
uGMAR: A Family of Mixture Autoregressive

Models in R

Savi Virolainen

University of Helsinki

Abstract

We describe the R package uGMAR, which provides tools for estimating and analyzing
the Gaussian mixture autoregressive model, the Student’s t mixture autoregressive model,
and the Gaussian and Student’s t mixture autoregressive model. These three models
constitute an appealing family of mixture autoregressive models that we call the GSMAR
models. The model parameters are estimated with the method of maximum likelihood by
running multiple rounds of a two-phase estimation procedure in which a genetic algorithm
is used to find starting values for a gradient based method. For evaluating the adequacy of
the estimated models, uGMAR utilizes so-called quantile residuals and provides functions
for graphical diagnostics as well as for calculating formal diagnostic tests. uGMAR also
enables to simulate from the GSMAR processes and to forecast future values of the process
using a simulation-based Monte Carlo method. We illustrate the use of uGMAR with the
monthly U.S. interest rate spread between the 10-year and 1-year Treasury rates. This
vignette was created with the Journal of Statistical Software style but the manuscript has
not (yet) been submitted to the journal.

Keywords: mixture autoregressive model, regime-switching, Gaussian mixture, Student’s t
mixture.

1. Introduction

Economic time series frequently exhibit non-linear features with the underlying data gener-
ating dynamics varying in time, for example, depending on the specific state of the economy.
Various types of time series models capable of capturing such regime-switching behavior have
been proposed, one of them being the class of mixture models introduced by Le, Martin, and
Raftery (1996) and further developed by, among others, Wong and Li (2000, 2001b,a), Glasbey
(2001), Lanne and Saikkonen (2003), Kalliovirta, Meitz, and Saikkonen (2015), Meitz, Preve,
and Saikkonen (forthcoming), and Virolainen (2020a). Following the recent developments by
Kalliovirta et al. (2015), Meitz et al. (forthcoming), and Virolainen (2020a), we introduce
the Gaussian mixture autoregressive (GMAR) model, the Student’s t mixture autoregres-
sive (StMAR) model, and the Gaussian and Student’s t mixture autoregressive (G-StMAR)
model. These three models constitute an appealing family of mixture autoregressive models
that we call the GSMAR models.

A GSMAR process generates each observation from one of its mixture components, which
are either conditionally homoskedastic linear Gaussian autoregressions or conditionally het-
eroskedastic linear Student’s t autoregressions. The mixture component that generates each

2 A Family of Mixture Autoregressive Models in R

observation is randomly selected according to the probabilities determined by the mixing
weights that, for a pth order model, depend on the full distribution of the previous p observa-
tions. Consequently, the regime-switching probabilities may depend on the level, variability,
kurtosis, and temporal dependence of the past observations. The specific formulation of
the mixing weights also leads to attractive theoretical properties such as ergodicity and full
knowledge of the stationary distribution of p + 1 consecutive observations.

This paper describes the R package uGMAR providing a comprehensive set of easy-to-use
tools for GSMAR modeling, including unconstrained and constrained maximum likelihood
(ML) estimation of the model parameters, quantile residual based model diagnostics, sim-
ulation from the processes, and forecasting. The emphasis is on estimation, as it can, in
our experience, be rather tricky. In particular, due to the endogenously determined mixing
weights, the log-likelihood function has a large number of modes, and in large areas of the
parameter space, the log-likelihood function is flat in multiple directions. The log-likelihood
function’s global maximum point is also frequently located very near the boundary of the pa-
rameter space. It turns out, however, that such near-the-boundary estimates often maximize
the log-likelihood function for a rather technical reason, and it might be more appropriate to
consider an alternative estimate based on the largest local maximum point that is clearly in
the interior of the parameter space.

The model parameters are estimated by running multiple rounds of a two-phase estimation
procedure in which a modified genetic algorithm is used to find starting values for a gradient
based variable metric algorithm. Because of the multimodality of the log-likelihood function,
some of the estimation rounds may end up in different local maximum points, thereby enabling
the researcher to build models not only based on the global maximum point but also on the
local ones. The estimated models can be conveniently examined with the summary and plot

methods. For evaluating the models’ adequacy, uGMAR utilizes quantile residual diagnostics
in the framework presented in Kalliovirta (2012), including graphical diagnostics as well
as Kalliovirta’s (2012) diagnostic tests that take into account uncertainty about the true
parameter value. Following Kalliovirta et al. (2015) and Meitz et al. (forthcoming), forecasting
is based on a Monte Carlo simulation method.

Other statistical software implementing the GSMAR models include the StMAR Toolbox for
Matlab (Meitz, Preve, and Saikkonen 2018). It currently (version 1.0.0) covers the StMAR
model of autoregressive orders p = 1, 2, 3, 4 and M = 1, 2, 3 mixture components, and it con-
tains tools for maximum likelihood estimation, calculation of quantile residuals, simulation,
and forecasting. Also the StMAR Toolbox estimates the model parameters by using a genetic
algorithm to find starting values for a gradient based method, but uGMAR takes the proce-
dure of Meitz et al. (forthcoming, 2018) further by modifying a genetic algorithm for more
efficient estimation. uGMAR also has the advantage that it does not impose restrictions on
the order the model and it provides a wider variety of tools for analyzing the estimated mod-
els; for instance, functions for calculating quantile residual diagnostic tests (Kalliovirta 2012)
and plotting the graphs of the profile log-likelihood functions about the estimate. Consider-
ing multivariate versions of the GSMAR models, the R package gmvarkit (Virolainen 2021)
currently (version 1.4.2) accommodates the reduced form and structural Gaussian mixture
vector autoregressive models (Kalliovirta, Meitz, and Saikkonen 2016; Virolainen 2020b) and
functions similarly to uGMAR.

The remainder of this paper is organized as follows. Section 2 introduces the GSMAR models
and discusses some of their properties. Section 3 discusses estimation of the model parameters

Savi Virolainen 3

and illustrates how the GSMAR models can be estimated and examined with uGMAR. In
Section 4, we describe quantile residuals and demonstrate how they can be utilized to evaluate
model adequacy in uGMAR. Section 5 shows how the GSMAR models can be built with
given parameter values. In Section 6, we first show how to simulate observations from a
GSMAR process, and then we illustrate how to forecast future values of a GSMAR process
with a simulation-based Monte Carlo method. Section 7 concludes and collects some useful
functions in uGMAR to a single table for convenience. Finally, Appendix A explains why
some maximum likelihood estimates, that are very near the boundary of the parameter space,
might be inappropriate and demonstrates that a local maximum point that is clearly in the
interior of the parameter space can often be a more reasonable estimate.

Throughout this paper, we use the monthly U.S. interest rate spread between the 10-year and
1-year Treasury rates for the empirical illustrations. We deploy the notation nd(µ, Γ) for the
d-dimensional normal distribution with mean µ and (positive definite) covariance matrix Γ,
and td(µ, Γ, ν) for the d-dimensional t-distribution with mean µ, (positive definite) covariance
matrix Γ, and ν > 2 degrees of freedom. The corresponding density functions are denoted as
nd(·;µ, Γ) and td(·;µ, Γ, ν), respectively. By 1p = (1, ..., 1) (p × 1), we denote p-dimensional
vector of ones.

2. Models

This section introduces the GMAR model (Kalliovirta et al. 2015), the StMAR model (Meitz
et al. forthcoming), and the G-StMAR model (Virolainen 2020a), a family of mixture au-
toregressive models that we call the GSMAR models. First, we consider the models in a
general framework and then proceed to their specific definitions. For brevity, we only give
the definition of the more general G-StMAR model but explain how the GMAR and StMAR
models are obtained as special cases of it, namely, by taking all the component models to be
of either Gaussian or Student’s t type.

2.1. Mixture autoregressive models

Let yt, t = 1, 2, ..., be the real valued time series of interest, and let Ft−1 denote the σ-algebra
generated by the random variables {yt−j , j > 0}. For a GSMAR model with autoregressive
order p and M mixture components, we have

yt =
M
∑

m=1

sm,t(µm,t + σm,tεm,t), εm,t ∼ IID(0, 1), (1)

µm,t = ϕm,0 +
p

∑

i=1

ϕm,iyt−i, m = 1, ..., M, (2)

where σm,t > 0 are Ft−1-measurable, εm,t are independent of Ft−1, ϕm,0 ∈ R, and s1,t, ..., sM,t

are unobservable regime variables such that for each t, exactly one of them takes the value
one and the others take the value zero. Given the past of yt, sm,t and εm,t are assumed
to be conditionally independent, and the conditional probability for an observation to be
generated from the mth regime at time t is expressed in terms of (Ft−1-measurable) mixing
weights αm,t ≡ P (sm,t = 1| Ft−1) that satisfy

∑M
m=1 αm,t = 1. Furthermore, we assume

that for each component model, the autoregressive parameters satisfy the usual stationarity

4 A Family of Mixture Autoregressive Models in R

condition, 1 −
∑p

i=1 ϕm,iz
i 6= 0 for |z| ≤ 1, which guarantees stationarity of the GSMAR

model (Virolainen 2020a, Theorem 1).

The definition (1) and (2) implies that at each t, the observation is generated by a linear
autoregression corresponding to some randomly selected (unobserved) mixture component
m, and that µm,t and σ2

m,t can be interpreted as the conditional mean and variance of this
component process. In the GMAR model (Kalliovirta et al. 2015), the mixture components are
conditionally homoskedastic Gaussian autoregressions, whereas in the StMAR model (Meitz
et al. forthcoming), they are conditionally heteroskedastic Students t autoregressions, while
the G-StMAR model (Virolainen 2020a) combines both types of mixture components. The
mixing weights, on the other hand, are functions of the preceding p observations.

2.2. The Gaussian and Student’s t mixture autoregressive model

In the G-StMAR model, for m = 1, ..., M1 in equation (1), the terms εm,t have standard normal
distributions and the conditional variances σ2

m,t are constants σ2
m. For m = M1 + 1, ..., M ,

the terms εm,t follow the t-distribution t1(0, 1, νm + p) and the conditional variances σ2
m,t are

defined as

σ2
m,t =

νm − 2 + (yt−1 − µm1p)′
Γ

−1
m (yt−1 − µm1p)

νm − 2 + p
σ2

m, (3)

where yt−1 = (yt−1, ..., yt−p) (p × 1), νm > 2 is a degrees of freedom parameter, σ2
m > 0

is a variance parameter, µm = ϕ0/(1−
∑p

i=1 ϕm,i) is the stationary mean, and Γm is the
stationary (p × p) covariance matrix of the mth component process (see Virolainen 2020a,
Section 2.1).

This specification leads to a model in which the conditional density function of yt given its
past, f (·| Ft−1), is

f (yt|Ft−1) =
M1
∑

m=1

αm,tn1(yt; µm,t, σ2
m) +

M
∑

m=M1+1

αm,tt1

(

yt; µm,t, σ2
m,t, νm + p

)

. (4)

That is, the first M1 component processes of the G-StMAR model are homoskedastic Gaussian
autoregressions, and the remaining M2 ≡ M − M1 component processes are heteroskedastic
Student’s t autoregressions.

In the GMAR model (Kalliovirta et al. 2015), all M component processes are Gaussian au-
toregressions, so its conditional density function is obtained by setting M1 = M and dropping
the second sum in (4). In the StMAR model (Meitz et al. forthcoming), all M component
processes are Student’s t autoregressions, so its conditional density function is obtained by
setting M1 = 0 and dropping the first sum in (4). As the component processes of the G-
StMAR model coincide with those of the GMAR model and the StMAR model, we often
refer to them as GMAR type or StMAR type, accordingly.

In order to specify the mixing weights, we first define the following function for notational
convenience. Let

dm(y; µm1p, Γm, νm) =

{

np(y; µm1p, Γm), when m ≤ M1,
tp(y; µm1p, Γm, νm), when m > M1,

(5)

where the p-dimensional densities np(y; µm1p, Γm) and tp(y; µm1p, Γm, νm) correspond to
the stationary distribution of the mth component process (given, for example, in Virolainen

Savi Virolainen 5

2020a, equations (2.3) and (2.8)). The mixing weights of the G-StMAR model are defined as

αm,t =
αmdm(yt−1; µm1p, Γm, νm)

∑M
n=1 αndn(yt−1; µn1p, Γn, νn)

, (6)

where the parameters α1, ..., αM satisfy
∑M

m=1 αm = 1. The mixing weights of the GMAR
model are obtained from (5) and (6) by setting M1 = M , whereas the mixing weights of the
StMAR model are obtained by setting M1 = 0.

Because the mixing weights are weighted stationary densities corresponding to the previous
p observations, an observation is more likely to be generated from the regime with higher
relative weighted likelihood. Moreover, as the mixing weights depend on the full distribution
of the previous p observations, the regime-switching probabilities may depend on the level,
variability, kurtosis, and temporal dependence of the past observations. This is a convenient
property for forecasting, and it also enables the researcher to associate specific characteristics
to different regimes.

The specific formulation of the mixing weights also leads to attractive theoretical proper-
ties. Specifically, the G-StMAR process yt = (yt, ..., yt−p+1) (p × 1), t = 1, 2, ..., is ergodic,
and it has fully known marginal stationary distribution that is characterized by the density
(Virolainen 2020a, Theorem 1; see the proof of Theorem 1 for the stationary distribution of
1, ..., p + 1 consecutive observations)

f(y) =
M1
∑

m=1

αmnp(y; µm1p, Γm) +
M2
∑

m=M1+1

αmtp(y; µm1p, Γm, νm). (7)

That is, the stationary distribution is a mixture of M1 p-dimensional Gaussian distribu-
tions and M2 p-dimensional Student’s t-distributions with constant mixing weights αm, m =
1, ..., M . For h = 0, ..., p, the marginal stationary distribution of (yt, ..., yt−h) is also a mixture
of Gaussian and Student’s t distributions with constant mixing weights αm, so the mixing
weights parameters αm can be interpreted as the unconditional probabilities of an observation
being generated from the mth component process.

In uGMAR, the parameters of the GSMAR models are collected to a (M(p+3)+M2 −1×1)
vector θ ≡ (ϑ1, ...,ϑM , α1, ..., αM−1,ν), where ϑm = (ϕm,0,ϕm, σ2

m), ϕm = (ϕm,1, ..., ϕm,p),
m = 1, ..., M , and ν = (νM1+1, ..., νM). The parameter αM is omitted because it is obtained
from the restriction

∑M
m=1 αm = 1, and in the GMAR model, the vector ν is omitted, as

the model does not contain degrees of freedom parameters. The knowledge of the parameter
vector is particularly required for building models with given parameter values, which is
discussed in Section 5.

3. Estimation

3.1. Log-likelihood function

uGMAR employs the method of maximum likelihood (ML) for estimating the parameters of
the GSMAR models. Suppose the observed time series is y−p+1, ..., y0, y1, ..., yT and that the
initial values are stationary. Then, the log-likelihood function of the G-StMAR model takes

6 A Family of Mixture Autoregressive Models in R

the form

L(θ) = log





M1
∑

m=1

αmnp(y0; µm1p, Γm) +
M
∑

m=M1+1

αmtp(y0; µm1p, Γm, νm)



 +
T

∑

t=1

lt(θ), (8)

where

lt(θ) = log





M1
∑

m=1

αm,tn1(yt; µm,t, σ2
m) +

M
∑

m=M1+1

αm,tt1

(

yt; µm,t, σ2
m,t, νm + p

)



 , (9)

and the density functions nd(·; ·) and td (·; ·) follow the notation described in Section 2.2. Log-
likelihood functions of the GMAR model and the StMAR model can be obtained as special
cases by setting M1 = M or M1 = 0, respectively, and dropping the redundant sums.

If stationarity of the initial values seems unreasonable, one can condition on the initial values
by dropping the first term on the right hand side of (8) and base the estimation on the resulting
conditional log-likelihood function. The ML estimator of a stationary GSMAR model is
strongly consistent and has the conventional limiting distribution under the conventional high
level conditions as is given in Kalliovirta et al. (2015, pp.254-255), Meitz et al. (forthcoming,
Theorem 2), and Virolainen (2020a, Theorem 2).

3.2. Two-phase estimation procedure

Finding the ML estimate amounts to maximizing the log-likelihood function (8) over a high
dimensional parameter space satisfying several constraints. Due to the complexity of the
log-likelihood function, finding an analytical solution is infeasible, so numerical optimization
methods are required. Following Dorsey and Mayer (1995) and Meitz et al. (forthcoming,
2018), uGMAR employs a two-phase estimation procedure in which a genetic algorithm is
used to find starting values for a gradient based method, which then accurately converges to
a nearby local maximum or saddle point. Because of the presence of multiple local maxima, a
(sometimes large) number of estimation rounds should be performed to obtain reliable results,
for which uGMAR makes use of parallel computing to shorten the estimation time.

The genetic algorithm in uGMAR is, at core, mostly based on the description by Dorsey and
Mayer (1995) but several modifications have been deployed to improve its performance. The
modifications include the ones proposed by Patnaik and Srinivas (1994) and Smith, Dike,
and Stegmann (1995) as well as further adjustments that take into account model specific
issues related to the mixing weights’ dependence on the preceding observations. For a more
detailed description of the genetic algorithm and its modifications, see Virolainen (2020a,
Appendix A). After running the genetic algorithm, the estimation is finalized with a variable
metric algorithm (Nash 1990, algorithm 21, implemented by R Core Team 2020) using central
difference approximation for the gradient of the log-likelihood function.

3.3. Examples of unconstrained estimation

In this section, we demonstrate how to estimate GSMAR models with uGMAR and provide
several examples in order to illustrate various frequently occurring situations. In addition to
the ordinary estimation, we particularly show how a GSMAR model can be built based on a
local-only maximum point when the ML estimate seems unreasonable (see Appendix A). We

Savi Virolainen 7

also consider the estimation of the appropriate G-StMAR model when the estimated StMAR
model contains overly large degrees of freedom estimates (see Virolainen 2020a, Section 4).

For the illustrations, we use the monthly U.S. interest rate spread between the 10-year and
1-year Treasury constant maturity rates, covering the period from 1982 January to 2020
December (468 observations). The series was retrieved from the Federal Reserve Bank of
St. Louis database and it is depicted in the top left panel of Figure 1 (Section 3.4). After
installing uGMAR, the data can be loaded with the following lines of code:

R> library("uGMAR")

R> data("M10Y1Y", package = "uGMAR")

In uGMAR, the GSMAR models are defined as class gsmar S3 objects, which can be created
with given parameter values using the constructor function GSMAR (see Section 5) or by us-
ing the estimation function fitGSMAR, which estimates the parameters and then builds the
model. For estimation, fitGSMAR needs to be supplied with a univariate time series and the
arguments specifying the model. The necessary arguments for specifying the model include
the autoregressive order p, the number of mixture components M, and model, which should
be either "GMAR", "StMAR", or "G-StMAR". For GMAR and StMAR models, the argument
M is a positive integer, whereas for the G-StMAR model it is a length two numeric vector
specifying the number of GMAR type regimes in the first element and the number of StMAR
type regimes in the second.

Additional arguments may be supplied to fitGSMAR in order to specify, for example, whether
the exact log-likelihood function should be used instead of the conditional one (conditional),
whether the model should be parametrized with the intercepts ϕm,0 or the regimewise uncon-
ditional means µm (parametrization), how many estimation rounds should be performed
(ncalls), and how many central processing unit (CPU) cores should be used in the estima-
tion (ncores). Because some of the estimation rounds may end up in local-only maximum
points or saddle points, reliability of the estimation results can be improved by increasing the
number of estimation rounds. A large number of estimation rounds may be required partic-
ularly when the number of mixture components is large, as the surface of the log-likelihood
function becomes increasingly more challenging. It is also possible to adjust the settings of
the genetic algorithm that is used to find the starting values. The available options are listed
in the documentation of the function GAfit to which the arguments adjusting the settings
will be passed.

The following code fits a StMAR model with autoregressive order p = 4 and M = 2 mixture
components to the monthly interest rate spread using the conditional log-likelihood function
and performing 12 estimation rounds with four CPU cores. The argument seeds supplies the
seeds that initialize the random number generator at the beginning of each call to the genetic
algorithm, thereby yielding reproducible results.

R> fit42t <- fitGSMAR(M10Y1Y, p = 4, M = 2, model = "StMAR",

+ conditional = TRUE, ncalls = 12, ncores = 4, seeds = 2:13)

Using 4 cores for 12 estimation rounds...

Optimizing with a genetic algorithm...

|++| 100% elapsed=36s

Results from the genetic algorithm:

8 A Family of Mixture Autoregressive Models in R

The lowest loglik: 143.403

The mean loglik: 160.701

The largest loglik: 172.949

Optimizing with a variable metric algorithm...

|++| 100% elapsed=06s

Results from the variable metric algorithm:

The lowest loglik: 176.895

The mean loglik: 180.162

The largest loglik: 182.353

Finished!

Warning message:

In warn_dfs(p = p, M = M, params = params, model = model) :

The model contains overly large degrees of freedom parameter values.

Consider switching to a G-StMAR model by setting the corresponding

regimes to be GMAR type with the function 'stmar_to_gstmar'.

The progression of the estimation process is reported with a progress bar giving an estimate of
the remaining estimation time. Also statistics on the spread of the log-likelihoods are printed
after each estimation phase. The progress bars are generated during parallel computing with
the package pbapply (Solymos and Zawadzki 2020).

The function throws a warning in the above example, because the model contains at least
one very large degrees of freedom parameter estimate. Such estimates are warned about,
because very large degrees of freedom parameters are redundant in the model and their weak
identification might lead to numerical problems, making the approximate standard errors and
quantile residual tests often unavailable (Virolainen 2020a, Section 4).

The estimates can be conveniently examined with the print method:

R> fit42t

Model:

StMAR, p = 4, M = 2, #parameters = 15, #observations = 468,

conditional, intercept parametrization, not restricted, no constraints.

Regime 1

Mix weight: 0.81

Reg mean: 1.87

Var param: 0.04

Df param: 9.76

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [cond_sd]eps

Regime 2

Mix weight: 0.19

Reg mean: 0.55

Var param: 0.01

Df param: 10584.18

Savi Virolainen 9

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + [cond_sd]eps

The parameter estimates are reported for each mixture component separately so that the
estimates can be easily interpreted. Each regime’s autoregressive formula is presented in the
form

yt = ϕm,0 + ϕm,1yt−1 + ... + ϕm,pyt−p + σm,tεm,t. (10)

The other statistics are listed above the formula, including the mixing weight pameter αm,
the uncondional mean µm, the variance parameter σ2

m, and the degrees freedom parameter
νm. For GMAR type regimes (if any), the variance parameter σ2

m is reported directly in the
autoregressive formula, as it is the regime’s conditional variance.

The above printout shows that the second regime’s degrees of freedom parameter estimate
is very large, which might induce numerical problems. However, since a StMAR model with
some degrees of freedom parameters tending to infinity coincides with the G-StMAR model
with the corresponding regimes switched to GMAR type, one may avoid the problems by
switching to the appropriate G-StMAR model (Virolainen 2020a, Section 4). Switching to
the appropriate G-StMAR model is recommended also because it removes the redundant
degrees of freedom parameters from the model. The function stmar_to_gstmar does this
switch automatically by first removing the large degrees of freedom parameters and then
estimating the G-StMAR model with a variable metric algorithm (Nash 1990, algorithm 21)
using the induced parameter vector as the initial value.

To exemplify, the following code switches all the regimes of the StMAR model fit42t with
a degrees of freedom parameter larger than 100 to GMAR type and then estimates the cor-
responding G-StMAR model.

R> fit42gs <- stmar_to_gstmar(fit42t, maxdf = 100)

We use the summary method to obtain a more detailed printout of the estimated the G-StMAR
model:

R> summary(fit42gs, digits = 2)

Model:

G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,

conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 182.35, AIC: -336.71, HQIC: -313.89, BIC: -278.75

Regime 1 (GMAR type)

Moduli of AR poly roots: 1.16, 1.45, 1.45, 1.16

Mix weight: 0.19 (0.09)

Reg mean: 0.55 (NA)

Reg var: 0.14

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + [sqrt(0.01)]eps

(0.01) (0.10) (0.20) (0.19) (0.12) (0.00)

10 A Family of Mixture Autoregressive Models in R

Regime 2 (StMAR type)

Moduli of AR poly roots: 1.07, 2.02, 2.02, 1.51

Mix weight: 0.81 (NA)

Reg mean: 1.87 (NA)

Var param: 0.04 (0.01)

Df param: 9.76 (4.25)

Reg var: 1.01

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [cond_sd]eps

(0.02) (0.05) (0.09) (0.09) (0.06)

Process mean: 1.62

Process var: 1.11

First p autocors: 0.98 0.96 0.93 0.89

In the G-StMAR model, estimates for GMAR type regimes are reported before StMAR type
regimes, in a decreasing order according to the mixing weight parameter estimates. As shown
above, the model fit42gs incorporates one GMAR type regime and one StMAR type regime.
Approximate standard errors are given in parentheses under or next to the related estimates.
The value NA is reported when the related statistic is not parametrized or uGMAR was
not able to calculate the standard error. In the former case, if one has parametrized the
model with intercepts (unconditional means) but wishes to obtain standard errors for the
regimewise unconditional means (intercepts), the parametrization may be swapped with the
function swap_parametrization. The latter case often occurs when the estimates are very
close to the boundary of the parameter space or when the model contains extremely large
degrees of freedom parameter estimates.

Other reported statistics include the log-likelihood and values of information criteria, the
first and second moments of the process, as well as regime specific unconditional means,
unconditional variances, and moduli of the roots of the AR polynomials 1−

∑p
i=1 ϕm,iz

i, m =
1, ..., M . If some of the moduli are very close to one, the related estimates are near the
boundary of the stationarity region. We demonstrate in Appendix A that when such solutions
are accompanied with a very small variance parameter estimate, they might not be reasonable
estimates and maximize the log-likelihood function for a technical reason only. Consequently,
the estimate related to the next-largest local maximum could be considered. This is possible in
uGMAR, because the estimation function fitGSMAR stores the estimates from all estimation
rounds so that a GSMAR model can be built based on any one of them, most conveniently
with the function alt_gsmar. The desired estimation round can be specified either with the
argument which_round or which_largest. The former specifies the round in the estimation
order, whereas the latter specifies it in a decreasing order of the log-likelihoods.

To give an example of a case where the estimates are very close the boundary of the station-
arity region, we estimate the G-StMAR model directly with the following code.

R> fit42gs2 <- fitGSMAR(M10Y1Y, p = 4, M = c(1, 1), model = "G-StMAR",

+ conditional = TRUE, ncalls = 12, ncores = 4, seeds = 1:12)

Using 4 cores for 12 estimation rounds...

Savi Virolainen 11

Optimizing with a genetic algorithm...

|++| 100% elapsed=29s

Results from the genetic algorithm:

The lowest loglik: 133.926

The mean loglik: 147.787

The largest loglik: 175.58

Optimizing with a variable metric algorithm...

|++| 100% elapsed=10s

Results from the variable metric algorithm:

The lowest loglik: 151.91

The mean loglik: 172.875

The largest loglik: 185.558

Finished!

Warning message:

In warn_ar_roots(ret) :

Regime 1 has near-unit-roots! Consider building a model from the

next-largest local maximum with the function 'alt_gsmar' by adjusting

its argument 'which_largest'.

The function throws a warning, because the largest found maximum point incorporates a
regime that is very close to the boundary of the stationarity region, indicating a potentially
inappropriate estimate. We examine the estimates with the summary method:

R> summary(fit42gs2, digits = 2)

Model:

G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,

conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 185.56, AIC: -343.12, HQIC: -320.30, BIC: -285.16

Regime 1 (GMAR type)

Moduli of AR poly roots: 1.00, 1.00, 1.00, 1.00

Mix weight: 0.02 (0.01)

Reg mean: 0.39 (NA)

Reg var: 0.09

y = [0.63] + [0.21]y.1 + [-0.04]y.2 + [0.21]y.3 + [-1.00]y.4 + [sqrt(0.00)]eps

(0.01) (0.01) (0.02) (0.01) (0.00) (0.00)

Regime 2 (StMAR type)

Moduli of AR poly roots: 1.03, 1.92, 1.92, 1.54

Mix weight: 0.98 (NA)

Reg mean: 0.80 (NA)

Var param: 0.03 (0.01)

Df param: 5.94 (1.97)

Reg var: 1.65

12 A Family of Mixture Autoregressive Models in R

y = [0.01] + [1.31]y.1 + [-0.40]y.2 + [0.24]y.3 + [-0.17]y.4 + [cond_sd]eps

(0.01) (0.05) (0.08) (0.08) (0.05)

Process mean: 0.79

Process var: 1.62

First p autocors: 0.99 0.97 0.95 0.93

The summary statistics reveal that there are four near-unit-roots in the GMAR type regime
and the variance parameter estimate is very small. Such estimates often occur when there
are several regimes in the model and the estimation algorithm is ran a large number of times.
If one suspects that the estimate is inappropriate, it is easy to build a model based on the
second-largest maximum point that was found in the estimation. Below, the first line of the
code builds the model based on the second-largest maximum point, and the second line calls
the summary method to produce a detailed printout of the model.

R> fit42gs3 <- alt_gsmar(fit42gs2, which_largest = 2)

R> summary(fit42gs3, digits = 2)

Model:

G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,

conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 182.35, AIC: -336.71, HQIC: -313.89, BIC: -278.75

Regime 1 (GMAR type)

Moduli of AR poly roots: 1.16, 1.45, 1.45, 1.16

Mix weight: 0.19 (0.09)

Reg mean: 0.55 (NA)

Reg var: 0.14

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + [sqrt(0.01)]eps

(0.01) (0.10) (0.20) (0.19) (0.12) (0.00)

Regime 2 (StMAR type)

Moduli of AR poly roots: 1.07, 2.02, 2.02, 1.51

Mix weight: 0.81 (NA)

Reg mean: 1.87 (NA)

Var param: 0.04 (0.01)

Df param: 9.76 (4.05)

Reg var: 1.01

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [cond_sd]eps

(0.02) (0.05) (0.09) (0.09) (0.06)

Process mean: 1.62

Process var: 1.11

First p autocors: 0.98 0.96 0.93 0.89

Savi Virolainen 13

The above printout shows that the estimates related to the second-largest local maximum are
the same as of the model fit42gs (which was estimated based on a StMAR model with a
very large degrees of freedom parameter estimate) and that they are clearly inside the station-
arity region for all regimes. If also the second-largest maximum point seems unreasonable,
a GSMAR model can be built based on the next-largest maximum point by adjusting the
argument which_largest in the function alt_gsmar accordingly.

3.4. Further examination of the estimates

In addition to examining the summary printout, it is often useful to visualize the model
by plotting the mixing weights together with the time series and the model’s (marginal)
stationary density together with a kernel density estimate of the time series. That is exactly
what the plot method for GSMAR models does. For instance, the following command creates
Figure 1:

R> plot(fit42gs)

As Figure 1 (the top and bottom left panels) shows, the first regime prevails when the spread
takes small values, while the second regime mainly dominates when the spread takes large
values. The graph of the model’s marginal stationary density (the right panel), on the other
hand, shows that the two regimes capture the two modes in the marginal distribution of the
spread.

It is also sometimes interesting to examine the time series of (one-step) conditional means
and variances of the process along with the time series the model was fitted to. This can be
done conveniently with the function cond_moment_plot, where the argument which_moment

should be specified with "mean" or "variance" accordingly. In addition to the conditional
moment of the process, cond_moment_plot also displays the conditional means or variances of
the regimes multiplied by the mixing weights. Note, however, that the conditional variance of
the process is not generally the same as the weighted sum of regimewise conditional variances,
as it includes a component that encapsulates heteroskedasticity caused by variation in the
conditional mean (see Virolainen 2020a, equation 2.19).

The variable metric algorithm employed in the final estimation does not necessarily stop at
a local maximum point. The algorithm might also stop at a saddle point or near a local
maximum, when the algorithm is not able to increase the log-likelihood, or at any point,
when the maximum number of iterations has been reached. In the latter case, the estimation
function throws a warning, but saddle points and inaccurate estimates need to be detected
by the researcher.

It is well known that in a local maximum point, the gradient of the log-likelihood function
is zero, and the eigenvalues of the Hessian matrix are all negative. In a local minimum, the
eigenvalues of the Hessian matrix are all positive, whereas in a saddle point, some of them
are positive and some negative. Nearly numerically singular Hessian matrices occur when
the surface of the log-likelihood function is very flat about the estimate in some directions.
This particularly happens when the model contains overly large degrees of freedom parameter
estimates or the mixing weights αm,t are estimated close to zero for all t = 1, ..., T for some
regime m.

uGMAR provides several functions for evaluating whether the estimate is a local maximum
point. The function get_foc returns the (numerically approximated) gradient of the log-

14 A Family of Mixture Autoregressive Models in R

Figure 1: The figure produced by the command plot(fit42gs). On the top left, the monthly
spread between the 10-year and 1-year Treasury constant maturity rates, covering the period
from 1982 January to 2020 December. On the bottom left, the estimated mixing weights of
the G-StMAR model (fit42gs) fitted to the interest rate spread (blue dashed line for the
first regime and red dashed line for the second regime). On the right, the one-dimensional
marginal stationary density of the estimated G-StMAR model (grey dashed line) along with
a kernel density estimate of the spread (black solid line) and marginal stationary densities of
the regimes multiplied by the mixing weight parameter estimates (blue and red dotted lines).

Figure 2: The figure produced by the command profile_logliks(fit42gs). Graphs of
the profile log-likelihood functions of the estimated G-StMAR model fit42gs with the red
vertical lines pointing the estimates.

Savi Virolainen 15

likelihood function evaluated at the estimate, and the function get_soc returns eigenvalues of
the (numerically approximated) Hessian matrix of the log-likelihood function evaluated at the
estimate. The numerical derivatives are calculated using a central difference approximation

∂L(θ)

∂θi
≈

f(θ + h(i)) − f(θ − h(i))

2h
, h > 0, (11)

where θi is the ith element of θ and h(i) = (0, ..., 0, h, 0, ..., 0) contains h as its ith element. By
default, the difference h = 6 · 10−6 is used for all parameters except for overly large degrees of
freedom parameters, whose partial derivatives are approximated using larger differences. The
difference is increased for large degrees of freedom parameters, because the limited precision
of the float point presentation induces artificially rugged surfaces to the their profile log-
likelihood functions, and the increased differences diminish the related numerical error. On
the other hand, as the surface of the profile log-likelihood function is very flat about a large
degrees of freedom parameter estimate, large differences work well for the approximation.

For example, the following code calculates the first order condition for the G-StMAR model
fit42gs:

R> get_foc(fit42gs)

[1] 0.1122667304 0.0443675437 0.0412785752 0.0423330799 0.0452292663

[6] 0.3538279050 -0.0812537190 -0.0732948896 -0.0755336131 -0.0767990779

[11] -0.0825067588 -0.0117666801 -0.0004755852 -0.000311516

and the following code calculates the second order condition:

R> get_soc(fit42gs)

[1] -5.532989e-02 -1.354613e+01 -4.393581e+01 -6.468623e+01 -1.208288e+02

[6] -1.672930e+02 -2.618770e+02 -8.870701e+02 -2.044356e+03 -4.862843e+03

[11] -4.356473e+04 -5.459504e+04 -2.727102e+05 -5.568025e+05

All eigenvalues of the Hessian matrix are negative, which points to a local maximum, but the
gradient of the log-likelihood function seems to somewhat deviate from zero. The gradient
might be inaccurate, because it is based on a numerical approximation. It is also possible
that the estimate is inaccurate, because it is based on approximative numerical estimation,
and the estimates are therefore not expected to be exactly accurate. Whether the estimate is
a local maximum point with accuracy that is reasonable enough, can be evaluated by plotting
the graphs of the profile log-likelihood functions about the estimate. In uGMAR, this can be
done conveniently with the function profile_logliks.

The exemplify, the following command plots the graphs of profile log-likelihood functions of
the estimated G-StMAR model fit42gs:

R> profile_logliks(fit42gs, scale = 0.02, precision = 200)

The output is displayed in Figure 2, showing that the estimate’s accuracy is reasonable, as
changing any individual parameter marginally would not visibly increase the log-likelihood.

16 A Family of Mixture Autoregressive Models in R

The argument scale can be adjusted to shorten or lengthen the interval shown in the hor-
izontal axis. If one zooms in enough by setting scale to a very small value, it can be seen
that the estimate is not exactly at the local maximum, but it is so close that moving there
would not increase the log-likelihood notably. The argument precision can be adjusted to
increase the number of points the graph is based on. For faster plotting, it can be decreased,
and for more precision, it can be increased.

We have discussed tools that can be utilized to evaluate whether the found estimate is a local
maximum with a reasonable accuracy. It is, however, more difficult to establish that the
estimate is the global maximum. With uGMAR, the best way to increase the reliability that
the found estimate is the global maximum, is to run more estimation rounds by adjusting
the argument ncalls of the estimation function fitGSMAR. When a large number of estima-
tion rounds is run (and M > 1), fitGSMAR often finds peculiar near-the-boundary estimates
(see Appendix A) that have extremely spiky profile log-likelihood functions for some param-
eters and are thus difficult to find. Therefore, it seems plausible that fitGSMAR also finds a
reasonable ML estimate with a good reliability.

3.5. Examples of constrained estimation

Alternatively to the unconstrained estimation, one may impose linear constraints on the au-
toregressive (AR) parameters of the model; that is, on ϕm,1, ..., ϕm,p, m = 1, ..., M . uGMAR

deploys two types of constraints: the AR parameters can be restricted to be the same for all
regimes and linear constraints can be applied to each regime separately. In order to impose
the former type of constraints, the estimation function simply needs to be supplied with the
argument restricted = TRUE.

For instance, a GMAR p = 3, M = 2 model with the AR parameters restricted to be the
same in both regimes can be estimated with the following code. The argument conditional

= FALSE sets the estimation to be based on the exact log-likelihood function and the argument
print_res = FALSE tells fitGSMAR not to the print the spread of the log-likelihoods obtained
from each phase of estimation.

R> fit32r <- fitGSMAR(M10Y1Y, p = 3, M = 2, model = "GMAR",

+ conditional = FALSE, restricted = TRUE, ncalls = 12,

+ ncores = 4, seeds = 1:12, print_res = FALSE)

Using 4 cores for 12 estimation rounds...

Optimizing with a genetic algorithm...

|++| 100% elapsed=19s

Optimizing with a variable metric algorithm...

|++| 100% elapsed=01s

Finished!

Printout of the model shows the AR parameter estimates are the same in both regimes:

R> fit32r

Model:

GMAR, p = 3, M = 2, #parameters = 8, #observations = 468,

Savi Virolainen 17

exact, intercept parametrization, AR parameters restricted, no constraints.

Regime 1

Mix weight: 0.65

Reg mean: 1.61

y = [0.04] + [1.30]y.1 + [-0.33]y.2 + [0.01]y.3 + [sqrt(0.04)]eps

Regime 2

Mix weight: 0.35

Reg mean: 0.77

y = [0.02] + [1.30]y.1 + [-0.33]y.2 + [0.01]y.3 + [sqrt(0.01)]eps

The other type constraints in uGMAR are of the form

ϕm = Cmψm, m = 1, ..., M,

where Cm is a known (p × qm) constraint matrix with full column rank, ψm is a (qm ×
1) parameter vector, and ϕm = (ϕm,1, ..., ϕm,p) contains the AR coefficients of the mth
regime. In order to apply the constraints, the estimation function should be supplied with
the argument constraints containing a list of the constraint matrices Cm, m = 1, ..., M . For
example, to constrain the third AR coefficient of the second regime (ϕ2,3) to zero but leaving
the first regime unconstrained in a GMAR p = 3, M = 2 model, we deploy the following list
of constraint matrices:

R> C_list <- list(diag(3), matrix(c(1, 0, 0, 0, 1, 0), nrow = 3))

R> C_list

[[1]]

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

[[2]]

[,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] 0 0

After setting up the constraints, the constrained model can be estimated as follows:

R> fit32c <- fitGSMAR(M10Y1Y, p = 3, M = 2, model = "GMAR",

+ conditional = FALSE, constraints = C_list, ncalls = 12,

+ ncores = 4, seeds = 1:12, print_res = FALSE)

18 A Family of Mixture Autoregressive Models in R

Using 4 cores for 12 estimation rounds...

Optimizing with a genetic algorithm...

|++| 100% elapsed=19s

Optimizing with a variable metric algorithm...

|++| 100% elapsed=02s

Finished!

Printout of the model shows that the third AR parameter estimate of the second regime is
zero:

R> fit32c

Model:

GMAR, p = 3, M = 2, #parameters = 10, #observations = 468,

exact, intercept parametrization, not restricted, linear constraints imposed.

Regime 1

Mix weight: 0.58

Reg mean: 1.17

y = [0.02] + [1.27]y.1 + [-0.21]y.2 + [-0.07]y.3 + [sqrt(0.01)]eps

Regime 2

Mix weight: 0.42

Reg mean: 1.55

y = [0.06] + [1.27]y.1 + [-0.31]y.2 + [0.00]y.3 + [sqrt(0.06)]eps

Notice that even when the pth AR coefficient is restricted to zero, the pth lag of that regime
is accounted for in the mixing weights (6) and in the case of a StMAR type regime also in
the conditional variance (3).

If both types of constraints are applied at the same time, only a single constraint matrix should
be supplied (not in a list). Consider a GSMAR model with p = 2 and M = 2, for example,
and suppose the AR coefficients should be restricted to be the same in both regimes and the
second AR coefficient (ϕm,2) should be constrained to be the negative of the first coefficient
(ϕm,1). Then, the estimation function should be supplied with the arguments restricted =

TRUE and constraints = matrix(c(1, -1), nrow=2). As demonstrated above, uGMAR’s
implementation for applying linear constraints is not the most general one, but it makes
applying some of the most typical constraints convenient, as the constraint matrices remain
small.

4. Quantile residual based model diagnostics

In the GSMAR models, the empirical counterparts of the error terms εm,t in equation (1)
cannot be calculated, because the regime that generated each observation is unknown, mak-
ing the conventional residual based diagnostics unavailable. Therefore, uGMAR utilizes so

Savi Virolainen 19

called quantile residuals, which are suitable for evaluating adequacy of the GSMAR models.
Deploying the framework presented in Kalliovirta (2012), quantile residuals are defined as

Rt = Φ−1(F (yt|Ft−1)), t = 1, 2, ..., T, (12)

where Φ−1(·) is the standard normal quantile function and F (·|Ft−1) is the conditional cumu-
lative distribution function of the considered GSMAR process (conditional on the previous
observations).

The empirical counterparts of the quantile residuals are calculated by using the parameter es-
timate and the observed data in (12). For a correctly specified GSMAR model, the empirical
counterparts of the quantile residuals based on the ML estimator are asymptotically inde-
pendent with standard normal distributions (Kalliovirta 2012, Lemma 2.1). Hence, quantile
residuals can be used for graphical analysis similarly to the conventional Pearson’s residuals.

In uGMAR, quantile residuals can be analyzed graphically with the function diagnostic_plot,
which plots the quantile residual time series, normal quantile-quantile plot, and sample au-
tocorrelation functions of the quantile residuals and squared quantile residuals. If one sets
plot_indstats = TRUE in the function arguments, diagnostic_plot also plots the standard-
ized individual statistics discussed in Kalliovirta (2012, pp. 369-370) with their approximate
95% critical bounds. The individual statistics, which test for remaining autocorrelation or
heteroskestacity in specific lags, can be calculated either based on the observed data or based
on the simulation procedure proposed by Kalliovirta (2012). In the simulation procedure,
the individual statistics’ approximate standard errors are based on a (preferably large) sam-
ple simulated from the estimated process. According to Kalliovirta’s (2012) Monte Carlo
study, the simulation procedure may improve size properties of the related tests, but it makes
calculation of the statistics computationally more demanding.

The code below creates a diagnostic plot for the G-StMAR model fit42gs (estimated in
Section 3.3), including the individual statistics based on the observed data and calculated for
the first 20 lags:

R> diagnostic_plot(fit42gs, nlags = 20, plot_indstats = TRUE)

The resulting plot is presented in Figure 3. In order to employ the simulation procedure,
one needs to set the length of the simulated sample with the argument nsimu. If nsimu is
not larger than the length of the observed data, the statistics will be based on the observed
data. In addition to diagnostic_plot, quantile residuals can be graphically examined with
the function quantile_residual_plot, which plots the quantile residual time series and a
histogram.

Analyzing quantile residuals graphically gives an overview of the model’s adequacy, but it
is often appealing to also carry out a formal testing procedure. Kalliovirta (2012) proposes
three specific tests for testing normality, autocorrelation, and conditional heteroskedasticity
of the quantile residuals. Kalliovirta’s (2012) tests take into account the uncertainty caused
by estimation of the parameters and they are shown to perform well in a simulation study
(Kalliovirta 2012, Section 4).

In uGMAR, the quantile residual tests can be applied with the function quantile_residual_tests

whose arguments include the model and the numbers of lags to be included in the autocorre-
lation (lags_ac) and heteroskedasticity tests (lags_ch). Similarly to the individual statistics

20 A Family of Mixture Autoregressive Models in R

Figure 3: Diagnostic plot for the fitted model fit42gs created using the function
diagnostic_plot. The quantile residual time series (top left), normal quantile-quantile
plot (top right), sample autocorrelation functions of the quantile residuals (middle left) and
squared quantile residuals (middle right), and the individual autocorrelation (bottom left)
and heteroskedasticity (bottom right) statistics discussed in Kalliovirta (2012, pp. 369-370).
The blue dashed lines in the sample autocorrelation figures are the 1.96T −1/2 lines denot-
ing 95% critical bounds for IID-observations, whereas for the Kalliovirta’s (2012) individual
statistics they are the approximate 95% critical bounds.

discussed in the context of the diagnostic plot, the tests can be based either on the observed
data or on the simulation procedure. The simulation procedure can be deployed by setting
the argument nsimu to be larger than the data length.

The following code calculates the quantile residual tests for the G-StMAR model fit42gs by
deploying the simulation procedure based on a simulated sample of length 10000 and taking
into account 1, 3, 6, and 12 lags in the autocorrelation and heteroskedasticity tests. By default,
the lags for the heteroskedasticity tests are the same as for the autocorrelation tests, so it is
enough to set the autocorrelation test lags with the argument lags_ac.

R> set.seed(1)

R> qrt <- quantile_residual_tests(fit42gs, lags_ac = c(1, 3, 6, 12),

+ nsimu = 10000)

Normality test p-value: 0.089

Autocorrelation tests:

lags | p-value

1 | 0.475

3 | 0.018

6 | 0.281

12 | 0.080

Savi Virolainen 21

Conditional heteroskedasticity tests:

lags | p-value

1 | 0.584

3 | 0.140

6 | 0.003

12 | 0.000

The test results reveal that the model does not seem to adequately capture the conditional
heteroskedasticity in the series when taking into account 6 or 12 lags.

uGMAR often fails to calculate the quantile residual tests for GSMAR models with very
large degrees of freedom parameter estimates, but the problem can be avoided by switching
to the appropriate G-StMAR model with the function stmar_to_gstmar, which removes the
redundant degrees of freedom parameters (see Virolainen 2020a, Section 4, and Section 3.3
of this paper). Calculation of the tests may also fail when the estimate is very close to the
boundary of the parameter space in which case it might be appropriate to consider an estimate
from the next-largest local maximum point of the log-likelihood function. To that end, the
function alt_gsmar can be used as demonstrated in Section 3.3 and in Appendix A.

5. Building a GSMAR model with specific parameter values

The function GSMAR facilitates building GSMAR models without estimation, for instance, in
order to simulate observations from a GSMAR process with specific parameter values. The
parameter vector (of length M(p + 3) + M2 − 1 for unconstrained models) has the form
θ = (ϑ1, ...,ϑM , α1, ..., αM−1,ν) where

ϑm = (ϕm,0, ϕm,1, ..., ϕm,p, σ2
m), m = 1, ..., M, and (13)

ν = (νM1+1, ..., νM). (14)

In the GMAR model (when M1 = M), the vector ν is omitted, as the GMAR model does not
contain degrees of freedom parameters. For models with constraints on the autoregressive
parameters, the parameter vectors are expressed in a different way. They are only presented
in the documentation for brevity, because the hand-specified parameter values can be set to
satisfy any constraints as is.

In addition to the parameter vector, GSMAR should be supplied with arguments p and M

specifying the order of the model similarly to the estimation function fitGSMAR discussed in
Sections 3.3 and 3.5. If one wishes to parametrize the model with the regimewise unconditional
means (µm) instead of the intercepts (ϕm,0), the argument parametrization should be set
to "mean" in which case the intercept parameters ϕm,0 are replaced with µm in the parameter
vector. By default, uGMAR uses intercept parametrization.

To exemplify, we build the GMAR p = 2, M = 2 model that is used in the simulation
experiment in Appendix A. The model has intercept parametrization and parameter values
ϑ1 = (0.9, 0.4, 0.2, 0.5), ϑ2 = (0.7, 0.5, −0.2, 0.7), and α1 = 0.7. After building the model, we
use the print method to examine it:

R> params22 <- c(0.9, 0.4, 0.2, 0.5, 0.7, 0.5, -0.2, 0.7, 0.7)

R> mod22 <- GSMAR(p = 2, M = 2, params = params22, model = "GMAR")

R> mod22

22 A Family of Mixture Autoregressive Models in R

Model:

GMAR, p = 2, M = 2, #parameters = 9,

conditional, intercept parametrization, not restricted, no constraints.

Regime 1

Mix weight: 0.70

Reg mean: 2.25

y = [0.90] + [0.40]y.1 + [0.20]y.2 + [sqrt(0.50)]eps

Regime 2

Mix weight: 0.30

Reg mean: 1.00

y = [0.70] + [0.50]y.1 + [-0.20]y.2 + [sqrt(0.70)]eps

It is possible to include data in the models built with GSMAR by either providing the data
in the argument data when creating the model or by adding the data afterwards with the
function add_data. When the model is supplied with data, the mixing weights, one-step
conditional means and variances, and quantile residuals can be calculated and included in
the model. The function add_data can also be used to update data to an estimated GSMAR
model without re-estimating the model.

6. Simulation and forecasting

6.1. Simulation

uGMAR provides the function simulateGSMAR for simulating observations from GSMAR
processes. simulateGSMAR requires the process to be given as a class gsmar object, which
can be created either by estimating a model with the function fitGSMAR or by specifying the
parameter values by hand and building the model with the constructor function GSMAR. The
initial values required to simulate the first p observations can be either set by hand (with the
argument init_values) or drawn from the stationary distribution of the process (by default).
The argument nsimu sets the length of the sample path to be simulated.

To give an example, the following code simulates the 500 observations long sample path that is
used in the simulation experiment in Appendix A from the GMAR process built in Section 5:

R> set.seed(1)

R> mysim <- simulateGSMAR(mod22, nsimu = 500)

simulateGSMAR returns a list containing the simulated sample path in $sample, the mix-
ture component that generated each observation in $component, and the mixing weights in
$mixing_weights.

6.2. Simulation based forecasting

Deriving multiple-steps-ahead point predictions and predictions intervals analytically for the

Savi Virolainen 23

GSMAR models is very complicated, so uGMAR employs the following simulation-based
method. By using the last p observations of the data up to the date of forecasting as initial
values, a large number of sample paths for the future values of the process are simulated.
Then, sample quantiles from the simulated sample paths are calculated to obtain prediction
intervals, and the median or mean is used for point predictions. A similar procedure is also
applied to forecast future values of the mixing weights, which might be of interest because
the researcher can often associate specific characteristics to different regimes.

Forecasting is most conveniently done with the predict method. The available arguments
include the number of steps ahead to be predicted (n_ahead), the number sample paths the
forecast is based on (nsimu), possibly multiple confidence levels for prediction intervals (pi),
prediction type (pred_type), and prediction interval type (pi_type). The prediction type
can be either median, mean, or for one-step-ahead forecasts also the exact conditional mean,
cond_mean. The prediction interval type can be any of "two-sided", "upper", "lower", or
"none".

As an example, we use the G-StMAR p = 4, M1 = 1, M2 = 1 model fitted to the monthly
interest rate spread in Section 3.3 to forecast the spread 12 months ahead, i.e., for the year
2021. The point prediction is based on median and 10000 simulated future sample paths, and
the two-sided prediction intervals are calculated for the confidence levels 0.95 and 0.80.

R> set.seed(1)

R> mypred <- predict(fit42gs, n_ahead = 12, nsimu = 10000, pi = c(0.95, 0.8),

+ pred_type = "median", pi_type = "two-sided")

R> mypred

Prediction by median, two-sided prediction intervals with levels 0.95, 0.8.

Forecast 12 steps ahead, based on 10000 simulations.

0.025 0.1 median 0.9 0.975

1 0.66 0.74 0.87 1.01 1.10

2 0.54 0.66 0.89 1.13 1.32

3 0.46 0.62 0.90 1.23 1.48

4 0.36 0.55 0.91 1.33 1.65

5 0.25 0.49 0.91 1.44 1.83

6 0.17 0.43 0.90 1.54 2.00

7 0.08 0.38 0.91 1.64 2.15

8 0.02 0.33 0.91 1.73 2.25

9 -0.02 0.29 0.91 1.81 2.35

10 -0.07 0.26 0.91 1.88 2.45

11 -0.09 0.24 0.92 1.95 2.58

12 -0.13 0.22 0.93 2.01 2.65

Point forecasts and prediction intervals for mixing weights can be obtained

with $mix_pred and $mix_pred_ints, respectively.

The predict method plots the results by default but this can be also avoided by setting
plot_res = FALSE in the arguments. The figure created by the above example is presented
in Figure 4.

24 A Family of Mixture Autoregressive Models in R

Figure 4: Figure created by the predict method for the G-StMAR model fit42gs. Twelve-
months-ahead point prediction for the monthly interest rate spread (top) and the model’s
mixing weights (bottom) together with several preceding observations and prediction intervals
with confidence levels 0.95 (outer interval) and 0.80 (inner interval).

7. Summary

Mixture autoregressive models are useful for analyzing time series that exhibit non-linear,
regime-switching features. The GMAR model, the StMAR model, and the G-StMAR model
constitute an appealing family of such models, the GSMAR models, with attractive theo-
retical and practical properties. This paper introduced the R package uGMAR providing a
comprehensive set of easy-to-use tools for GSMAR modeling, including unconstrained and
constrained maximum likelihood estimation of the model parameters, quantile residual based
model diagnostics, simulation, forecasting, and more. For convenience, we have collected
some useful functions in uGMAR to Table 1, which contains also functions not mentioned in
the text.

The model parameters are estimated with the method of maximum likelihood by employing
a two-phase procedure, which uses a genetic algorithm to find starting values for a variable
metric algorithm. Notably, due to the endogenously determined mixing weights, the maximum
likelihood estimate is occasionally found very close to the boundary of the stationarity region
of some regimes. We explained in an Appendix why such estimates might be inappropriate
and showed how a GSMAR model can be built based on an alternative estimate related to
the next-largest local maximum point.

Savi Virolainen 25

Related to Name Description

Estimation fitGSMAR Estimate a GSMAR model.
alt_gsmar Build a GSMAR model based on re-

sults from any estimation round.
stmar_to_gstmar Estimate a G-StMAR model based on

a StMAR (or G-StMAR) model with
large degrees of freedom parameters.

iterate_more Run more iterations of the variable
metric algorithm for a preliminary es-
timated GSMAR model.

Estimates summary (method) Detailed printout of the estimates.
plot (method) Plot the series with the estimated mix-

ing weights and kernel density esti-
mate of the series with the stationary
density of the model.

get_foc Calculate numerically approximated
gradient of the log-likelihood function
evaluated at the estimate.

get_soc Calculate eigenvalues of numerically
approximated Hessian of the log-
likelihood function evaluated at the es-
timate.

profile_logliks Plot the graphs of the profile log-
likelihood functions.

cond_moment_plot Plot the model implied one-step con-
ditional means or variances.

Diagnostics quantile_residual_tests Calculate quantile residual tests.
diagnostic_plot Plot quantile residual diagnostics.
quantile_residual_plot Plot quantile residual time series and

histogram.
Forecasting predict (method) Forecast future observations and mix-

ing weights of the process.
Simulation simulateGSMAR Simulate from a GSMAR process.
Create model GSMAR Construct a GSMAR model based on

specific parameter values.
Hypothesis testing LR_test Calculate likelihood ratio test.

Wald_test Calculate Wald test.
Other add_data Add data to a GSMAR model

swap_parametrization Swap to mean/intercept parametriza-
tion

Table 1: Some useful functions in uGMAR sorted according to their usage. The note "method"
in brackets after the name of a function signifies that it is an S3 method for a class gsmar

object (often generated by the function fitGSMAR or GSMAR).

26 A Family of Mixture Autoregressive Models in R

Computational details

The results in this paper were obtained using R 4.0.2 and uGMAR 3.3.1 package running
on MacBook Pro 13", 2020, with Intel Core i5-8257U 1.40Ghz processor and 8 Gt 2133 Mhz
LPDDR3 RAM.

uGMAR takes use of the R package Brobdingnag (Hankin 2007) to handle values extremely
close to zero in the evaluation of the first term of the exact log-likelihood function (8). The
package gsl (Hankin, Clausen, and Murdoch 2006) is utilized to calculate some of the quantile
residuals (12) with a hypergeometric function. In order to improve computational efficiency in
the numerical estimation procedure, the formula proposed by Galbraith and Galbraith (1974)
is utilized to directly compute the inverses of the covariance matrices Γm, m = 1, ..., M , (which
appear in equations (3), (5), (6), and in the first term of (8)), as only the inverses are required
for calculating the quantities in the log-likelihood function. Finally, the algorithm proposed
by Monahan (1984) is employed to generate random stationary autoregressive coefficients in
the genetic algorithm.

Acknowledgments

The author thanks Markku Lanne, Mika Meitz, and Pentti Saikkonen from comments and dis-
cussions, which helped to improve this paper substantially. The author also thanks Academy
of Finland for financing the project (grant 308628).

References

Dorsey R, Mayer W (1995). “Genetic Algorithms for Estimation Problems with Multiple
Optima, Nondifferentiability, and Other Irregular Features.” Journal of Business and Eco-

nomic Statistics, 13(1), 53–66. doi:10.1080/07350015.1995.10524579.

Galbraith J, Galbraith R (1974). “On the Inverses of Some Patterned Matrices Arising in
the Theory of Stationary Time Series.” Journal of Applies Probability, 11(1), 63–71. doi:

10.2307/3212583.

Glasbey C (2001). “Non-linear Autoregressive Time Series with Multivariate Gaussian Mix-
tures as Marginal Distributions.” Journal of Royal Statistical Society: Series C, 50(2),
143–154. doi:10.1111/1467-9876.00225.

Hankin R (2007). “Very large numbers in R: Introducing package Brobdingnag.” R News,
7(3).

Hankin R, Clausen A, Murdoch D (2006). “Special Functions in R: Introducing the gsl
Package.” R News, 6(4).

Kalliovirta L (2012). “Misspecification Tests Based on Quantile Residuals.” The Econometrics

Journal, 15(2), 358–393. doi:10.1111/j.1368-423X.2011.00364.x.

Kalliovirta L, Meitz M, Saikkonen P (2015). “A Gaussian Mixture Autoregressive Model for
Univariate Time Series.” Journal of Time Series Analysis, 36(2), 247–266. doi:10.1111/

jtsa.12108.

http://dx.doi.org/10.1080/07350015.1995.10524579
http://dx.doi.org/10.2307/3212583
http://dx.doi.org/10.2307/3212583
http://dx.doi.org/10.1111/1467-9876.00225
http://dx.doi.org/10.1111/j.1368-423X.2011.00364.x
http://dx.doi.org/10.1111/jtsa.12108
http://dx.doi.org/10.1111/jtsa.12108

Savi Virolainen 27

Kalliovirta L, Meitz M, Saikkonen P (2016). “Gaussian Mixture Vector Autoregression.”
Journal of Econometrics, 192(2), 465–498. doi:10.1016/j.jeconom.2016.02.012.

Lanne M, Saikkonen P (2003). “Modeling the U.S. Short-Term Interest Rate by Mixture
Autoregressive Processes.” Journal of Financial Econometrics, 1(1), 96–125. doi:10.

1093/jjfinec/nbg004.

Le N, Martin R, Raftery A (1996). “Modeling Flat Stretches, Bursts, and Outliers in Time
Series Using Mixture Transition Distribution Models.” Journal of the American Statistical

Association, 91(436), 1504–1515. doi:10.2307/2291576.

Meitz M, Preve D, Saikkonen P (2018). StMAR Toolbox: A MATLAB Toolbox for Student’s

t Mixture Autoregressive Models. doi:10.2139/ssrn.3237368.

Meitz M, Preve D, Saikkonen P (forthcoming). “A Mixture Autoregressive Model Based
on Student’s t-Distribution.” Communications in Statistics - Theory and Methods. doi:

10.1080/03610926.2021.1916531.

Monahan J (1984). “A Note on Enforcing Stationarity in Autoregressive-Moving Average
Models.” Biometrika, 71(2), 403–404. doi:10.1093/biomet/71.2.403.

Nash J (1990). Compact Numerical Methods for Computers. Linear Algebra and Func-

tion Minimization. 2nd edition. Adam Hilger, Bristol and New York. doi:10.1201/

9781315139784.

Patnaik L, Srinivas M (1994). “Adaptive Probabilities of Crossover and Mutation in Genetic
Algorithms.” Transactions on Systems, Man and Cybernetics, 24(4), 656–667. doi:10.

1109/21.286385.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Smith R, Dike B, Stegmann S (1995). “Fitness Inheritance in Genetic Algorithms.”
Proceedings of the 1995 ACM symbosium on Applied Computing, pp. 345–350. doi:

10.1145/315891.316014.

Solymos P, Zawadzki Z (2020). pbapply: Adding Progress Bar to ’*apply’ Functions. R
package version 1.4-3, URL https://CRAN.R-project.org/package=pbapply.

Virolainen S (2020a). “A Mixture Autoregressive Model Based on Gaussian and Student’s
t-distributions.” Unpublished working paper, available as arXiv:2003.05221. URL https:

//arxiv.org/abs/2003.05221.

Virolainen S (2020b). “Structural Gaussian Mixture Vector Autoregressive Model.” Unpub-

lished working paper, available as arXiv:2007.04713. URL https://arxiv.org/abs/2007.

04713.

Virolainen S (2021). gmvarkit: Estimate Gaussian Mixture Vector Autoregressive Model. R

package version 1.4.1, URL https://CRAN.R-project.org/package=gmvarkit.

Wong C, Li W (2000). “On a Mixture Autoregressive Model.” Journal of the Royal Statistical

Society, 62(1), 95–115. doi:10.1093/biomet/asp031.

http://dx.doi.org/10.1016/j.jeconom.2016.02.012
http://dx.doi.org/10.1093/jjfinec/nbg004
http://dx.doi.org/10.1093/jjfinec/nbg004
http://dx.doi.org/10.2307/2291576
http://dx.doi.org/10.2139/ssrn.3237368
http://dx.doi.org/10.1080/03610926.2021.1916531
http://dx.doi.org/10.1080/03610926.2021.1916531
http://dx.doi.org/10.1093/biomet/71.2.403
http://dx.doi.org/10.1201/9781315139784
http://dx.doi.org/10.1201/9781315139784
http://dx.doi.org/10.1109/21.286385
http://dx.doi.org/10.1109/21.286385
https://www.R-project.org/
http://dx.doi.org/10.1145/315891.316014
http://dx.doi.org/10.1145/315891.316014
https://CRAN.R-project.org/package=pbapply
https://arxiv.org/abs/2003.05221
https://arxiv.org/abs/2003.05221
https://arxiv.org/abs/2007.04713
https://arxiv.org/abs/2007.04713
https://CRAN.R-project.org/package=gmvarkit
http://dx.doi.org/10.1093/biomet/asp031

28 A Family of Mixture Autoregressive Models in R

Wong C, Li W (2001a). “On a Logistic Mixture Autoregressive Model.” Biometrika, 88(3),
833–846. doi:10.1093/biomet/88.3.833.

Wong C, Li W (2001b). “On a Mixture Autoregressive Conditional Heteroskedastic Model.”
Journal of the American Statistical Association, 96(455), 982–995. doi:10.2307/2670244.

http://dx.doi.org/10.1093/biomet/88.3.833
http://dx.doi.org/10.2307/2670244

Savi Virolainen 29

A. Simulation experiment

This simulation experiment demonstrates why the log-likelihood function’s global maximum
point, that is found very near the boundary of the parameter space, might not be a reasonable
estimate and why it might be more appropriate to consider a local-only maximum point that
is clearly in the interior of the parameter space. We generated 500 observations from a GMAR
p = 2‚ M = 2 process with the parameter values given in the first row of Table 2 (θ) and
initial values generated from the stationary distribution of the process. This model is built
with uGMAR as an example in Section 5, and the sample path is generated as an example
in Section 6.1.

We estimated a GMAR p = 2‚ M = 2 model to the generated sample based on the exact
log-likelihood function by performing 100 estimation rounds using the following code (output
is omitted for brevity):

R> fit22 <- fitGSMAR(mysim$sample, p = 2, M = 2, model = "GMAR",

+ conditional = FALSE, ncalls = 100, ncores = 4, seeds = 1:100)

The obtained estimates are reported on the second row of Table 2 (θ̂1) together with the
moduli of each regime’s AR polynomial’s (1−

∑p
i=1 ϕm,iz

i) roots. The modulus of the ith root
in the mth regime is denoted by the symbol ξm,i. The stationarity condition requires that all
the moduli are strictly greater than one, so the second regime is very close to the boundary of
the stationarity region (both roots are approximately 1.000006). Also the variance parameter
σ2

2 is close to its lower bound zero (it is approximately 6 · 10−6).

These estimates produce a large log-likelihood, because the second regime’s very small con-
ditional variance makes the related density function in the term lt(θ) (9) to take large values
near its mean, and the strong conditional mean targets individual observations there. This is
illustrated in Figure 5 (bottom panel), where the terms lt(θ) are presented (green solid line)
together with the second regime’s related weighted densities α2,tn1(yt; µ2,t, σ2

2) (red dotted
line). The black "X"-symbols denote the points where the second regime’s conditional mean
deviates from the corresponding observation by less than 0.005. Evidently, the second regime
contributes to the log-likelihood function only in the individual points where both, the terms
lt(θ) and the scaled densities α2,tn1(yt; µ2,t, σ2

2), take large values due to the observation being
close to the mean of the second regime’s spikelike conditional density function. Because the
scaled densities take large enough values in those individual points, the log-likelihood is larger
for this kind of estimate than for a reasonable estimate.

The top panel of Figure 5 presents the true mixing weights of the GMAR process’s second
regime (black solid line) together with the mixing weights based on the estimate θ̂1 (red
dashed line). As the figure shows, the estimated mixing weights are spiky and have no
resemblance to the true mixing weights. Although the true mixing weights can be spiky for
some GSMAR processes, spiking mixing weights are also typical for potentially inappropriate
near-the-boundary estimates.

This kind of near-the-boundary estimates are often found when a subset of the regimes ex-
plains the variation in the series reasonably well, leaving some of the regimes available for
targeting individual observations with very small conditional variance and very strong condi-
tional mean. As such estimates seem to maximize the log-likelihood function for a technical
reason, and not necessarily because they represent a good guess for the true parameter value,
it might be appropriate to consider an alternative estimate related to the next-largest local

30 A Family of Mixture Autoregressive Models in R

ϕ1,0 ϕ1,1 ϕ1,2 σ2
1 ϕ2,0 ϕ2,1 ϕ2,2 σ2

2 α1 ξ1,1 ξ1,2 ξ2,1 ξ2,2

θ 0.90 0.40 0.20 0.50 0.70 0.50 −0.20 0.70 0.70 1.45 3.45 2.24 2.24

θ̂1 0.59 0.55 0.11 0.62 7.85 −1.67 −1.00 0.00 0.99 1.43 6.48 1.00 1.00

θ̂2 1.16 0.39 0.08 0.54 0.77 0.35 −0.17 0.53 0.63 1.86 6.90 2.42 2.42

Table 2: On the first row, the true parameter values of the GMAR p = 2, M = 2 process
that generated the sample path used in the simulation experiment. On the second row, the
estimates that maximized the log-likelihood function based 100 estimation rounds. On the
third row, the estimates from the largest such log-likelihood function’s maximum point that
is not very near the boundary of the stationarity region. In each row after the estimates or
parameter values, the moduli of the related AR polynomial’s roots are presented.

Figure 5: On the top, the GMAR p = 2, M = 2 process’s second regime’s true mixing weights
(black solid line), the mixing weights based on the estimate θ̂1 in the second row of Table 2
(red dashed line), and the mixing weights based on the estimate θ̂2 in the third row of Table 2
(blue dashed line). On the bottom, the terms (9) from the second term of the log-likelihood
function (8) (green solid line) and the second regime’s densities in the terms (9) multiplied
by the estimated mixing weights (blue dotted line), i.e., α2,tn1(yt; µ2,t, σ2

2), both based on the

estimate θ̂1. The "X"-symbols denote the points where the second regime’s conditional mean
for the model based on estimate θ̂1 deviates from the corresponding observation by less than
0.005.

Savi Virolainen 31

maximum point. To exemplify, we build a model based on the largest local maximum point
that is clearly in the interior of the parameter space. In our estimation based on 100 rounds
of the two-phase procedure, such an estimate is found at the point that induced the third
largest log-likelihood, and it is obtained as follows:

R> fit22_alt <- alt_gsmar(fit22, which_largest = 3)

The corresponding estimate is presented on the third row of Table 2 (θ̂2). This local maximum
point is substantially closer to the true parameter value in the second regime. The resemblance
to the true parameter value is also highlighted in Figure 5 (top panel), where the second
regime’s estimated mixing weights (blue dashed line) are presented together with the true
mixing weights (black solid line).

Finally, note that the estimate θ̂1 presented in Table 2 is not the accurate maximum likelihood
estimate, which can be noticed by examining graphs of the related profile log-likelihood func-
tions with the command profile_logliks(fit22) (not shown). The numerical estimation
using numerical approximation for the gradient of the log-likelihood function can be inaccu-
rate near the boundary of a multidimensional parameter space subject to several constraints.
Consequently, other similar near-the-boundary points that induce larger log-likelihood than
θ̂1 can be found by running more estimation rounds. It should also be noted that some-
times the estimate is near the boundary of the stationarity region because the series is very
persistent, and being near the boundary does not hence necessarily imply that the MLE is
inappropriate.

Affiliation:

Savi Virolainen
Faculty of Social Sciences
University of Helsinki
P. O. Box 17, FI-0014 University of Helsinki, Finland
E-mail: savi.virolainen@helsinki.fi

mailto:savi.virolainen@helsinki.fi

	Introduction
	Models
	Mixture autoregressive models
	The Gaussian and Student's t mixture autoregressive model

	Estimation
	Log-likelihood function
	Two-phase estimation procedure
	Examples of unconstrained estimation
	Further examination of the estimates
	Examples of constrained estimation

	Quantile residual based model diagnostics
	Building a GSMAR model with specific parameter values
	Simulation and forecasting
	Simulation
	Simulation based forecasting

	Summary
	Simulation experiment

