. 5*w* (w-u)) /z
+ dz=0.5% (w-u)

+ dy=-100%* (y-w)

+ return(list(c(du,dv,dw,dz,dy)))
+ }

+ }

There are 4 boundary values specified at the start of the interval; a value for y is lacking:
> init <- c(u=1,v=1,w=1,z=-10,y=NA)
The boundary condition at the end of the integration interval (1) specifies the value of w as

a function of y.

Because of that, yend cannot be simply inputted as a vector. It is rather implemented as a
function that has as input the values at the end of the integration interval (Y), the values at
the start (yini) and the parameters, and that returns the residual function (w-y):

> yend <- function (Y,yini,pars) with (as.list(Y), w-y)

This problem is most efficiently solved with bvpshoot: !

!Note that there are at least two solutions to this problem, the second solution can simply be found by
setting guess equal to 0.9.

10 Package bvpSolve, solving boundary value problems in R

0.7 0.9 -15 0.0 1.0 -15 0.0 1.0
11 1 | I I I | I I Y |
o1 -
o, o o
00 0 oo
%o 0°®) o, o, »
0q 0 00 o N ©
H o, of o 0, o =
time o | | 4 g %, [S
o, o, -
0g, 0,
Xl L 2
o
n 0| o
[} 0 o° 0°
o] % %% o° td o°®
o) o o
|) u o o o o
o ° o o Q
% °o & o° J
g n % % °° o
0, A o
©
3
o o b o b L
o ° lo o o
o o ° o ° -
o o ° o o
o ° V ©° ° o S
K oy °, o o -
- %o, ®0, 0, %0, |
%o, ©o, o
o) 0cy - <
-
I, 7 J &
o _| °o° °o° >, K4 ooo
© ° o © o °
— © o ° W o o
° o ° o o
o °, o° o o o°
) 0, o ° o
— 00° 20004 000°
|
f 00 00
o of -«
) o° o, o® 0® :
. o o, o o - o
3 o o o o =1
) o ° Q) o
o ° ° ° Z o = |
o o ° o o
° o o o o =
° o o lo o
° o o 3 3 - <@
ol of o
-
& I
T 7 ‘)
o % o ° o° o
s ° Q 3 o o
o o o o o o y
- ° o o o o
©° o ° o o
. °, o° o, o° K
[Te} 0, o o o' o
= ooy 00° S00gqg 000°
! L rTrrr1i TTTTTT
0.0 04 0.8 10 13 16 -10.6 -10.2

Figure 4: Solution of the musn model, using bvpshoot - see text for R -code.

> print(system.time(

+ sol <-bvpshoot(yini= init, x=seq(0,1,by=0.05),func=musn,
+ yend=yend, guess=1,atol=1e-10,rtol=0)

+))

user system elapsed
0.430 0.000 0.427

> pairs(sol,main="musn")

Karline Soetaert 11

5. a BVP problem including an unknown parameter
In the next BVP problem, a parameter X is to be found such that:

d?y

72 + (A —10cos(2t)) -y =0

on [0,7] with boundary conditions %(0) =0 and %(ﬂ’) =0and y(0)=1

Here all the initial values (at t=0) are prescribed. If A would be known the problem would
be overdetermined.

The 2™? order differential equation is first rewritten as two 1%t-order equations:

dy

= 92
a — Y
dy?2
% = —(A—10cos(2t)) -y

and the function that estimates these derivatives is written (derivs).

> mathieu <- function(x,y,lambda)

+ list(c(y[2],

+ -(lambda-10%*cos (2*x))*y[1]))

which is easily solved using bvpshoot:

> init <- ¢(1,0)

> sol <- bvpshoot(yini=init,yend=c(NA,0),x=seq(0,pi,by=0.01),
+ func=mathieu, guess=NULL, extra=15)

and plotted:

> plot(sol)

Note how the extra parameter to be fitted is passed (extra). The value of 1am can be printed:

> attr(sol, "roots") # root gives the value of "lam" (17.10684)

root f.root iter
2 17.10683 -5.205281e-13 6

12 Package bvpSolve, solving boundary value problems in R

1.0

0.5

99900040,
20040,
0000000
0000000°°
<::::::::::::juo
000,
900900000,
2000000,
2900000,

0.0 0.5 1.0 15 20 25 3.0

time

Figure 5: Solution of the BVP ODE problem including an unknown parameter, see text for
R-code

Karline Soetaert

References

Ascher U, Mattheij R, Russell R (1995). Numerical Solution of Boundary Value Problems for
Ordinary Differential Fquations. Philadelphia, PA.

Cash J, Wright M (1991). “A deferred correction method for nonlinear two-point boundary
value problems: implementation and numerical evaluation.” SIAM J. Sci. Stat. Comput.,
12, 971-989.

Soetaert K (2009a). bupSolve: solvers for boundary value problems of ordinary differential
equations. R package version 1.0.

Soetaert K (2009b). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis
of ordinary differential equations. R package version 1.4.

Soetaert K, Petzoldt T, Setzer RW (2009). deSolve: General solvers for initial value problems
of ordinary differential equations (ODE), partial differential equations (PDE) and differen-
tial algebraic equations (DAE). R package version 1.3.

Affiliation:

Karline Soetaert

Centre for Estuarine and Marine Ecology (CEME)

Netherlands Institute of Ecology (NIOO)

4401 NT Yerseke, Netherlands E-mail: k.soetaert@nioo.knaw.nl
URL: http://www.nioo.knaw.nl/users/ksoetaert

13

mailto:k.soetaert@nioo.knaw.nl
http://www.nioo.knaw.nl/users/ksoetaert

	Introduction
	A simple BVP example
	A more complex BVP example
	More complex initial or end conditions
	a BVP problem including an unknown parameter

