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When sampling effort varies between detectors or over time in a capture–

recapture study we expect a commensurate change in the number of detections.

It makes sense to allow for known variation in effort when modelling detections.

This simultaneously removes one source of un-modelled heterogeneity in detec-

tion probability and relates detection parameters to a consistent unit of effort

(e.g. one trap set for one day).

Borchers and Efford (2008) allowed the duration of exposure to vary between

sampling occasions in their competing-hazard model for multi-catch traps. The

duration (Ts) was a measure of occasion-specific effort. A range of detector types

is now acknowledged, each with its own probability model for detections (Efford

et al. 2009a,b). We generalise the method for effort to allow joint variation in

effort over detectors and over time (occasions), and indicate how effort may be

included in models for other detector types. Adjustment for effort is equivalent

to the use of an offset variable to allow for varying exposure in generalized linear

modelling of counts (McCullagh and Nelder 1989).
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1 Theory

In what follows we use Tsk for the effort on occasion s at detector k. It is

expected that for small Tsk the number of detections increases linearly with Tsk

(saturation may occur at higher effort, depending on the detector type) and that

there are no detections when Tsk = 0. Examples of possible effort variables are

the number of days that each automatic camera was operated in a tiger study,

or the number of rub trees sampled for DNA in each grid cell of a grizzly bear

study.

The observations to be modelled are either binary (represented by δsk, an

indicator variable for the presence of an animal on occasion s at binary detector

k), or integer (represented by ysk, the number of detections on occasion s at

count detector k). We assume the probability of detecting an individual declines

with the distance dk(X) between a detector k and the animal’s range centre

at coordinates X = (x, y). The binary relationship is described by a spatial

detection function g(dk(X); θ), where θ is a vector of parameters. We define

g(.) so that its intercept when dk = 0 is a non-spatial scale parameter g0 (0 <

g0 ≤ 1) . For a concrete example, the half-normal detection function uses

g(dk(X); g0, σ) = g0exp(−dk(X)2/(2σ2)).

If the data are counts rather than binary observations, we may choose to de-

fine the spatial detection function as the decline in expected count with distance

λ(dk(X); θ′). We use the symbol λ0 for the intercept (λ0 > 0). For a particular

distribution of the counts we can switch back and forth between the binary and

expected-count representations (e.g., g(X) = 1 − e−λ(X) when the counts are

Poisson-distributed). The transformation is non-linear so, for example, a half-

normal form for g(.) does not correspond to half-normal form for λ(.). Other

count models such as the negative binomial may sometimes be required, but

we know of no examples of their use. Further details are given by Efford and

Borchers (in review).

1.1 Previous methods

Two options were provided for effort adjustment in earlier versions of secr:

i. If only a subset of detectors is used on any occasion s, and there is no other

variation in effort, Tsk is a binary indicator taking the values 0 (detector not

used) or 1 (detector used). This case is handled simply by setting log-likelihood
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components for occasion s and detector k to 0 whenever Tsk = 0 (via the ‘usage’

attribute of ‘traps’ objects in secr).

ii. The parameter g0 or λ0 may be modelled on an appropriate link scale

(logit or log) as a linear function of Tsk or other time-varying detector-level

covariates.

The first is effective for binary use vs non-use of detectors, but does not

encompass other gradations of effort. The second is suboptimal because varying

effort is not expected to have a linear additive effect on either of the default link

scales, and the estimation of additional parameters is an unnecessary burden.

1.2 Linear hazard models

A more comprehensive approach to effort adjustment follows from the hazard

model of Borchers and Efford (2008). We assume detections are independent

of each other except as allowed by the competing hazard model for multi-catch

traps. The variables to be modelled are δsk, an indicator variable for the pres-

ence of an animal on occasion s at binary detector k, and ysk, the number of

detections on occasion s at detector k, if k is a ‘count’ detector (i.e., one that

can record multiple independent occurrences of an animal).

Given a measure of effort on a ratio scale (Tsk), it is simple to include effort

directly in the formulae for psk or λsk. By allowing the instantaneous hazard of

detection to increase linearly with Tsk we avoid the need to estimate additional

parameters (the coefficient is merely g0 or λ0 as already fitted, corresponding

to Tsk = 1).

In general we assume the hazard of detection for an individual located at X

is related linearly to effort: hsk = −Tskln[1 − g(dk(X))].

If an animal can be detected at most once on any occasion then detectors

‘compete’ for animals and we require a competing hazard model that uses the

summed hazard across all K detectors: h.s(X) =
∑K
k=1 hsk(X).

The properties of various detector types and the expressions for psk or λsk as

a function of effort Tsk are given in Table 1. The expression 1−[1−g(dk(X))]Tsk

results from expanding and simplifying 1− e−hsk(X). The expression for binary

proximity detectors simplifies to psk(X) = g(dk(X)) when Tsk = 1. Only in the

Poisson case is the expected number of detections linear on effort. For binomial

count detectors we propose a formulation not based directly on instantaneous

hazard that is explained more fully below.
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Table 1: Including effort in SECR models for various detector types

Detector type Model

Multi-catch trap δsk ∼ Bernoulli(psk) psk(X) = [1 − e−h.s(X)]hsk(X)/h.s(X)

Binary proximity δsk ∼ Bernoulli(psk) psk(X) = 1 − [1 − g(dk(X))]Tsk

Poisson count ysk ∼ Poisson(λsk) λsk(X) = λ0Tskg(dk(X))

Binomial count ysk ∼ Binomial(Nsk, psk) Nsk = Tsk, psk = g(dk(X))

1.3 Binomial counts

Counts ysk are sometimes modelled as binomial with size N . This arises, for

example, when data have been aggregated across a known number of occasions,

each representing a binary (Bernoulli-distributed) opportunity of detection (Ef-

ford et al. 2009b). N is the aggregate number of opportunities for detection. If

the original effort matrix is binary but contains zeros, the 1-D or 2-D aggregate

is also likely to vary (i.e., Nsk is a non-negative integer specific to the occasion

and the detector). Here Nsk substitutes for Tsk as the measure of effort.

The need to allow for varying effort in a binomial model also arises when

data are aggregated across space from binary proximity detectors each used on a

different set of occasions. Aggregation across space may be justified and efficient

when several detectors are close together, relative to the spatial scale of animal

movement and detection. When the original detectors are binary, the number

of detections at each aggregated detector cannot exceed the sum of the binary

‘usage’ values (as in option (i) above).

2 Implementation in secr

The ‘usage’ attribute of a ‘traps’ object in secr is a K x S matrix recording

the effort (Tsk) at each detector k (k = 1...K) and occasion s (s = 1...S). If

the attribute is missing (NULL) it will be treated as all ones. Extraction and

replacement functions are provided (usage() and usage<-(), as demonstrated

below). All detector types accept usage data in the same format, except

� polygon usage matrix has one row for each polygon

� transect usage matrix has one row for each transect

� signal strength usage is not considered when fitting acoustic models

� binomial counts Nsk is determined by secr.fit from usage, rounded

to an integer, when binomN = 1, or equivalently bi-

nomN = ‘usage’
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2.1 Data entry

Usage data may be read as extra columns in the text file of detector coordinates

(see read.traps and secr-datainput.pdf). When only binary (0/1) codes are

used, and the read.traps argument binary.usage = TRUE, separation with

white space is optional. This means that ‘01000’ and ‘0 1 0 0 0’ are equivalent.

For non-binary values always set binary.usage = FALSE and separate with

spaces.

The input file for polygons and transects has multiple rows for each unit

(one row for each vertex). Usage data are taken from the first vertex for each

polygon or transect.

Usage codes may be added to an existing traps object, even after it has been

included in a capthist object. For example, the traps object in the demonstration

dataset captdata starts with no usage attribute:

> library(secr, quietly = TRUE)

> usage(traps(captdata))

NULL

Suppose that we knew that traps 14 and 15 caught no animals on occasions 1–3

because they were not set. We could construct and assign a binary usage matrix

to indicate this:

> mat <- matrix(1, nrow = 100, ncol = 5)

> mat[14:15,1:3] <- 0

> usage(traps(captdata)) <- mat

2.2 Model fitting

Following on from the preceding example, we can confirm our assignment and

fit a new model:

> summary(traps(captdata))

Object class traps

Detector type single

Detector number 100

Average spacing 30 m

x-range 365 635 m

y-range 365 635 m

Usage range by occasion

5



1 2 3 4 5

min 0 0 0 1 1

max 1 1 1 1 1

> fit <- secr.fit(captdata, trace = FALSE)

> predict(fit)

link estimate SE.estimate lcl ucl

D log 5.4664915 0.64518607 4.341025 6.8837489

g0 logit 0.2766626 0.02734643 0.226373 0.3333109

sigma log 29.3975886 1.30918234 26.941598 32.0774662

The result in this case is only subtly different from the model with uniform

usage (compare predict(secrdemo.0)).

Usage is ‘hardwired’ into the traps object, and will be applied (in the sense of

Table 1) when a model is fitted with secr.fit. There are two ways to suppress

this. The first is to remove or replace the usage attribute. For example,

> usage(traps(captdata)) <- NULL

returns our demonstration dataset to its original state (this would happen in any

case when we started a new R session). The second is to bypass the attribute

for a single model fit by calling secr.fit with details = list(ignoreusage

= TRUE).

For a more interesting example, we simulate data from an array of proximity

detectors (such as automatic cameras) operated over 5 occasions, using the

default density (5/ha) and detection parameters (g0 = 0.2, sigma = 25 m) of

sim.capthist. We choose to expose all detectors twice as long on occasions 2

and 3 as on occasion 1, and three times as long on occasions 4 and 5:

> simgrid <- make.grid(nx = 10, ny = 10, detector = 'proximity')

> usage(simgrid) <- matrix(c(1,2,2,3,3), byrow = TRUE, nrow = 100, ncol = 5)

> simCH <- sim.capthist(simgrid)

> summary(simCH)

Object class capthist

Detector type proximity

Detector number 100

Average spacing 20 m

x-range 0 180 m

y-range 0 180 m

Usage range by occasion
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1 2 3 4 5

min 1 2 2 3 3

max 1 2 2 3 3

Counts by occasion

1 2 3 4 5 Total

n 21 27 28 24 30 130

u 21 9 3 1 2 36

f 8 1 3 9 15 36

M(t+1) 21 30 33 34 36 36

losses 0 0 0 0 0 0

detections 28 65 75 98 103 369

detectors visited 25 44 54 60 65 248

detectors used 100 100 100 100 100 500

Now we fit three models with a half-normal detection function. The first

implicitly adjusts for effort. The second has no adjustment because we wipe the

usage information. The third allows for occasion-to-occasion variation by fitting

a separate g0 each time. We use trace = FALSE to suppress output from each

likelihood evaluation, and drop columns 1 and 2 (model and detectfn) from the

AIC table to save space.

> fit.usage <- secr.fit(simCH, trace = FALSE)

> usage(traps(simCH)) <- NULL

> fit.null <- secr.fit(simCH, trace = FALSE)

> fit.t <- secr.fit(simCH, model = g0 ~ t, trace = FALSE)

> AIC(fit.usage, fit.null, fit.t)[,-(1:2)]

npar logLik AIC AICc dAICc AICwt

fit.usage 3 -1052.398 2110.796 2111.546 0.000 0.9383

fit.t 7 -1049.495 2112.990 2116.990 5.444 0.0617

fit.null 3 -1085.161 2176.323 2177.073 65.527 0.0000

From the likelihoods we can see that failure to allow for effort (model fit.null)

dramatically reduces model fit. The fully time-varying model (fit.t) captures

the variation in detection probability, but at the cost of fitting S − 1 additional

parameters. The model with built-in adjustment for effort (fit.usage) has the

lowest AIC, but how do the estimates compare? This is a task for the secr

function collate.

> collate(fit.usage, fit.null, fit.t, newdata = data.frame(t =

factor(1:5)))[,,'estimate','g0']
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fit.usage fit.null fit.t

t=1 0.2044331 0.397495 0.1511274

t=2 0.2044331 0.397495 0.3479662

t=3 0.2044331 0.397495 0.4044378

t=4 0.2044331 0.397495 0.5285369

t=5 0.2044331 0.397495 0.5710666

The null model fits a single ‘average’ g0 across all occasions that is approx-

imately twice the true rate on occasion 1 (0.2). The estimates of g0 from fit.t

mirror the variation in effort. The effort-adjusted model estimates the funda-

mental rate for one unit of effort (0.2).

> collate(fit.usage,fit.null,fit.t)[,,,'D']

estimate SE.estimate lcl ucl

fit.usage 4.536700 0.7673420 3.264232 6.305203

fit.null 4.527430 0.7660154 3.257229 6.292963

fit.t 4.528942 0.7661376 3.258501 6.294709

The density estimates themselves are almost entirely unaffected by the choice

of model for g0. This is not unusual. Nevertheless, the example shows how

unbalanced data may be analysed with a minimum of fuss.

Adjustment for varying usage will be more critical in analyses where (i) the

variation is confounded with temporal (between-session) or spatial variation in

density, and (ii) it is important to estimate the temporal or spatial pattern. For

example, if detector usage was consistently high in one part of a landscape, while

true density was constant, failure to allow for varying usage might produce a

spurious density pattern.

2.3 Data manipulation and checking

The various functions in secr for manipulating traps and capthist objects (subset,

split.traps, rbind.capthist, MS.capthist, join etc.) attempt to deal with

usage intelligently.

When occasions are collapsed or detectors are lumped with the reduce

method for capthist objects, usage is summed for each aggregated units.

The function usagePlot displays a bubble plot of spatially varying de-

tector usage on one occasion. The arguments markused and markvarying of

plot.traps may also be useful.
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2.4 Polygons and transects

Binary or count data from searches of polygons or transects (Efford 2011) do

not raise any new issues for including effort, at least when effort is homogeneous

across each polygon or transect. Effects of varying polygon or transect size

are automatically accommodated in the models of Efford (2011). Models for

varying effort within polygons or transects have not been needed for problems

encountered to date. Such variation might in any case be accommodated by

splitting the searched areas or transects into smaller units that were more nearly

homogeneous (see the snip() function for splitting transects).

2.5 Miscellaneous

The units of usage determine the units of g0 or λ0 in the fitted model. This

must be considered when choosing starting values for likelihood maximisation.

Ordinarily one relies on secr.fit to determine starting values automatically

(via autoini), and a simple linear adjustment for usage, averaged across non-

zero detectors and occasions, is applied to the value of g0 from autoini.

Usage values other than 0 and 1 require significant additional computation

because the adjustment is re-computed for each combination of detector x oc-

casion x mask point x detection history x finite mixture. Execution speed may

be improved in future versions.

It should be obvious that absolute duration does not always equate with

effort. Consider trapping an animal that is most active in the early part of the

evening. For example, brushtail possums Trichosurus vulpecula are generally

caught soon after emerging from their daytime dens at dusk (Cowan and For-

rester 2012). Traps set late afternoon and checked early in the morning can be

expected to catch at least as many animals as those set in the middle of one day

and checked in the middle of the next, despite being open for fewer hours.
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