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1 Overview

The function mcpcalc calculates signed root deviance profiles for objects of
class lm, glm, and nls. The parameters of interest can be specified by defining
a contrast matrix, allowing also for profiles of parameter linear combinations.
The profiles themselves are calculated by conditional optimization for multiple
points in the neighbourhood around the parameter estimate. At each of these
points the signed root deviance statistic is calculated. To obtain a continuous
profile function, interpolation splines are fitted.

Confidence intervals can be calculated by the determination of the intersec-
tion between the profile and a critical value, projecting this cutpoint on the scale
of the parameter of interest. For simultaneous confidence intervals, controlling
the family-wise error rate (FWER) at a specified level α, this value is calculated
as a quantile of a multivariate normal- or t-distribution. Multiple tests are cal-
culated analogous by calculating the signed root deviance statistic at the test
margin and calculating the probability of locating this statistic under the null
hypothesis, assuming a multivariate normal- or t-distribution.
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2 GLM profiles

2.1 Generalized linear models

Given a vector of observations yi with i = 1, . . . , N as a realization of a random
variable Yi a generalized linear model can be assumed, to capture as much vari-
ability in the data by an unknown parameter vector βj with j = 1, . . . , k. This
parameter vector can be linked to the data by a designmatrix of covariates xij ,
specifying the parameter layout. Model predictions are obtained by multiplying
the design matrix with the unknown parameter vector βj

ηi =

k∑
j=1

xijβj

The linear predictor η is calculated on a given link function τ (·), for which the
inverse can be used to obtain the predictions on the original scale

ηi = τ (µi) .

Under the assumption that each component of Yi has a distribution in the
exponential family, the density takes the form

fY (y; θ, φ) = exp

{
yθ − b (θ)

a (φ)
+ c (y, φ)

}
for specific functions a (φ) , b (θ) , c (y, φ). As the parameters should be estimated
conditional on an observation y the log likelihood function can be written as

l (θ, φ; y) = log (fY (y; θ, φ)) .

The parameter vector β̂ can be estimated by maximizing the (log) likelihood
l (µi; yi) or equivalently minimizing the scaled deviance

D (µi; yi) = 2 (l (yi; yi)− l (µi; yi))

with respect to µi.

2.2 Parameter linear combinations

If the parameters are not directly of interest, but linear combinations of them,
these can be specified by a contrast matrix Cmj , with m = 1, . . . ,M , and
j = 1, . . . , k. Parameter linear combinations are then calculated by

ψm =

k∑
j=1

Cmjβj

The corresponding (M × M) variance-covariance matrix Σψ for these linear
combinations is calculated by

Σψ = CΣβC
T ,

where Σβ is the (k × k) variance-covariance matrix for the parameter vector
β = (βj).
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2.3 Signed root deviance profiles

To evaluate the deviance near the parameter estimate ψ̂m, multiple points in
its neighbourhood ψ?m may be observed. Therefore the deviance D(ψ?m, β̂j) is
calculated for different, fixed ψ?m treating the βi as nuisance parameters. But

directly estimating β̂j for a fixed ψ?m is difficult, as ψ?m is defined as a linear

combination of the β̂j , leading to an overparameterized model.
This problem can be solved by conditioning on a parameter βj with Cmj 6= 0,

and estimating only k − 1 parameters βj′ with j′ 6= j. The β̂j are therefore
estimated with the constraint

ψm −
k−1∑
j′=1

cmj′βj′ = cmjβj .

The deviance statistic can be reformulated as a signed root deviance statistic
by

r̂(ψ?m) = sign
(
ψ?m − ψ̂m

)√D(ψ?m, β̂j)

φ
,

wher φ is an additional scaling parameter, e.g. the residual variance when
assuming a Gaussian distribution for the observations, or an overdispersion pa-
rameter in a quasilikelihood model.

At last the profile function r̂(ψm) is estimated by an interpolation spline
given multiple estimates for r̂(ψ?m).

3 Simultaneous confidence intervals

Under the assumption that ψm
a∼ N(ψm, Σ̂ψ̂), M simultaneous confidence in-

tervals can be calculated by

{ψm : −z ≤ r̂(ψm) ≤ z} .

An adequate cutoff value z can be computed as the twosided, 1 − α quantile
of a multivariate normal distribution. As the correlation structure of this mul-
tivariate normal distribution is unknown, it is approximated by the estimated
correlation structure, obtained by standardizing the estimated variance covari-
ance matrix Σ̂ψ̂. If a residual degree of freedom is available, a corresponding
multivariate t-distribution may be used instead of calculating the quantile from
a Gaussian distribution.

4 A linear model example

In the dataset cholesterol{multcomp} the reduction of the cholesterol level
is observed for five different treatments. Three different formulations of a drug
(20mg once, 10mg twice, and 5mg four times a day), and two competing drugs
as control groups were tested. Purpose of the study is to find formulations of the
drug, which show a more efficient cholesterol reduction than the control groups.

First, a linear model is used to estimate the marginal means for each treat-
ment:
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> library(mcprofile)

> data(cholesterol)

> mod <- lm(response ~ trt - 1, data = cholesterol)

To specify the comparisons of interest, a contrast matrix has to be defined;
this matrix is chosen to reproduce the results in Westfall (1999) comparing all
formulations with each other, and comparing each of the two controls separately
with the pooled means of the three formulations.

> K <- contrMat(table(cholesterol$trt), type = "Tukey")

> Ksub <- rbind(K[c(1, 2, 5), ], `D - test` = c(-1, -1, -1, 3,

+ 0)/3, `E - test` = c(-1, -1, -1, 0, 3)/3)

> Ksub

Profiles are calculated by

> mp <- mcpcalc(mod, Ksub)

with corresponding simultaneous confidence intervals:

> (ci <- confint(mp, adjust = "single-step"))

These are the same as calculated with package multcomp, due to the linear
model assumptions:

> (confint(glht(mod, linfct = Ksub)))

Confidence intervals are plotted by

> par(mar = c(5, 8, 4, 2) + 0.1)

> plot(ci)

> abline(v = 0, lty = 2)

or directly in a profile plot by

> print(plot(mp, ci))

5 GLM example

In a cell transformation experiment, Balb/c 3T3 cells are treated with different
concentrations of a carcinogen. Cells treated with a carcinogen will not stop
proliferation; therefore the number of foci (cell accumulations), counted for 10
replicates per concentration level, are a measure of carcinogenicity.

If no specific dose-response relationship between the concentrations of the
carcinogen and the foci number should be assumed, a comparison of each con-
centration level to a negative control might be performed. In a first step a
Poisson GLM is used to estimate the concentration means (on a logarithmic
scale).

> data(cta)

> cta$Conc <- factor(cta$conc, levels = unique(cta$conc))

> gmod <- glm(foci ~ Conc - 1, data = cta, poisson(link = "log"))

The parameter differences of interest are specified by a ‘Dunnett’-type con-
trast matrix.
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> (K <- contrMat(table(cta$Conc), type = "Dunnett"))

For these contrast parameters profiles are calculated and plotted.

> gmp <- mcpcalc(gmod, K)

> print(plot(gmp, layout = c(4, 2)))

Also a fixed parameter range can be defined for the profile calculation.

> gmp2 <- mcpcalc(gmod, K, margin = c(-8, 8))

> print(plot(gmp2, layout = c(4, 2)))

The function mcprofileControl provides several control arguments, which
enable for example to compute the profiles for a fixed number of points with
fixed distances. Profiles with only four equally distant supporting points on
each side are calculated by

> gmp3 <- mcpcalc(gmod, K, margin = c(-8, 8), control = mcprofileControl(steps = 4,

+ fixed.range = TRUE))

> print(plot(gmp3, layout = c(4, 2)))

5.1 Confidence intervals

Simultaneous confidence intervals can be calculated, assuming a multivariate
normal distribution for the parameters of interest. As the mean differences are
calculated on the log link, a transformation back by the exponent results in ratio
of mean parameters. The transformation can be conveniently performed by the
exp function.

> (eci <- exp(confint(gmp, adjust = "single-step")))

If in this experiment a safety evaluation might be of interest, the multiplicity
adjustment should be omitted and a local error rate can be assumed for each in-
terval. When using the confidence interval for equivalence testing, each interval
limit is compared with predefined equivalence margins; if both confidence limits
are located within the two margins, safety can be concluded. As this decision
applies to both, the upper and the lower limit, simultaneously, a corresponding
test decision is obtained at an error level of 2× α for all intervals.

> confint(gmp, level = 0.9, adjust = "none")

Only increasing carcinogenicity is of interest; therefore onesided confidence
intervals can be calculated, reallocating the critical value by shifting some areas
with a higher likelihood into the rejection region of a corresponding hypothesis
test in favour of areas with a lower likelihood, which are not in the test direction
of interest.

> confint(gmp, alternative = "greater", adjust = "none")

5.2 Multiple hypothesis testing

As the confidence intervals, calculated in the previous section, are only inver-
sions of a multiple hypotheses test, the computation of adjusted p-values is also
directly available. These are calculated as the probability of obtaining a more
‘extreme’ value than the signed root of the deviance statistic under the null
hypothesis.
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> (pvals <- test(gmp, adjust = "single-step"))

> print(plot(gmp, pvals, layout = c(4, 2)))

Multiplicity adjustment is performed by calculating the p-values directly
from a multivariate distribution, or choosing any adjustment method provided
by the function p.adjust, e.g. the stepwise procedure of Holm.

> test(gmp, adjust = "holm")

5.3 Quadratic- and higher order approximations

The Wald-type confidence intervals obtained by the multcomp package

> (round(exp(confint(glht(gmod, linfct = K))$confint), 2))

can be reproduced by recalculating the profiles by substituting the profile de-
viance statistic with a Wald-type statistic

t(ψm) = j(ψ̂m)
1
2

(
ψ̂m − ψm

)
,

where j(ψ̂m) is the observed Fisher information function.

> wmp <- wald(gmp)

> (exp(confint(wmp, adjust = "single-step")))

A plot for comparing two different profiles is also available.
The squared=TRUE argument changes the scale of the y-axis directly to the

deviance statistic instead of the signed root version; hence difference of the
profiles to a quadratic function can clearly be seen in this plot.

> print(plot(gmp, wmp, squared = TRUE, layout = c(4, 2)))

Additionally, profiles based on higher order approximation (Brazzale et al.)
can be computed.

> hmp <- hoa(gmp)

> (exp(confint(hmp, adjust = "single-step")))

These sattlepoint approximations are based on the statistic

r∗(ψm) = r(ψm) +
1

r(ψm)
log

(
q(ψm)

r(ψm)

)
,

with the Wald statistic

q(ψm) = ρ(ψm, ψ̂m)t(ψm)

adding a nuisance parameter adjustment, relating the variance estimates of the
full model to the conditional estimates by

ρ(ψm, ψ̂m) =


∣∣∣jββ (ψ̂m, β̂i)∣∣∣∣∣∣jββ (ψm, β̂i)∣∣∣

 .
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6 Ratios of normal means

Instead of investigating the difference of parameters by constructing simple lin-
ear combinations, also the ratio of parameter linear combinations may be of
interest. Profiling for this problem can be done by optimization conditional to
the ratio of parameters defined by separate contrast matrices for the numerator
and denominator.

> data(Penicillin)

> Penicillin$strain <- as.factor(Penicillin$strain)

> linmod <- lm(diameter ~ strain - 1, data = Penicillin)

> CM <- contrMatRatio(table(Penicillin$strain), type = "Tukey")

> mpr <- mcpcalcRatio(linmod, CM$numC, CM$denC)

> (cir <- confint(mpr, adjust = "single-step"))

> plot(cir)

> abline(v = 1, lty = 2)
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