
SEARCHING HELP PAGES OF R PACKAGES

Searching help pages of R packages
by Spencer Graves, Sundar Dorai-Raj, and Romain
François

The sos package provides a means to quickly and
flexibly search the help pages of contributed pack-
ages, finding functions and datasets in seconds or
minutes that could not be found in hours or days by
any other means we know.

The main capability of this package is the findFn
function, which scans the "function" entries in
Jonathan Baron’s "R site search" database and re-
turns the matches in a data.frame of class findFn
(Baron, 2009). Baron’s is one of five search capabili-
ties currently identified under "search" from the main
"www.r-project.org" web site. It includes options
to search the help pages of R packages contributed
to CRAN (the Comprehensive R Archive Network)
plus a few other publicly available packages as well
as selected mailing list archives, primarily "R-help".
The findFn function focuses only on the help pages
in this database.

The print method for objects of class findFn dis-
plays the results as a table in a web browser with
links to the individual help pages, sorted by package
displaying the one with the most matches first. This
is different from the RSiteSearch function, as findFn
returns the results in R as a data.frame, which can
be further manipulated, and the ultimate display in
a web browser is a table, unlike the list produced by
RSiteSearch.

Other sos functions provide summaries with one
line for each package, support the union and inter-
section of findFn objects, and write the results to an
Excel file with three sheets: (1) PackageSum2, which
provides an enhanced summary of the packages with
matches, (2) the findFn table itself, and (3) the call
used to produce it.

Three examples are considered below: First we
find a dataset containing a variable Petal.Length.
Second, we study R capabilities for splines, includ-
ing looking for a function named spline. Third, we
search for contributed R packages with capabilities
for solving differential equations.

Finding a Variable in a Data Set:
Petal.Length

(Chambers, 2009, pp. 282-283) uses a variable
Petal.Length from a famous Fisher data set but
without naming the dataset nor indicating where it
can be found nor even if it exists in any contributed
R package. The sample code he provides does not
work by itself. To get his code to work to produce his
Figure 7.2, we must first obtain a copy of this famous
data set in a format compatible with his code.

To look for this data set, one might first try the
help.search function. Unfortunately, this function
returns nothing in this case:

> help.search('Petal.Length')
No help files found ...

When this failed, many users might then try
RSiteSearch(’Petal.Length’). This produced 80
matches when it was tried one day (and 62 matches
a few months later). RSiteSearch(’Petal.Length’,
’function’) will identify only the help pages. We
can get something similar and for many purpose
more useful as follows:

> library(sos)
> PL <- findFn('Petal.Length')

PL is a data.frame of class findFn identifying all the
help pages in Jonathan Baron’s data base matching
the search term. An alias for "findFn" is "???", and
this same search can be performed as follows:

> PL <- ???Petal.Length

This data.frame has columns Count, MaxScore,
TotalScore, Package, Function, Date, Score,
Description, and Link. Function is the name of the
help page, not the name of the function, as multiple
functions may be documented on a single help page,
and some help pages document other things such as
data sets. Score is the index of the strength of the
match. It is used by Baron’s search engine to decide
which items to display first. Package is the name of
the package containing Function. Count gives the
total number of matches in Package found in this
findFn call. By default, the findFn object is sorted by
Count, MaxScore, TotalScore, and Package (to place
the most important Package first), then by Score and
Function.

The summary method for such an object prints
a table giving for each Package the Count (number
of matches), MaxScore (max of Score), TotalScore
(sum of Score), and Date, sorted like a Pareto chart
to place the Package with the most help pages first:

> summary(PL)

Total number of matches: 27
Downloaded 27 links in 14 packages.
Packages with at least 1 match using search

pattern 'Petal.Length':
Package Count MaxScore TotalScore Date
yaImpute 8 1 8 2009-08-16
<...>
datasets 1 2 2 2009-07-09
<...>

One of the listed packages is datasets. Since it is
part of the default R distribution, we decide to look
there first. We can select that row of PL just like we
would select a row from any other data.frame:

1

SEARCHING HELP PAGES OF R PACKAGES

> PL[PL$Package=='datasets', 'Function']
[1] iris

Problem solved in less than a minute! Any other
method known to the present authors would have
taken substantially more time.

Finding Packages with Spline Ca-
pabilities

Almost four years ago, the lead author of this article
decided he needed to learn more about splines. A
literature search began as follows:

RSiteSearch('spline')

(using the RSiteSearch function in the utils pack-
age). While preparing this manuscript, this com-
mand identified 1526 documents one day. That is too
many. It can be restricted to functions as follows:

RSiteSearch('spline', 'fun')

This identified only 739 one day (631 a few months
earlier). That’s an improvement over 1526 but is still
too many. To get a quick overview of these 739, we
can proceed as follows:

splinePacs <- findFn('spline')

This downloaded a summary of the 400 highest-
scoring help pages in the ’RSiteSearch’ data base in
roughly 5-15 seconds, depending on the speed of the
Internet connection. To get all 739 matches, increase
the maxPages argument from its default 20:

splineAll <- findFn('spline', maxPages=999)

The print method for a findFn object displays the
result as a table in a web browser.

If we want to find a function named spline, we
can proceed as follows:

selSpl <- (splineAll[,'Function']=='spline')
splineAll[selSpl,]

This has 0 rows, because there is no help page named
spline. This does not mean that no function with
that exact name exists, only that no help page has
that name. To find a function with that exact name,
try findFn(’spline(’). This produced one match for a
function named ’regspline’.

To look for functions whose name includes the
characters ’spline’, we can use grepFn:

grepFn('spline', splineAll, ignore.case=TRUE)

This returned a findFn object identifying 78 help
pages. The print method for an object of class
findFn presents the result in a web browser. In this
case, the sixth row is ’lspline’ in the ’assist’ package,
which has a Score of 1. It is the fifth row in this table,
because it is in the assist package, which had a total

of 34 help pages matching the search term, and this
was the only one whose name matched the grepFn
pattern.

To try to evaluate further the splineAll findFn
object, we must first acknowledge that a table with
739 rows is too large to digest easily.

summary(splineAll) would tell us that the 739
help pages came from 191 different packages and dis-
play the first minPackages = 12 such packages. (If
other packages had the same number of matches as
the twelfth package, they would also appear in this
summary.)

A more complete view can be obtained in MS Ex-
cel format using the writeFindFn2xls function:

writeFindFn2xls(splineAll)

If either the WriteXLS package and compatible Perl
code are properly installed or if you are running Win-
dows with the RODBC package, this produces a ’*.xls’
Excel file with three sheets:

The PackageSum2 sheet contains information
on locally installed packages not available from
summary.

The findFn sheet contains the search results.
The call sheet gives the call to findFn that gen-

erated these search results.
If WriteXLS cannot produce an Excel file with

your installation, it will write three *.csv files.
(NOTE: Users who do not have MS Excel may like
to know that Open Office Calc can open a standard
’*.xls’ file and can similarly create such files (Openof-
fice.org, 2009).)

The PackageSum2 sheet (or file) is created by
the PackagesSum2 function, which adds information
from installed packages not obtained by findFn. This
includes the package title and date, plus the names of
author and maintainer, the date packaged, the num-
ber of help pages in the package, and the name(s) of
any vignettes. This can be quite valuable in prioritiz-
ing packages for further study. I’d rather learn how
to use a package being actively maintained than one
that has not changed in five years. Similarly, I might
prefer to study a capability in a larger package than
a smaller one, because the rest of the package might
provide other useful tools or a broader context for
understanding the capability of interest.

For packages not already installed, the stan-
dard install.packages function in the utils pack-
age can be used. To make it easier to do this,
the sos package includes a installPackage func-
tion, which checks all the packages in a findFn for
which the number of matches exceeds a second ar-
gument minCount and installs any of those not al-
ready available locally; the default minCount is the
square root of the largest Count. Therefore, the re-
sults from PackageSum2 and the PackageSum2 sheet
of writeFindFn2xls will typically contain more in-
formation after running installPackages than be-
fore.

2

SEARCHING HELP PAGES OF R PACKAGES

To summarize, two lines of code gave us a very
powerful summary of spline capabilities in con-
tributed R packages:

splineAll <- findFn('spline', maxPages=999);
writeFindFn2xls(splineAll)

The resulting splineAll.xls file can help establish
priorities for further study of the different packages
and functions. An analysis of this nature almost four
years ago led the lead author to the fda package and
its companion books, which further led to a collabo-
ration that has produced joint presentations at three
different conferences and a joint book (Ramsay et al.,
2009).

Combining Search Results to Find
Functions to Solve Differential
Equations

The lead author of this article recently gave an in-
vited presentation on "Fitting Nonlinear Differential
Equations to Data in R" (Graves et al., 2009). A key
part of preparing for that presentation was a search
of contributed R code, which proceeded roughly as
follows:

de <- findFn('differential equation')
des <- findFn('differential equations')
de. <- de | des

The object de has 53 rows, while des has 105. If
this search engine were simply searching for char-
acter strings, the first would be larger than the sec-
ond rather than the other way around. The last ob-
ject de. is the union of the other two; "|" is an
alias for unionFindFn. The de. object has 124 rows,
which suggests that the corresponding intersection
must have (53+105-124) = 34. This can be confirmed
via nrow(de & des).

To make everthing in de. locally available, we
can use installPackages(de., minCount=1). This
installed all referenced packages except ’rmutil’ and
a dependency ’Biobase’, which were not available on
CRAN but are included in Jonathan Baron’s "R site
search" data base.

Next, writeFindFn2xls(de.) produced a file
de..xls in the working directory (identifiable via
getwd()).

The PackageSum2 page of that Excel file provided
a quick summary of packages with matches, sorted
to put the package with the most matches first. In
this case, this first package was deSolve, which pro-
vides, "General solvers for initial value problems
of ordinary differential equations (ODE), partial dif-
ferential equations (PDE) and differential algebraic
equations (DAE)". This is clearly quite relevant to the
subject. The second package was PKfit, which is "A

Data Analysis Tool for Pharmacokinetics". This may
be too specialized for general use. I therefore would
not want to study this first unless my primary inter-
est here was in pharmacokinetic models.

By studying this summary page in this way, I was
able to decide relatively quickly which packages I
should consider first. In making this decision, I gave
more weight to packages with one or more vignettes
and less weight on those where the ’Packaged’ date
was old, indicating that the code was not being ac-
tively maintained and updated. I also checked the
conference information to make sure I didn’t embar-
rass myself by overlooking a package authored or
maintained by another invited speaker.

Discussion

In sum, we have found findFn in the sos package
to be very quick, efficient, and effective for find-
ing things in contributed packages. The grepFn
function helps quickly look for functions (or help
pages) with particular names. The unionFindFn and
intersectFindFn (especially via their "|" and "&"
aliases) can be quite useful where a single search
term seems inadequate; they make it easy to com-
bine multiple searches to produce something closer
to what is desired. An example of this was provided
with searching for both "differential equation" and
"differential equations".

Finally, the "PackageSum2" sheet of an excel file
produced by writeFindFn2xls is quite valuable for
understanding the general capabilities available for a
particular topic. This could be of great value for au-
thors to find what is already available so they don’t
duplicate something that already exists and so their
new contributions appropriately consider the con-
tents of other packages.

The findFn capability can also reduce the risk of
"the researcher’s nightmare" of being told after sub-
stantial work that someone else has already done it.

Acknowledgments

The capabilities described here extend the power
of the RSiteSearch search engine maintained by
Jonathan Baron. Without Prof. Baron’s support,
it would not have been feasible to develop the
features described here. Duncan Murdoch, Marc
Schwarz, Dirk Eddelbuettel and Gabor Grothendiek
and anonymous referees contributed suggestions for
improvement, but of course can not be blamed for
any deficiencies. The collaboration required to pro-
duce the current sos package was greatly facilitated
by R-Forge (R-Forge Team, 2009). The sos pack-
age is part of the RSiteSearch project hosted there.
This project also includes code for a Firefox exten-
sion to simplify the process of finding information

3

BIBLIOGRAPHY BIBLIOGRAPHY

about R from within Firefox. This project also in-
cludes code for a Firefox extension to simplify the
process of finding information about R from within
Firefox. This Firefox extension is still being devel-
oped with the current version downloadable from
"http://addictedtor.free.fr/rsitesearch".

Spencer Graves
President and Chief Operating Officer
Structure Inspection and Monitoring
San Jose, CA
email: spencer.graves@prodsyse.com

Sundar Dorai-Raj
Google
Mountain View, CA
email: sdorairaj@google.com

Romain François
Independent R Consultant
Montpellier, France
email: francoisromain@free.fr

Bibliography

J. Baron. R site search. http://finzi.psych.upenn.
edu/search.html, September 2009.

J. Chambers. Software for Data Analysis: Programming
with R. Springer, New York, 2009.

S. Graves, G. Hooker, and J. Ramsay. Fit-
ting nonlinear differential equations to data
in r. http://stat.sfu.ca/~dac5/workshop09/
Spencer_Graves.html, August 2009. conference
presentation.

Openoffice.org. Open Office Calc. Sun Microsys-
tems, California, USA, 2009. URL http://www.
openoffice.org.

R-Forge Team. R-forge. http://r-forge.
r-project.org, September 2009.

J. Ramsay, G. Hooker, and S. Graves. Functional Data
Analysis with R and MATLAB. Springer, New York,
2009.

4

http://finzi.psych.upenn.edu/ search.html
http://finzi.psych.upenn.edu/ search.html
http://stat.sfu.ca/~dac5/workshop09/ Spencer_Graves.html
http://stat.sfu.ca/~dac5/workshop09/ Spencer_Graves.html
http://www.openoffice.org
http://www.openoffice.org
http://r-forge.r-project.org
http://r-forge.r-project.org

	Searching help pages of R packages

