Graphs in the gRbase package

Sgren Hgjsgaard
March 11, 2013

Contents

1 Introduction 1

2 Graphs 2
2.1 Undirected graphs 2
2.2 Directed acyclic graphs (DAGs) oo L 4
2.3 Graph coercion 5
2.4 Plotting graphs 6

3 Advanced graph operations 7
3.1 Moralization 7
3.2 Topological sort 8
3.3 Getting cliques L 9
3.4 Maximum cardinality search 000000 10
3.5 Triangulation L 11
3.6 RIP ordering / junction tree 12
3.7 Minimal triangulation and maximum prime subgraph decomposition 13

4 Time and space considerations 13
4.1 Time e 13
4.2 Space. . ..o 14

5 Graph queries 15

1 Introduction

For the R community, the packages graph, RBGL, Rgraphviz and igraph are extremely
useful tools for graph operations, manipulation and layout. The gRbase package adds
some additional tools to these fine packages. The most important tools are:

1. Undirected and directed acyclic graphs can be specified using formulae or an adja-
cency list using the functions ug() and dag(). This gives graphs represented in one
of the following forms:!

e A graphNEL object (the default),
e A dense adjacency matrix. By this we mean a “standard” matrix in R.
e A sparse adjacency matrix. By this we mean a dgCMatrix from the Matrix

package.

2. Some graph algorithms are implemented in gRbase. These can be applied to graphs
represented as graphNELs and matrices. The most important algorithms are:
e moralize(), (moralize a directed acyclic graph)
e mcs(),(maximum cardinality search for undirected graph)
e triangulate(), (triangulate undirected graph)
e rip(), (RIP ordering of cliques of triangulated undirected graph)
e getCliques(), (get the (maximal) cliques of an undirected graph)
e minimalTriang() (minimal triangulation of undirected graph)?
e mpd() (maximal prime subgraph decomposition of undirected graph)?
The general scheme is the following: There is a mcs() function and mcs() methods

for graphNELs and for the two matrix types. The workhorse is the function mcsMAT ()
and the various methods coerces the graph to a (sparse) matrix and invokes mcsMAT ().

2 Graphs

Undirected graphs can be created by the ug() function and directed acyclic graphs (DAGs)
by the dag() function.

The graphs can be specified either using formulae or a list of vectors; see examples below.

2.1 Undirected graphs

An undirected graph is created by the ug() function.

!There is a fourth form: igraph objects. These, however, will probably not be supported in the future.
2Needs more work
3Needs more work

As graphNEL: The following specifications are equivalent (notice that “:” and “*” can be
used interchangably):

R> ugll <- ug(Ta:b:c + c:d + d:e + a:e + f:g)
R> ugll <- ug(Taxb*c + cxd + d*e + axe + f*xg)
R> ug12 <- ug(c(”a”,"b”,"c"),c("c”,”d"),c("d”,"e"),c("a”,"e"),c("f”,"g"))
R> ug13 <- ug(Ta:b:c, “c:d, “d:e + a:e + f:g)
R> ug13 <- ug(Ta*b*c, “c*d, “d*e + axe + f*xg)

R> ugll

A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 7

As adjacency matrix: A representation as an adjacency matrix can be obtained with
one of the following equivalent specifications:

R> uglim <- ug(Ta*b*c + c*d + d*e + a*e + f*g, result="matrix")
R> ug12m <- ug(C("a","b","C“),C("C","d“),C("d","e“),C("a","e“),C("f","g“),
result="matrix")

R> uglim
abcdefg
a0110100
b1010000
c1101000
d0010100
e1001000
f0000001
g0000010

R> ugllM <- ug(Ta*b*c + c*d + d*e + a*e + f*g, result="Matrix")
R> ug12M <- ug(C("a","b","C“),C("C","d“),C("d","e“),C("a","e“),C("f","g“),
result="Matrix")

R> ugliM

~

sparse Matrix of class "dgCMatrix"
defg

x 7
abec

11 .1
1

= .

g HhO QO TP
=
=

2.2 Directed acyclic graphs (DAGs)

A directed acyclic graph is created by the dag() function.

As graphNEL: The following specifications are equivalent (notice that “:” and “¥” can be
used interchangably):

R> dagll <- dag("a + b:a + c:a:b + d:c:e + e:a + g:f)

R> dagll <- dag(~a + b*a + c*a*b + d*c*e + e*a + g*f)

R> dag12 <- dag(“a”, c("b",“a”), c(”c","a","b"), c(”d",“c","e”),
c("e","a"),c("g","f”))

R> dagl3 <- dag("a, "b:a, “c:a:b, “d:c:e, "e:a, “g:f)

R> dagl3 <- dag(~a, “b*a, T“c*a*b, “d*cx*e, “e*a, ~g*f)

R> dagilli

A graphNEL graph with directed edges
Number of Nodes = 7
Number of Edges = 7

Here ~“a means that “a” has no parents while “d:b:c means that “d” has parents “b” and

[P

C

As adjacency matrix: A representation as an adjacency matrix can be obtained with

R> dagllim <- dag("a + b:a + c:a:b + d:c:e + e:a + g:f, result="matrix")
R> dag12m <- dag(”a", c(”b",”a"), c("c”,”a",”b"), c("d",”c",”e”),
c(”e", nan) , C(”g", nfn) , result=”matrix")

R> daglim
abcdegt
a0110100
b0010000O
c0001000
d00000O0O
e0001000
g0000000
f0000010

R> dagllM <- dag(Ta + b:a + c:a:b + d:c:e + e:a + g:f, result="Matrix")
R> dag12M <- dag("a” C(”b" uau) C("C” nan ”b") C("d” ”C" uen)
c("e”, nau) s C(”g", nfu) s result="MatriX”)

R> dag1lM

7 x 7 sparse Matrix of class "dgCMatrix"
abcdegt

a.11.1..

b 1. .

c . 1.

d . .o

e . 1.

g . .

f . 1

2.3 Graph coercion
Graphs can be coerced between differente representations using as (); for example

R> as(ugll, "matrix")

abcdefg
a0110100
b1010000
c1101000
d0010100
e1001000
f0000001
g0000010

R> as(as(ugll, "matrix"),"dgCMatrix")

~

sparse Matrix of class "dgCMatrix"
defg

x 7
abc

11 .1. .
1

- .

g HhO QO TP
-
[y

R> as(as(as(ugll, "matrix"),"dgCMatrix"), "graphNEL")

A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 7

R> as(as(as(as(ugll, "matrix"),"Matrix"), "graphNEL"),"igraph")

IGRAPH UNW- 7 7 —--
+ attr: name (v/c), label (v/c), weight (e/n)

NOTICE! There is one thing to notice when coercing a dense matrix to a sparse matrix.
Consider this

R> m <- matrix(1:4,nrow=2)
R> as(m, "Matrix")

2 x 2 Matrix of class "dgeMatrix"
(,11 [,2]

[1,] 1 3

[2,] 2 4

R> as(m, "dgCMatrix")

2 x 2 sparse Matrix of class "dgCMatrix"

(1,1 13

[2,] 2 4

In the first case, the matrix coercion method will, based on properties of the matrix, impose
a specific type on the result. The graph algorithms in gRbase are based on the dgCMatrix

form and hence the latter case is more safe. Coercion to a dgCMatrix can be made much
faster with the following function from gRbase:

R> asdgCMatrix(m)

2 x 2 sparse Matrix of class "dgCMatrix"

(1,1 13
(2,1 2 4

2.4 Plotting graphs

Graphs represented as graphNEL objects are displayed with plot(). There is no plot()
method for graphs represented as adjacency matrices, so here coercion is one option:

R> par (mfrow=c(1,2))
R> plot(ugll)
R> plot(as(ugllm, "graphNEL"))

@ © @ @
b) 9 ©® 9
©) ©)
d d
© O

An alternative for adjacency matrices is the gplot () function in the sna package:

R> par (mfrow=c(1,2))

R> library(sna)

R> gplot(uglim, label=colnames(ugllim),gmode="graph")
R> gplot(daglim, label=colnames(daglim))

3 Advanced graph operations

3.1 Moralization

R> apropos (" moralize\\.")

[1] "moralize.Matrix" "moralize.graphNEL" "moralize.igraph"
[4] "moralize.matrix"

A moralized directed acyclic graph is obtained with
R> dagll.mor <- moralize(dagll)

R> par (mfrow=c(1,2))
R> plot(dagil)
R> plot(dagll.mor)

©
c
@

For the alternative representations

R> moralize(dagllm)

abcdegt
a0110100
b1010000
c1101100
d0010100
e1011000
g0000001
f0000010

R> moralize(dag11M)

7 x 7 sparse Matrix of class "dgCMatrix"
abcdegt

a.11.1.

b1.1.

cl1 .11

d . 1 1

el .11 .

g . .1

f . 1.

3.2 Topological sort

A topological ordering of a directed graph is a linear ordering of its vertices such that, for
every edge (u->v), u comes before v in the ordering. A topological ordering is possible if
and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG).
Any DAG has at least one topological ordering.

R> topoSort(dagll)

[1] ||all "bll IICII llell
R> topoSort(daglim)
[1] ||a" "bll "C" lle"
R> topoSort(dagl1M)

[1] ||all Ilbll "C" lle"

IIfll Ildll ngn
IIfll "dll llgll
IIfll lld" llgll

The dag() function actually allows specification of a directed graph with cycles (a check
can be imposed with forceCheck=TRUE). Below is a directed graph with a cycle

R> topoSort(dag(~a:b+b:c+c:a))

character(0)

3.3 Getting cliques

I graph theory, a clique is often a complete subset of a graph. A maximal clique is a clique
which can not be enlarged. In statistics (and that is the convention we follow here) a clique
is usually understood to be a maximal clique.

Finding the cliques of a general graph is an NP complete problem. Finding the cliques of
triangualted graph is linear in the number of cliques.

R> str(getCliques(ugl1))

List of 5
$: chr
$: chr
$: chr
$: chr
$: chr

[13] ||an
[1:2] "a"
[1:2] "a"
[1:2] "a"
[1:2] "f"

Ilbll "C"
Ilell
"C“
Ilell
Ilgll

R> str(getCliques (uglim))

List of 5
$: chr
$: chr
$: chr
$: chr
$: chr

[13] ||an
[1:2] "a"
[1:2] "a"
[1:2] "a"
[1:2] "f"

Ilbll "C"
Ilell
"C“
Ilell
Ilgll

R> str(getCliques (uglliM))

List of 5

: chr
: chr
: chr
: chr
: chr

¥ P PSP

[13] g
[1:2] "a"
[12] ngn
[12] ngn
[12] nen o

Ilbll "C"
Ilell

Cll
Iell
gll

3.4 Maximum cardinality search

R> apropos(""mcs\\.")

[1] "mcs.Matrix" "mcs.graphNEL" "mcs.igraph" "mcs.matrix"

Testing for whether a graph is triangulated is based on Maximum Cardinality Search. If
character (0) is returned the graph is not triangulated. Otherwise a linear ordering of the
nodes is returned.

R> mcs(ugl1)

character(0)

R> mcs(ugllim)

character(0)

R> mcs(ugl1M)

character(0)

R> mcs(dagll.mor)

[1] "a" "pb" "c" "e" "4" "g" "f"

R> mcs(as(dagll.mor, "matrix"))

[1] "a" "b" "c" "e" "d" "g" "f"

R> mcs(as(dagll.mor,"Matrix"))

[1] "a" "b" "c" "e" "d" "g" "f"

R> mcs(dagll)

character(0)

10

3.5 Triangulation

R> apropos("“triangulate\\.")

[1] "triangulate.Matrix" "triangulate.graphNEL" "triangulate.igraph"
[4] "triangulate.matrix"

Triangulate an undirected graph by adding extra edges to the graph:
R> (tugli<-triangulate(ugll))

A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 8

R> (tuglim<-triangulate(ugllim))

abcdefg
a0110100
b1010000O0
c1101100
d0010100
e1011000
f0000001
g0000010

R> (tugliM<-triangulate(ugl1iM))

~

sparse Matrix of class "dgCMatrix"
cdefg
1.1.

X
a

= .
= T
[

0 HhO Q0O T WE
=
[

R> par(mfrow=c(1,2))
R> plot(ugll)
R> plot(tugll)

11

@ a) (f
b) 9 © 9
©) ©
©) d
(e) e

3.6 RIP ordering / junction tree

R> apropos("“rip\\.")
[1] "rip.Matrix" "rip.graphNEL" "rip.igraph" "rip.matrix"
A RIP ordering of the cliques of a triangulated graph can be obtained as:

R> rr <- rip(tugll)

R> rr
cliques

1 :cab

2 : eac

3 :dce

4 : gf
separators

1

2 ac

3 c e

4
parents

1:0

2 1

3 : 2

4 : 0

R> rr <- rip(tuglim)
R> rr <- rip(tugliM)

R> plot(rr)

12

3.7 Minimal triangulation and maximum prime subgraph de-
composition

An undirected graph uG is triangulated (or chordal) if it has no cycles of length >= 4
without a chord which is equivalent to that the vertices can be given a perfect ordering.
Any undirected graph can be triangulated by adding edges to the graph, so called fill-ins
which gives the graph TuG. A triangulation TuG is minimal if no fill-ins can be removed
without breaking the property that TuG is triangulated. A related concept is the minimum
triangulation, which is the the graph with the smallest number of fill-ins. The minimum
triangulation is unique. Finding the minimum triangulation is NP-hard.

4 Time and space considerations

4.1 Time

It is worth noticing that working with graphs representated as graphNEL objects is some-
what slower working with graphs represented as adjacency matrices. Consider finding the
cliques of an undirected graph represented as a graphNEL object or as a matrix:

R> system.time({for (ii in 1:200) maxClique(ugl1)}) ## in RBGL

user system elapsed
0.11 0.00 0.11

R> system.time({for (ii in 1:200) maxCliqueMAT(ugllim)}) ## in gRbase

user system elapsed
0.03 0.00 0.04

13

Working with sparse matrices rather than standard matrices slows indexing down:
R> system.time({for (ii in 1:2000) uglim[2,]})

user system elapsed
0 0 0

R> system.time({for (ii in 1:2000) ugliM[2,]})

user system elapsed
0.77 0.00 0.77

However, gRbase has some functionality for indexing sparse matrices quickly:
R> system.time({for (ii in 1:2000) sp_getXj(ugliM,2)})

user system elapsed
0.04 0.00 0.04

4.2 Space

The graphNEL representation is — at least — in principle more economic in terms of space
requirements than the adjacency matrix representation (because the adjacency matrix rep-
resentation uses a 0 to represent a “missing edge”. The sparse matrix representation is
clearly only superior to the standard matrix representation if the graph is sparse:

R> V <= 1:100

R> M <- 1:10

R> ## Sparse graph

R> ##

R> g1 <- randomGraph(V, M, 0.05)
R> length(edgeList(gl))

[1] 147

R> c(NEL=object.size(gl),
mat=object.size(as(gl, "matrix")),
Mat=object.size(as.adjMAT(gl, "Matrix")))

NEL mat Mat
157336 51648 16632

R> ## More dense graph

R> ##

R> g1 <- randomGraph(V, M, 0.5)
R> length(edgeList(g1))

14

[1] 4785

R> c(NEL=object.size(gl),
mat=object.size(as(gl, "matrix")),
Mat=object.size(as.adjMAT(gl, "Matrix")))

NEL mat Mat
3644744 51648 127944

5 Graph queries

The graph and RBGL packages implement various graph operations for graphNEL objects.
See the documentation for these packages. The gRbase implements a few additional
functions, see Section 1. An additional function in gRbase for graph operations is query-
graph (). This function is intended as a wrapper for the various graph operations available
in gRbase, graph and RBGL. There are two main virtues of querygraph(): 1) query-
graph() operates on any of the three graph representations described above! and 2)
querygraph () provides a unified interface to the graph operations. The general syntax
is

R> args(querygraph)

function (object, op, set = NULL, set2 = NULL, set3 = NULL)
NULL

4Actually not quite yet, but it will be so in the future.

15

