Power Analysis in unmarked

Ken Kellner
September 3, 2021

1 Outline

1. Review of hypothesis testing
2. Introduction to power analysis
3. Conducting power analysis in unmarked

4. Conclusion

2 Hypothesis Testing

For many analyses in unmarked, a primary goal is to determine if a certain covariate affects the state or
detection process. For example, we may want to determine if elevation has an effect on probability of site
occupancy, or if wind speed has an effect on detection. We can formulate this idea as set of statistical
hypotheses: the null hypothesis (Hy) and the alternative hypothesis (H,):

Hy: There is no effect of elevation on occupancy

H,: Elevation has an effect on occupancy

In order to test these hypotheses, we must collected appropriate data, perhaps by sampling a series of
sites at varying elevation for the presence of the species. We can then fit a model in unmarked, specifying
in the formula that we are interested in estimating the effect of elevation on occupancy. For example,
here is a simple model fit to the crossbill presence-absence dataset included with unmarked:

> library(unmarked)

> data(crossbill)

> umf <- unmarkedFrameOccu(y=crossbill[,11:13],
siteCovs=data.frame(elev=scale(crossbill$ele)))

> (mod <- occu(“1~elev, umf))

Call:
occu(formula = "1 ~ elev, data = umf)
Occupancy:

Estimate SE z PCIlzl)
(Intercept) -1.223 0.168 -7.27 3.61e-13
elev 0.594 0.166 3.59 3.35e-04
Detection:

Estimate SE z PC>lzl)
0.326 0.186 1.75 0.0798

AIC: 480.8533

2.1 Wald tests

In the codeunmarked output, we obtain an estimate (é) of the regression coefficient associated with
elevation (elev) along with its standard error. Our null hypothesis is that elevation has no effect on
occupancy, i.e. g = 0. With this information, we can conduct a statistical hypothesis test called a Wald
test:

VI = w—(;)> 1)
Or simplified:
~ (0.5939 —0)
VW = 01656 oY @

It turns out that the square root of the Wald statistic, VW, follows a standard normal distribution.
Thus, we can calculate the probability that our observed statistic, VW = 3.59, occurred by chance
assuming that the null hypothesis # = 0 is true. In R, for a two-tailed test, this can be calculated as:

> z = sqrt_w = coef(mod) [2] / SE(mod) [2]

> 2*pnorm(abs(z), lower.tail=FALSE)
psi(elev)

0.0003350055

This is the p-value. These values we calculated manually match the results that unmarked gave us in
the summary output.

2.2 Making a conclusion

Before conducting our study, we should have defined a threshold p-value (the significance level or «)
below which we reject the null hypothesis. Traditionally, « = 0.05. Our calculated p-value is less than
«, so we reject the null hypothesis that elevation has no effect on occupancy.

2.3 Types of error

There are two types of errors that we could be making at this point:

1. Type I error: We reject the null hypothesis when in fact it is true. Type I error is conceptually
the same as «. If we set « larger, we have a greater chance of Type I error. 2. Type II error: We fail to
reject the null hypothesis when in fact it is false. This can occur, for example, if we did not have enough
data to detect an effect.

In this vignette, we are most concerned with Type II error. How do we know we have enough data
to detect if a covariate has a certain effect? To answer this question we can use power analysis.

3 Power Analysis

3.1 Overview of power analysis

Statistical power is defined as 1 - Type II error. So more power means less chance of false negatives, i.e.,
less chance of failing to reject the null hypothesis when it is false. Statistical power depends on three
other pieces of information:

1. The effect size: the magnitude of the effect of the covariate. The larger the effect, the more power
we have to detect it.

2. The sample size: how many sites or surveys we’ve done. The more samples, the more power we
have.

3. The significance level, a. The smaller we make «, the less power we have: thus there is a tradeoff
between Type I and Type II error.

Of the three factors (2) is the one that makes the most sense for researchers to manipulate in order
to increase power. However, increasing the sample size requires additional effort and money - so how
large does it need to be?

For many statistical models, mathematical formulas have been developed so that power can be cal-
culated for any combination of values for factors 1-3 above. This is not true for most occupancy and
abundance models available in unmarked (but see Guillera-Arroita and Lahoz-Monfort (2012) for one ex-
ample with occupancy models). Thus, unmarked uses a simulation-based approach for estimating power
under various combinations of values for effect size, sample size, and significance level.

3.2 Power analysis inputs in unmarked

When conducting power analysis, unmarked needs three pieces of information corresponding to 1-3 above.
Of these, (1) the effect size and (3) the significance level are easy to set depending on our hypotheses
and desired Type I error. The sample size (2) is trickier: it isn’t enough to just provide the number of
sites, since datasets in unmarked also require a variety of other information such as number of surveys per
site, number of distance bins, or number of primary periods. Thus, power analysis in unmarked requires
a complete dataset in the form of an appropriate unmarkedFrame.

In some cases, we may want to calculate power using an already collected dataset. Importantly, this
step must be done before running our final analysis. If power analysis is done after the final model is fit,
and the effect sizes are defined based on what was observed in that fitted model, we have done what is
called a post-hoc power analysis, which is a bad idea (see this link for an example of why this is so bad).
In most cases, the real value of power analysis comes before we actually go collect any data, because it
helps us decide how much data to collect. But how to get an unmarkedFrame of data before we’'ve done
our study? Once again the solution is simulation: unmarked provides a set of tools for simulating datasets
for any of its supported model types.

3.3 Simulating datasets

To simulate a dataset for a given unmarked model, we need at a minimum four pieces of information:

1. The type of model (the name of the corresponding fitting function) 2. The covariates affecting each
submodel, such as occupancy or detection (supplied as formulas) 3. The effect size for each intercept
and covariate 4. Study design parameters such as number of sites and number of surveys

For example, suppose we want to simulate an occupancy dataset ("occu") in which site occupancy
is affected by elevation. The first step is to organize the model structure as a list of formulas, one per
submodel. This list must be named in a specific way depending on the model type. To get the required
names for a given model, fit an example of that model (the documentation should have one) and call
names(model). A single-season occupancy model requires a list with two named components: state and
det. We supply a formula for each including an effect of elevation on occupancy (note we could name
this whatever we want, here we call it elev).

> forms <- list(state="elev, det="1)

Next we must tell unmarked what the values for the intercept and regression coefficients in each
submodel should be. Once again, this is a named list, one element for each submodel. Within each
element we need a named vector with names that match the covariates in our list of formulas above. Note
also that each must include a value for the intercept term (this can be named intercept or codelntercept).
If we are not sure exactly how to structure this list, just skip it for now: unmarked can generate a template
for us to fill in later.

> coefs <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))

Finally, we need to give unmarked information about the study design. This is pretty simple: we just
need a list containing values for M, the number of sites, and J the number of surveys per site. For models
with multiple primary periods, we’d also need a value of T, the number of primary periods.

> design <- list(M=300, J=8) # 300 sites, 8 occasions per site

We're now ready to simulate a dataset. To do this we use the simulate function, providing as
arguments the name of the model "occu" and the three lists we constructed above. Actually, first, let’s
not supply the coefs list, to show how unmarked will generate a template for us to use:

https://statmodeling.stat.columbia.edu/2018/09/24/dont-calculate-post-hoc-power-using-observed-estimate-effect-size/

> simulate("occu", formulas=forms, design=design)

coefs argument should be a named list of named vectors, with the following structure
(replacing Os with your desired coefficient values):

$state
intercept elev
0 0
$det
intercept
0

Once we have our covariates set up properly, add them to the function call:

> occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design)
> head(occu_umf)
Data frame representation of unmarkedFrame object.

y.1y.2y.3y.4y.5y.6y.77y.8 elev
1 0 0 O O O O 0 0 -0.7152422
2 0o 0 O O O O 0 0 -0.7526890
3 0o 0 o0 O 1 0 1 0 -0.9385387
4 0o 0 o0 O O O 0 0 -1.0525133
5 i1 0 0 0 0 0 1 0 -0.4371595
6 6o 1 0 1 1 O 0 O 0.3311792
7 i1 1 1 0 0 0O 0 0 -2.0142105
8 0o 0 O O O O 0 O 0.2119804
9 i 0 o0 1 0 1 0 0 1.2366750
i0 0 0 O 0 O O O 0 2.0375740

[N

unmarked has generated a presence-absence dataset as well as values for covariate elev.

3.3.1 Customizing the covariates

By default, a covariate will be continuous and come from a standard normal distribution. However, we
can control this using the guide argument. For example, suppose we want elevation to have a mean
of 2 and a standard deviation of 0.5, and we also want a categorical covariate called landcover. The
corresponding formulas and list to supply to guide would look like this:

> forms2 <- list(state="elev+landcover, det="1)
> guide <- list(landcover=factor(levels=c("forest","grass")), # landcover is factor
elev=list(dist=rnorm, mean=2, sd=0.5)) # custom distribution

We’d also need an updated coefs:

> coefs2 <- list(state=c(intercept=0, elev=-0.4, landcovergrass=0.2), det=c(intercept=0))

> head(simulate("occu", formulas=forms2, coefs=coefs2, design=design, guide=guide))
Data frame representation of unmarkedFrame object.
y.1y.2y.3y.4y.5y.6y.7y5.8 elev landcover

1 0o 0 O O 0O 0 O 0 2.063074 forest
2 0 0 O O 0 0 0 0 2.236400 forest
3 0 0 O O 0 0 O 0 1.829623 grass
4 0o 0 o O O O o0 01.879105 forest
5 0o 0 O O O O 0 0 2.689377 grass
6 0 0 O O O O 0 0 1.830558 forest
7 0 0 O O 0O 0 O 0 2.010068 forest
8 0 0 O O O 0O O 0 2.188481 grass
9 1 0 1 1 1 0 O 0 1.784138 forest
10 0 0 O O 0 0 O 0 2.979532 grass

Our output dataset now includes a new categorical covariate, and the elevation values are adjusted.

3.3.2 Models that require more information

More complex models might require more information for simulation, such as the distribution to use
for abundance with pcount. This information is simply added as additional arguments to simulate. For
example, we can simulate a pcount dataset using the negative binomial ("NB") distribution. The negative
binomial has an additional parameter to estimate (alpha) so we must also add an element to coefs.

> coefs$alpha <- c(alpha=0.5)
> head(simulate("pcount", formulas=forms, coefs=coefs, design=design, mixture="NB"))

Data frame representation of unmarkedFrame object.

y.1ly.2y.3y.4y.5y.6y.77y.8 elev
1 0O 0 O O O 0 0 0 -1.42329439
2 0o 0 O O O O 0 0 1.02230366
3 o 1 1 0 1 O 0 0 0.68781508
4 0O 0 O O O O 0 0 -0.30745489
5 0o o0 1 0 0 1 0 1-0.01974906
6 o 1 1 1 0 0 1 0 0.48839839
7 0o 0 o0 O O O 0 O 0.66050081
8 6o 1 o0 1 1 1 0 1 -1.71404333
9 0 0 O O O O 0 O 1.45885698
10 0 0 O O 0 0 O 0 -1.40789548

3.4 Conducting a power analysis

Power analyses are conducted with the powerAnalysis function. An powerAnalysis power analysis depends
on the input dataset, as well as the covariates of interest and other settings depending on the model
(e.g. the distribution used in an N-mixture model or the detection key function in a distance sampling
analysis). The easiest way combine all this information and send it to powerAnalysis is to actually fit a
model with all the correct settings and our simulated dataset and send that to powerAnalysis. This has
the added benefit that it checks to make sure we have all the required information for a valid model.
Note that the actual parameter estimates from this model template don’t matter - they aren’t used in
the power analysis. Thus, there are two required arguments to powerAnalysis: a fitted model template,
and a list of effect sizes.
The first step is to fit a model:

> template_model <- occu(~1%elev, occu_umf)

If we run powerAnalysis on template_model with no other arguments, unmarked will again give us a
template for the list of effect sizes, which looks exactly like the one for simulation above.

> powerAnalysis(template_model)

coefs argument should be a named list of named vectors, with the following structure
(replacing Os with your desired coefficient values):

$state
intercept elev
0 0
$det
intercept
0

We will set our desired effect sizes to match what we used for simulation:

> effect_sizes <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))

It is also possible to set the significance level alpha; the default is 0.05. We now have all the required
information to conduct the power analysis. Remember, unmarked does this by simulation, so you will see
a progress bar as unmarked conducts simulations. You can control how many with the nsim argument;
we’ll set nsim=20 just to speed things up, but normally you should use more.

> (pa <- powerAnalysis(template_model, coefs=effect_sizes, alpha=0.05, nsim=20))
Model:
occu(formula = "1 ~ elev, data = occu_umf)

Power Statistics:

Submodel Parameter Effect Null Power
state (Intercept) 0.0 0 0.00
state elev -0.4 0 0.95

det (Intercept) 0.0 0 0.00

The result is an object pa of class unmarkedPower. If you look at pa in the console you will get a
summary of power for each parameter in the model. The summary includes the submodel, parameter
name, supplied effect size, null hypothesis, and the calculated power based on simulation. By default
the null for each parameter is 0, you can change this by supplying a list to the nulls argument with the
same structure as coefs.

We have power = 0.95 for the effect of elevation on occupancy probability. This power is calculated
by simulating a bunch of datasets based on the template model and supplied effect sizes, fitting a model
to each simulated dataset, and then calculating the proportion of these models for which an effect of the
covariate would have been detected at the given value of alpha. You can see the raw results from each
simulated model with

> pa@estimates

3.4.1 Varying the sample size

One approach to determining how sample size affects power for our model is to simulate a range of
unmarkedFrames with varying number of sites, observations, etc. and do a power analysis for each.
However powerAnalysis also has a argument design which can help do this automatically.

The design argument will subsample within the original data to generate datasets which are smaller
or larger than the original, and conduct power analyses for each scenario. For example, to test power for
a dataset with only 50 sites and 3 sample occasions at each:

> # 50 sites and 3 obs per site

> (pa2 <- powerAnalysis(template_model, effect_sizes, design=list(M=50, J=3), nsim=20))
Model:

occu(formula = "1 ~ elev, data = occu_umf)

Power Statistics:

Submodel Parameter Effect Null Power
state (Intercept) 0.0 0 0.0
state elev -0.4 0 0.1

det (Intercept) 0.0 0 0.0

With fewer sites and sampling occasions, our power to detect the elevation effect is reduced.
You can also get a larger number of sites via sampling the original sites with replacement:

> (pa3 <- powerAnalysis(template_model, effect_sizes, design=1ist(M=400, J=4), nsim=20))
Model:
occu(formula = "1 ~ elev, data = occu_umf)

Power Statistics:

Submodel Parameter Effect Null Power
state (Intercept) 0.0 0 0.00
state elev -0.4 0 0.95

det (Intercept) 0.0 0 0.00

3.4.2 Combining unmarkedPower objects

The unmarkedPowerList function creates a unmarkedPowerList object for holding multiple unmarkedPower
objects so they can be easily compared. The summary of an unmarkedPowerList is a data.frame with all

the outputs shown together, including relevant sample sizes.

> unmarkedPowerList (list(pa, pa2, pa3))

© 00 N O WN -

We can also create an unmarkedPowerList by providing a template model and a range of design
scenarios in the design argument. A power analysis will be run for each scenario (sampling the original
dataset as shown above) and the results combined.

3
3
3

4
4
4

M T J Submodel
00 1 8 state
00 1 8 state
00 1 8 det
50 1 3 state
50 1 3 state
50 1 3 det
00 1 4 state
00 1 4 state
00 1 4 det

Parameter Effect Null Power

(Intercept)
elev
(Intercept)
(Intercept)
elev
(Intercept)
(Intercept)
elev
(Intercept)

0
-0.
0.
0.
-0.
0.
0.
-0.
0.

.0

O P O O b O O

0

O O O O O O oo

> scenarios <- expand.grid(M=c(50,200,400),
J=c(3,5,8))

V EEEEEERERERR=E\V

vV O 01 W N -

22
23
24
25
26
27

There is a built-in plot method for unmarkedPowerList. You can specify a target power on the plot
to the power argument. You also need to specify the parameter of interest ("elev").

pl <- unmarkedPowerList(template_model, effect_sizes, design=scenarios, nsim=20)

0.
.95
.00
.00
.10
.00
.00
.95
.00

O O O O O O oo

00

Parameter Effect Null Power

0
-0.
0.
0
-0.
0.

4
0
.0
4
0

.0

0

O O O O o

Parameter Effect Null
0.

=50, J =3
=200, J =3
400, J = 3
50, J =5
200, J =5
400, J =5
50, J =8
200, J =38
= 400, J = 8
head (summary (pl))
M T J Submodel
50 13 state (Intercept)
501 3 state elev
50 1 3 det (Intercept)
200 1 3 state (Intercept)
200 1 3 state elev
200 1 3 det (Intercept)
tail (summary (pl))
M T J Submodel
200 1 8 state (Intercept)
200 1 8 state elev
200 1 8 det (Intercept)
400 1 8 state (Intercept)
400 1 8 state elev
400 1 8 det (Intercept)

-0.4
0.0
.0
4
0

0

-0.
0.

> plot(pl, power=0.8, param="elev")

0

O O O O O O

0.
.05
.00
.00
.70
.00

O O O O O

00

Power

O = O O O

O O O O NOo

o]
—
LS R I
o
© _|
o o
(]
=
(@]
o
<
o
g _ Observations
—— 3
—— 5
—— 8
|

50 100 150 200 250 300 350 400

Sites

4 Conclusion

Power analysis is an important step in the research process that is often overlooked in studies of animal
abundance and occurrence. Getting an estimate of the sample size required to detect a particular effect
can help with efficient data collection and set expectations for what covariate relationships might be
possible to detect. The power analysis tools in unmarked should help make this part of the research
process quick and easy for researchers as the begin to develop study designs.

References

Guillera-Arroita, G. and J. J. Lahoz-Monfort, 2012. Designing studies to detect differences in species
occupancy: power analysis under imperfect detection. Methods in Ecology and Evolution 3:360-869.

	Outline
	Hypothesis Testing
	Wald tests
	Making a conclusion
	Types of error

	Power Analysis
	Overview of power analysis
	Power analysis inputs in unmarked
	Simulating datasets
	Customizing the covariates
	Models that require more information

	Conducting a power analysis
	Varying the sample size
	Combining unmarkedPower objects

	Conclusion

