
Experimental Support for Random Effects in unmarked

Ken Kellner

December 1, 2021

1 Introduction

Random effects are often useful when fitting hierarchical ecological models. For example, if we have
many different observers collecting count or presence data, it may be appropriate to include observer as
a random effect on the detection process. If we have multiple years of data at our sites, and are fitting a
so-called ”stacked” model where site-years are the response data instead of sites, it may be appropriate
to include site as a random effect on the state process. Until recently, including random effects as part
of the linear predictor for the state or detection parameter in a model was possible only by fitting the
model in a Bayesian framework with e.g. WinBUGS or JAGS.

The unmarked package now includes experimental support for fitting models with random effects, via
the use of Template Model Builder (TMB). TMB uses Laplace approximation to estimate the random
effects. Currently, only a few model types including single-season occupancy (occu) and N -mixture
models (pcount) have random effects support, but more models may be supported in the future.

1.1 Caveats

The first caveat is that unmarked can only fit normally-distributed random effects with mean 0 on the
link scale, and nested and correlated random effects are not supported. Second, we have found that
estimation of random effects in unmarked via TMB works well in many cases, but for datasets with small
sample sizes or sparse (many 0) observations, estimates are often poor and can result in misleading
inference. We urge unmarked users to incorporate random effects with caution, and compare results to
similar models without random effects. Some datasets may simply not be appropriate for models with
random effects in unmarked. In these cases Bayesian methods may be more appropriate.

2 Example model with random effects

Below, we demonstrate fitting an N -mixture model via pcount to a dataset, including different combina-
tions of random effects.

2.1 Simulating a dataset

We begin by simulating a count dataset, in which 100 sites have been visited 3 times per year in each
of 3 years. Abundance will be a function of a single fixed-effect covariate, and we will consider site a
random effect. We will simulate detection with a random observer effect.

First, define the simulation parameters, covariate data, and the random effect values:

> set.seed(35)

> nsites <- 100

> nyears <- 3

> nvisits <- 3

> # Abundance parameters

> beta0 <- 0 # Intercept

> beta1 <- 1 # fixed covariate slope

> sd_site <- 0.5 # SD of site-level random effect

> re_site <- rnorm(nsites, 0, sd_site) # simulate random effect

> # Detection parameters

> alpha0 <- 0 # Intercept

1

https://kaskr.github.io/adcomp/Introduction.html

> sd_obs <- 0.3 # SD of observer-level random effect (20 unique observers)

> re_obs <- rnorm(20, 0, sd_obs) # simulate random effect

> # Covariates

> x <- rnorm(nsites*nyears) # a covariate on abundance

> site_id <- rep(1:100, each=3)

> obs_id <- sample(1:20, nsites*nyears*nvisits, replace=TRUE)

Next, calculate λ for each site and simulate the actual abundance N:

> lambda <- exp(beta0 + beta1*x + # fixed part of linear predictor

re_site[site_id]) # site random effect

> # Generate latent abundance N

> N <- rpois(nsites*nyears, lambda)

> hist(N)

Histogram of N

N

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

25
0

Simulate p by observer, and using N, simulate the observed counts y:

> p <- plogis(alpha0 + re_obs[obs_id])

> p <- matrix(p, nrow=nsites*nyears, ncol=nvisits, byrow=TRUE)

> y <- matrix(NA, nsites*nyears, nvisits)

> for (i in 1:(nsites*nyears)){

for (j in 1:nvisits){

y[i,j] <- rbinom(1, N[i], p[i,j])

}

}

Finally, organize the data into an unmarkedFrame. Note that we are specifying our random effect
parameters as R factors.

2

> library(unmarked)

> site_covs <- data.frame(x=x,

site_id=factor(as.character(site_id)))

> obs_covs <- data.frame(obs_id=factor(as.character(obs_id)))

> umf <- unmarkedFramePCount(y=y, siteCovs=site_covs, obsCovs=obs_covs)

2.2 Fitting models

First we will fit a model without random effects, including only the fixed effect covariate x.

> mod_x <- pcount(~1~x, umf, K=40)

> summary(mod_x)

Call:

pcount(formula = ~1 ~ x, data = umf, K = 40)

Abundance (log-scale):

Estimate SE z P(>|z|)

(Intercept) 0.313 0.0656 4.76 1.91e-06

x 0.887 0.0381 23.26 1.13e-119

Detection (logit-scale):

Estimate SE z P(>|z|)

0.209 0.0953 2.2 0.0281

AIC: 2128.396

Number of sites: 300

optim convergence code: 0

optim iterations: 25

Bootstrap iterations: 0

This model overestimates the abundance intercept (truth = 0) and underestimates the effect of x

(truth = 1). Next, we will fit a model with random intercepts by site. This is specified in the abundance
formula, using syntax similar to that found in package lme4. To specify random intercepts based on our
site covariate site_id, add (1|site_id) to the abundance formula (the parentheses are required). You
can read this as ”the intercepts should be random based on site_id”. Note that the fixed effect x is
outside the parentheses in the abundance formula.

> mod_site <- pcount(~1~x+(1|site_id), umf, K=40)

> mod_site

Call:

pcount(formula = ~1 ~ x + (1 | site_id), data = umf, K = 40)

Abundance:

Random effects:

Groups Name Variance Std.Dev.

site_id (Intercept) 0.32 0.566

Fixed effects:

Estimate SE z P(>|z|)

(Intercept) 0.210 0.101 2.07 3.81e-02

x 0.977 0.056 17.42 5.37e-68

Detection:

Estimate SE z P(>|z|)

-0.109 0.121 -0.906 0.365

AIC: 1996.631

3

In the summary output unmarked provides an estimate of the random effect SD, which is similar to
the true value (0.5). The other abundance parameters are also now closer to their true values. Now we’ll
fit the model with random detection intercepts by observer, in addition to the site random effect. As
before, we add (1|obs_id) to the detection formula.

> mod_obs <- pcount(~1 + (1|obs_id) ~ x + (1|site_id), umf, K=40)

> mod_obs

Call:

pcount(formula = ~1 + (1 | obs_id) ~ x + (1 | site_id), data = umf,

K = 40)

Abundance:

Random effects:

Groups Name Variance Std.Dev.

site_id (Intercept) 0.31 0.557

Fixed effects:

Estimate SE z P(>|z|)

(Intercept) 0.186 0.0996 1.87 6.17e-02

x 0.967 0.0561 17.24 1.30e-66

Detection:

Random effects:

Groups Name Variance Std.Dev.

obs_id (Intercept) 0.062 0.249

Fixed effects:

Estimate SE z P(>|z|)

-0.0368 0.134 -0.275 0.783

AIC: 1989.882

Both estimated random effect SDs are similar to the ”true” values.

2.3 Model inference

To get more details, including 95% CIs, on the random effects SDs, use the sigma function:

> sigma(mod_obs)

Model Groups Name sigma lower upper

1 lam site_id (Intercept) 0.5572061 0.4429796 0.700887

2 p obs_id (Intercept) 0.2492400 0.1393307 0.445850

We can also extract the actual random effect values using the randomTerms function. We’ll extract
the values for the abundance model:

> head(randomTerms(mod_obs, "state"))

Model Groups Name Level Estimate SE lower

1 lam site_id (Intercept) 1 0.2407735 0.4322309 -0.60638340

2 lam site_id (Intercept) 10 -0.1444321 0.3024829 -0.73728763

3 lam site_id (Intercept) 100 -0.9993900 0.3040704 -1.59535695

4 lam site_id (Intercept) 11 0.4993507 0.2685825 -0.02706126

5 lam site_id (Intercept) 12 -0.2024980 0.4142401 -1.01439354

6 lam site_id (Intercept) 13 -0.4688996 0.3900390 -1.23336200

upper

1 1.0879304

2 0.4484235

3 -0.4034231

4 1.0257627

4

5 0.6093976

6 0.2955629

Note the they are sorted incorrectly because site_id in this example, while numeric, is a factor so R
sorts it like a character. Also note that these values are just the random part of the intercept - to get the
complete intercept for each grouping level, we must add the mean intercept value (in this case 0.186).
We can compare these estimates to the true values of the random intercepts.

> ran <- randomTerms(mod_obs, "state")

> ran <- ran[order(as.numeric(ran$Level)),] # sort them correctly

> ints <- coef(mod_obs)[1] + ran$Estimate # Calculate the total intercept for each level

> plot(re_site, ints, xlab="Truth", ylab="Estimate", pch=19)

> abline(a=0, b=1)

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

Truth

E
st

im
at

e

We can also use predict on models with random effects. A new argument is available, re.form, which
specifies if the random effect(s) should be included when calculating the predicted estimate. By default,
re.form=NULL meaning they are included; to exclude them set re.form=NA. These values are a bit confusing
but they match the way it is done in lme4.

> # with random effect

> head(predict(mod_obs, "det"))

Predicted SE lower upper

1 0.4078631 0.04644771 0.3208759 0.5010342

2 0.5331650 0.05042090 0.4343354 0.6294585

3 0.4989963 0.04392033 0.4137838 0.5842672

4 0.5483388 0.05630166 0.4374296 0.6546455

5 0.4408197 0.04688357 0.3519180 0.5336856

6 0.5331650 0.05042090 0.4343354 0.6294585

5

> # without random effect

> head(predict(mod_obs, "det", re.form=NA))

Predicted SE lower upper

1 0.4907973 0.03341848 0.4258265 0.5560806

2 0.4907973 0.03341848 0.4258265 0.5560806

3 0.4907973 0.03341848 0.4258265 0.5560806

4 0.4907973 0.03341848 0.4258265 0.5560806

5 0.4907973 0.03341848 0.4258265 0.5560806

6 0.4907973 0.03341848 0.4258265 0.5560806

In the latter case, all the estimates of p are identical because there are no fixed covariates on p in this
model.

2.4 More complicated random effects structures

It is possible to include multiple random effects on a single parameter; for example to include both
observer and site as random effects on p, the formula for p would look like this:

> ~1 + (1|obs_id) + (1|site_id)

Additionally it is possible to have random slopes as well as intercepts. For example, to also have
random slopes for the covariate x by site, the formula for abundance would be

> ~x + (1 + x || site_id)

The || (indicating no correlation estimated between the two random effects) is necessary instead of
|, as unmarked does not support correlated random effects.

3 A note on model selection

As you can see above, unmarked returns an AIC value for models with random effects. This AIC value is
calculated in the normal manner, with the number of parameters equal to the number of fixed parameters
plus the number of random effects standard deviations. There isn’t a consensus on how to calculate AIC
for models with fixed and random effects. Thus, it is probably not a good idea to use AIC to compare
between models with and without random effects, even though unmarked will allow you to do so with
fitList and modSel.

6

	Introduction
	Caveats

	Example model with random effects
	Simulating a dataset
	Fitting models
	Model inference
	More complicated random effects structures

	A note on model selection

