
Causal Inference in Case-Control Studies: Vignette

Overview
This vignette describes how to use package “ciccr” that is based on the paper entitled “Causal Inference in
Case-Control Studies” (Jun and Lee, 2020).

Tutorials
We first call the ciccr package.
library(ciccr)

To illustrate the usefulness of the package, we use the dataset ACS that is included the package. This dataset
is a extract from American Community Survey (ACS) 2018, restricted to white males residing in California
with at least a bachelor’s degree. The ACS is an ongoing annual survey by the US Census Bureau that
provides key information about US population. We use the following variables:

y = ACS$topincome
t = ACS$baplus
x = ACS$age

• The binary outcome ‘Top Income’ (Y ) is defined to be one if a respondent’s annual total pre-tax wage
and salary income is top-coded. In our sample extract, the top-coded income bracket has median
income $565,000 and the next highest income that is not top-coded is $327,000.

• The binary treatment (T ) is defined to be one if a respondent has a master’s degree, a professional
degree, or a doctoral degree.

• The covariate (X) is age in years and is restricted to be between 25 and 70.

The original ACS sample is not a case-control sample but we construct one by the following procedure.

1. The case sample (Y = 1) is composed of 921 individuals whose income is top-coded.
2. The control sample (Y = 0) of equal size is randomly drawn without replacement from the pool of

individuals whose income is not top-coded.

We now construct cubic b-spline terms with three inner knots using the age variable.
x = splines::bs(x, df = 6)

Define β(y) = E[logOR(X)|Y = y] for y = 0, 1, where OR(x) is the odds ratio conditional on X = x:

OR(x) = P (T = 1|Y = 1, X = x)
P (T = 0|Y = 1, X = x)

P (T = 0|Y = 0, X = x)
P (T = 1|Y = 0, X = x) .

Using the retrospective sieve logistic regression model, we estimate β(1) by
results_case = avg_retro_logit(y, t, x, 'case')
results_case$est

#> y
#> 0.7286012

results_case$se
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#> y
#> 0.1013445

Here, option 'case' refers to conditioning on Y = 1.

Similarly, we estimate β(0) by
results_control = avg_retro_logit(y, t, x, 'control')
results_control$est

#> y
#> 0.5469094

results_control$se
#> y
#> 0.1518441

Here, option 'control' refers to conditioning on Y = 1.

We carry out causal inference by
results = cicc(y, t, x, 0.2, 0.95)

Here, 0.2 is the specified upper bound for unknown p = Pr(Y = 1). If it is not specified, the default choice
for the upper bound for p is p_upper = 1. Here, 0.95 refers to the level of the confidence interval (0.95 is the
default choice).

The S3 object results contains a grid of estimates est, standard errors se, and one-sided confidence intervals
ci ranging from p = 0 to p = p_upper. In addition, the grid pseq from 0 to p_upper is saved as part of the
S3 object results.
# point estimates
results$est

#> [1] 0.5469094 0.5488219 0.5507345 0.5526470 0.5545596 0.5564721 0.5583847 0.5602972 0.5622097
#> [10] 0.5641223 0.5660348 0.5679474 0.5698599 0.5717725 0.5736850 0.5755976 0.5775101 0.5794227
#> [19] 0.5813352 0.5832477
# standard errors
results$se

#> [1] 0.1518441 0.1502495 0.1486627 0.1470838 0.1455132 0.1439511 0.1423978 0.1408536 0.1393188
#> [10] 0.1377937 0.1362787 0.1347740 0.1332800 0.1317971 0.1303256 0.1288660 0.1274187 0.1259841
#> [19] 0.1245626 0.1231546
# confidence intervals
results$ci

#> [1] 0.7966706 0.7959604 0.7952628 0.7945784 0.7939075 0.7932506 0.7926083 0.7919808 0.7913688
#> [10] 0.7907728 0.7901933 0.7896308 0.7890860 0.7885594 0.7880516 0.7875633 0.7870953 0.7866480
#> [19] 0.7862224 0.7858191
# grid points from 0 to p_upper
results$pseq

#> [1] 0.00000000 0.01052632 0.02105263 0.03157895 0.04210526 0.05263158 0.06315789 0.07368421
#> [9] 0.08421053 0.09473684 0.10526316 0.11578947 0.12631579 0.13684211 0.14736842 0.15789474
#> [17] 0.16842105 0.17894737 0.18947368 0.20000000

To be more compatible with the odds ratio, it is useful to transform them by the exponential function:
# point estimate
exp(results$est)

#> [1] 1.727904 1.731212 1.734527 1.737847 1.741174 1.744507 1.747847 1.751193 1.754545 1.757904
#> [11] 1.761269 1.764641 1.768019 1.771404 1.774795 1.778193 1.781597 1.785008 1.788425 1.791848
# confidence interval estimate
exp(results$ci)
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#> [1] 2.218144 2.216569 2.215023 2.213507 2.212023 2.210571 2.209151 2.207765 2.206415 2.205100
#> [11] 2.203822 2.202583 2.201383 2.200224 2.199108 2.198034 2.197005 2.196023 2.195089 2.194203

It is handy to examine the results by plotting a graph.
yaxis_limit = c(min(exp(results$est)),(max(exp(results$ci))+0.25*(max(exp(results$ci))-min(exp(results$est)))))
plot(results$pseq, exp(results$est), type = "l", lty = "solid", col = "blue", xlab = "Pr(Y*=1)",ylab = "exp(change in log probability)", xlim = c(0,max(results$pseq)), ylim = yaxis_limit)
lines(results$pseq, exp(results$ci), type = "l", lty = "dashed", col = "red")
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To interpret the results, we assume both marginal treatment response (MTR) and marginal treatment
selection (MTS). In this setting, MTR means that everyone will not earn less by obtaining a degree higher
than bachelor’s degree; MTS indicates that those who selected into higher education have higher potential to
earn top incomes. Based on the MTR and MTS assumptions, we can conclude that the treatment effect lies
in between 1 and the upper end point of the one-sided confidence interval with high probability. Thus, the
estimates in the graph above suggest that the effect of obtaining a degree higher than bachelor’s degree is
anywhere between [1, 2.2], which roughly implies that the chance of earning top incomes may increase up to
by a factor of around 2, but allowing for possibility of no positive effect at all. In other words, it is unlikely
that the probability of earning top incomes will more than double by pursuing higher education beyond BA.
See Jun and Lee, 2020 for more detailed explanations regarding how to interpret the estimation results.

Comparison with Logistic Regression
We can compare these results with estimates obtained from logistic regression.
logit = stats::glm(y~t+x, family=stats::binomial("logit"))
est_logit = stats::coef(logit)
ci_logit = stats::confint(logit, level = 0.9)
#> Waiting for profiling to be done...
# point estimate
exp(est_logit)
#> (Intercept) t x1 x2 x3 x4 x5 x6
#> 0.05461156 2.06117153 4.42179639 12.99601849 19.03962976 26.83565737 6.42381406 26.14359394
# confidence interval
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exp(ci_logit)
#> 5 % 95 %
#> (Intercept) 0.01960819 0.1304108
#> t 1.75166056 2.4271287
#> x1 1.05679997 21.6604223
#> x2 5.50583091 33.8909622
#> x3 6.79458010 61.3258710
#> x4 10.22943808 78.7353953
#> x5 2.00536450 22.8509008
#> x6 8.66983039 87.6311482

Here, the relevant coefficient is 2.06 (t) and its two-sided 90% confidence interval is [1.75, 2.43]. If we assume
strong ignorability, the treatment effect is about 2 and its two-sided confidence interval is between [1.75, 2.43].
However, it is unlikely that the higher BA treatment satisfies the strong ignorability condition.

Reference
Sung Jae Jun and Sokbae Lee. Causal Inference in Case-Control Studies. https://arxiv.org/abs/2004.08318.
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