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1 Introduction

It is difficult and complicated to construct an accurate model in QSAR (Quantitative Structure-
Activity Relationship) modeling. The process usually involves feature selection, outlier detection,
non-linearship, and model stability problems. Such modeling procedures is pretty tedious for
the users who do not have a comprehensive knowledge of related methods. Not to mention that
there exists far too many customized algorithms that can solve such problems, which are often
not easy to understand and implement.

For the most frequently used model in QSAR studies, i.e. the partial least squares, we present
a simple, easy-to-understand unified framework to solve such problems, users can do feature
selection, outlier detection, and ensemble prediction under our framework. Also, a “clean”
dataset can be generated using our method before modeling. We present the R package enpls
here as the implementation.

Theoretically, statistical distribution can provide abundant information about random vari-
ables. Most approaches of statistical inference are based on such a statistical distribution. In
our previous studies (Cao et al., 2010, 2011), we made use of such a strategy to construct the
statistical distribution of model features, such as prediction errors and variable coefficients, and
subsequently made statistical inference. The statistic of these distributions, namely mean value
and standard deviation, are then used to quantitatively describe various model features. Monte-
Carlo or bootstrap approaches are constantly employed to extract the information and used for
statistical inference. In general, Monte-Carlo or bootstrap approaches can be used to generate
a distribution of some statistic of interest by repeatedly calculating that statistic randomly se-
lected portions of the data because of its good asymptotic properties. For each of the functions,
two resampling methods were considered, i.e. Monte-Carlo resampling (default method) or boot-
strap resampling. In general, the Monte-Carlo resampling method randomly samples from the
original dataset for many times, each time by a tunable sampling ratio < 1. The bootstrap
resampling method, in the other hand, randomly samples the same size of the original dataset
from the dataset with replacement.
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Figure 1: Ensemble methods for increasing prediction accuracy

In QSAR/QSPR study, if we model a given QSAR/QSPR dataset by a single training/validation
set division, we can obtain predictive errors of this validation set and all variable coefficients,
characterizing the behavior of model features (i.e., prediction errors and variable coefficients)
within these two sets. However, these model features highly depend on the way in which we
split the data into the training set and validation set. Different training/validation data division
should yield different model features. Thus, by changing the training/validation data division
by Monte-Carlo or bootstrap methods, we can obtain a large number of QSAR/QSPR models
and corresponding model features so as to gain some insight of the data structure statistically.

What kind of information about these model features can be obtained from their distribution?
Generally speaking, some parameters of interest can be acquired as a function of the probability
density function or of the empirical cumulative distribution function of a random variable (e.g.,
model features), which will make statistical inference about model features easier. Suppose



that z1, ..., z;, will be used to estimate a population parameter 6. A function of a population
distribution function, defining the parameter 6, can usually be expressed as:

0= /g(z) dP,,(2)

Here g(z) is the statistic used to estimate 6, whose expectations we might be interested
in. P,,(z) is the probability density of z. Thus, by constructing different g(z), one can obtain
different statistics 6 describing specific information (e.g., mean value or standard deviation) of
a population distribution.

In Cao et al. (2010, 2011), we addressed feature selection, outlier detection and model reli-
ability problems simultaneously by constructing a unified framework, based on the idea of the
statistical distribution. Our approach exploits the fact that the distribution of linear model
coefficients provides a mechanism for ranking and interpreting the effects of variable, while the
distribution of the prediction errors provides a mechanism for differentiating the outliers from
normal samples. By combination of multiple models, we construct ensemble partial least squares
model to improve prediction performance.

We will use the alkanes data throughout this manual for demonstration. The dataset has a
predictor matrix x with 207 samples and 21 variables, with a continuous response y. The dataset
is extracted from Liang et al. (2008). See 7alkanes for details.

require (enpls)

## Loading required package: enpls

data(alkanes)
x = alkanes$x
y = alkanes$y

2 Ensemble PLS for Feature Selection

Monte-Carlo uninformative variable elimination (Centner et al., 1996) methods have been suc-
cessfully employed in variable selection (Cai et al., 2008; Han et al., 2008). The important
variables should be the ones that possess both large mean value and small standard deviation.
We construct the following measure of variable importance:

__ mean(s)

sd(s)
where s is the coefficient vector for the i-th variable, generated by Monte-Carlo or bootstrap.
mean(s) and sd(s) represent the mean value and standard deviation, respectively. Thus, the
variable with the largest ¢; value should be the most important one in the pool of variables.
These variables with the smaller ¢; value should be removed due to their small contribution to
models.
The function enpls.fs() is made for ensemble PLS feature selection:

set.seed(42)
varimp = enpls.fs(x, y)
print(varimp, nvar = 10L)

## Variable Importance by Ensemble Partial Least Squares

##H ——-

## Importance
## Chi.P.4 2.1655
## MEDV.33 2.0627
## MEDV.23 1.6866
## Chi.C.3 1.3899
## Estate.l 1.3570
## Chi.P.5 1.0614
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Figure 2: Feature Selection
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Figure 3: Top ten important variables of the alkanes dataset

## MEDV.22 1.0200
## Estate.2 0.8720
## Chi.P.3 0.8065
## MEDV.12 0.7624

plot(varimp, nvar = 10L)

The top ten important varibles are printed, and plotted in Figure 3, by using nvar = 10 in
print () and plot(). See ?plot.enpls.fs and 7print.enpls.fs for more available options.

By changing the default parameters in enpls.fs() and other functions in the enpls package,
we could control the maximum components included in each model, resampling method (Monte-
Carlo or Boostrap). By setting the parallel parameter to an (> 1) integer, the model fitting
will be done in parallel, which will increase the computation speed significantly.

3 Ensemble PLS for Outlier Detection

The distribution of prediction errors generated by a large number of models can contain more
sample information (i.e., whether this sample is an outlier or not). Likewise, the mean value
mean(j) and the standard deviation sd(j) of the prediction error distribution for the j-th sample
are employed to describe this distribution.

k
1
mean(j) = Z Zerror(i)
i=1
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Figure 4: Outlier Detection



1

k z
sd(j) = (kil Z(error(i) - mean(j))2>
=1

where k is the total times of which the j-th sample is found in the validation set. The error(7)
is the prediction error of the j-th sample in the i-th cycle. Thus, a large mean value of prediction
errors for some sample indicates that we can always obtain large prediction errors no matter
how the training datasets are perturbated.

We can define two types of outliers, i.e. the y outlier and the X outlier. For the y outliers, the
cross-prediction can provide information on potentially outliers. For example, if only one outlier
molecule has many chlorine atoms and chlorine is an important variable, then the full dataset
may be able to calibrate the effect of chlorine and make good predictions, but the dataset with
the molecule excluded will likely lead to a large prediction residual on that molecule. So, the
prediction errors obtained by cross-prediction allow us to easily detect such outliers compared
to the fitted residuals.

In the other hand, in linear models, if an external data point z; is being predicted and has
a leverage of h = z!(X'X)~tx;, its prediction error has the variance s?{e;} = MSE(1 + h). We
see that the variability of the sampling distribution of e; is affected by how far x; is from the
centroid X through the term h. The further z; is from X, the greater the quantity is, and the
larger the variance of e; is. Thus, the variation of e; obtained from different observations will be
greater when x; is far from the mean value than the ones near the mean value. We can therefore
detect the X outliers by standard deviation of prediction errors.

The function enpls.od() is provided for outlier detection:

od = enpls.od(x, y)
plot(od, criterion = 'sd')

Figure 5 reveals the outliers with criterion = 'sd'. This means samples that lie in n
(default is 3) times out of the standard deviation of the mean Error Mean and mean Error
SD are considered to be outliers. The black points are normal samples, the samples with red
lables are y outliers (lower right), the blue ones are X outliers (upper left), the purple ones (may
appear in the upper right part) will be the abnormal samples, as defined in Cao et al. (2011).
Use criterion = 'quantile' to get the outliers by quantile information. See 7enpls.od for
details.

4 Ensemble PLS Modeling and Prediction

Ensemble methods, like bagging (Breiman, 1996) and boosting (Friedman et al., 2000), are
usually used to improve model performance. Naturally, in enpls, we ensemble predictions from
multiple PLS models generated by Monte-Carlo or bootstrap resampling methods to improve
prediction performance.

For fitting ensemble partial least squares regression models, use enpls.en():

enpls.fit = enpls.en(x, y)

With the fitted object enpls.fit, we could predict new X with predict(), and visualize
the predicted result:

y.pred = predict(enpls.fit, newx = x)

plot(y, y.pred, xlim = range(y), ylim = range(y),
xlab = 'Experimental', ylab = 'Predicted')

abline(a = OL, b = 1L)

Figure 7 shows the experimental values and predicted values.
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Figure 5: Outlier detection result of the alkanes dataset
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Figure 6: Ensemble Modeling
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5 Model Evaluation with k-fold Cross Validation

For ensemble partial least squares, cv.enpls() is used for k-fold cross validation:

cv.enplsfit = cv.enpls(x, y)
print(cv.enpls.fit)

plot(cv.enpls.fit)

Then we printed the cross validation result: RMSE and R2?. The argument nfolds controls
the fold number (default is 5). See ?cv.enpls for details. Figure 8 shows the experimental
values and the predicted values of the cross validation result.
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Figure 8: Cross validation result: experimental values vs. predicted values
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