
Simulating datasets

Ken Kellner

September 10, 2021

1 Outline

1. Introduction

2. Components of a call to simulate

3. Simulating an occupancy dataset

4. Simulating a more complex dataset: gdistremoval

5. Conclusion

2 Introduction

Simulating datasets is a powerful and varied tool when conducting unmarked analyses. Writing our own
code to simulate a dataset based on a given model is an excellent learning tool, and can help us test if
a given model is generating the expected results. If we simulate a series of datasets based on a fitted
model, and calculate a statistic from each of those fits, we can generate a distribution of the statistic -
this is what the parboot function does. This can be helpful, for example, when testing goodness of fit.
Finally, simulation can be a useful component of power analysis when a closed-form equation for power
is not available.

unmarked provides two different ways of generating simulated datasets, depending on the stage we are
at in the modeling process.

1. Generating simulated datasets from a fitted model we already have

2. Generating simulated datasets from scratch

For (1), we simply call the simulate method on our fitted model object and new dataset(s) are gener-
ated. This is the approach used by parboot. In this vignette we will focus on (2), a more flexible approach
to simulation, also using the simulate method, that allows us to generate a dataset corresponding to any
unmarked model from scratch.

3 Components of a call to simulate

We will need to provide, at a minimum, four pieces of information to simulate in order to simulate a
dataset from scratch in unmarked.

1. The name of the fitting function for the model we want to simulate from, as a character string

2. A list of formulas, one per submodel, containing the names of the covariates we want to include in
each

3. A list of vectors of regression coefficients (intercepts and slopes), one per submodel, matching the
formulas

4. A list of design components; for example, the number of sites and number of observations per site

A number of other arguments are available, e.g. for how to customize how the covariates are randomly
generated or for distributions to use when simulating abundances. We’ll show those later. The easiest
way to demonstrate how to use simulate is to look at an example: we’ll start with a simple one for
occupancy.

1

4 Simulating an occupancy dataset

Suppose we want to simulate an occupancy dataset in which site occupancy is affected by elevation. The
first piece of information needed is the name of model to use: the fitting function for occupancy is occu,
so the first argument to simulate and the name of the model will be "occu".

4.1 Formulas

Second we must define the desired model structure as a list of formulas, one per submodel. ”Submodels”
here are the hierarchical components of the model; for example, an occupancy model has a state (oc-
cupancy) submodel and an observation (detection) submodel. These submodels are identified by short
names: state and det. We will use these short names repeatedly. In order to identify which submodels
are needed and what their short names are, we can simply fit any model of that type (e.g. from the
example) and call names(model).

> library(unmarked)

> umf <- unmarkedFrameOccu(y=matrix(c(0,1,0,1,1,0,0,0,1), nrow=3))

> mod <- occu(~1~1, umf)

> names(mod)

[1] "state" "det"

Formulas are supplied as a named list. The list has one element per submodel, and the names of
the elements are the short names defined above. Each list element is a formula, containing the desired
number of covariates to use, and the names of these covariates. Below we define our list of formulas,
including an effect of elevation on occupancy (note we could name this whatever we want, here we call
it elev). We don’t want any covariates on detection probability, so the formula defines the model as
intercept only: 1.

> forms <- list(state=~elev, det=~1)

4.2 Regression coefficients

Next we must tell unmarked what the values for the intercept and regression coefficients in each submodel
should be. Once again, this is a named list, one element for each submodel. Each list element is a numeric
vector. The components of each numeric vector must also be named, matching the covariate names in
our list of formulas. Don’t forget we also must specify a value for the intercept in each submodel (can
be named Intercept or intercept). If we are not sure exactly how to structure this list, just skip it for
now: unmarked can generate a template for us to fill in later.

> coefs <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))

We have a list with two elements, each a numeric vector. Both contain intercept values, and the
state vector also contains a value corresponding to the desired effect of our covariate elev.

4.3 Study design information

Finally, we need to give unmarked information about the study design. This is pretty simple: we just
need a list containing values for M, the number of sites, and J the number of surveys per site. For models
with multiple primary periods, we’d also need a value of T, the number of primary periods.

> design <- list(M=300, J=8) # 300 sites, 8 occasions per site

4.4 Put it all together

We’re now ready to simulate a dataset. To do this we use the simulate function, providing as arguments
the name of the model "occu" and the three lists we constructed above. Actually, first, let’s not supply
the coefs list, to show how unmarked will generate a template for us to use:

> simulate("occu", formulas=forms, design=design)

2

coefs argument should be a named list of named vectors, with the following structure

(replacing 0s with your desired coefficient values):

$state

intercept elev

0 0

$det

intercept

0

We can replicate this provided list structure and fill in our own numeric values. Once we have our
coefficients set up properly, add them to the function call:

> occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design)

> head(occu_umf)

Data frame representation of unmarkedFrame object.

y.1 y.2 y.3 y.4 y.5 y.6 y.7 y.8 elev

1 0 0 0 0 0 0 0 0 -0.7152422

2 0 0 0 0 0 0 0 0 -0.7526890

3 0 0 0 0 1 0 1 0 -0.9385387

4 0 0 0 0 0 0 0 0 -1.0525133

5 1 0 0 0 0 0 1 0 -0.4371595

6 0 1 0 1 1 0 0 0 0.3311792

7 1 1 1 0 0 0 0 0 -2.0142105

8 0 0 0 0 0 0 0 0 0.2119804

9 1 0 0 1 0 1 0 0 1.2366750

10 0 0 0 0 0 0 0 0 2.0375740

unmarked has generated a presence-absence dataset as well as values for covariate elev. We can check
that it worked as expected by fitting the corresponding model to the dataset, and making sure the
estimated values are similar:

> (occu(~1 ~elev, occu_umf))

Call:

occu(formula = ~1 ~ elev, data = occu_umf)

Occupancy:

Estimate SE z P(>|z|)

(Intercept) -0.0845 0.119 -0.712 0.476492

elev -0.4407 0.125 -3.514 0.000442

Detection:

Estimate SE z P(>|z|)

-0.00451 0.06 -0.0751 0.94

AIC: 1992.853

4.5 Customizing the covariates

By default, a covariate will be continuous and come from a standard normal distribution (mean 0, SD
1). However, we can control this using the guide argument. For example, suppose we want elevation to
come from a random normal, but with a mean of 2 and a standard deviation of 0.5. We can provide a
named list to the guide argument as follows:

> guide <- list(elev=list(dist=rnorm, mean=2, sd=0.5))

guide contains one element, called elev, which is also a list and contains three components:

3

1. The random distribution function to use, rnorm

2. The mean of the distribution

3. The SD of the distribution

> occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design, guide=guide)

> head(occu_umf)

Data frame representation of unmarkedFrame object.

y.1 y.2 y.3 y.4 y.5 y.6 y.7 y.8 elev

1 0 0 0 0 0 0 0 0 2.063074

2 0 0 0 0 0 0 0 0 2.236400

3 0 0 0 0 0 0 0 0 1.829623

4 0 0 0 0 0 0 0 0 1.879105

5 0 0 0 0 0 0 0 0 2.689377

6 0 0 0 0 0 0 0 0 1.830558

7 0 0 0 0 0 0 0 0 2.010068

8 0 0 0 0 0 0 0 0 2.188481

9 1 1 1 0 0 0 1 1 1.784138

10 0 0 0 0 0 0 0 0 2.979532

You can see the elev covariate now has values corresponding to the desired distribution. Note that
the elements of the list will depend on the arguments required by the random distribution function. For
example, to use a uniform distribution instead:

> guide <- list(elev=list(dist=runif, min=0, max=1))

> occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design, guide=guide)

> head(occu_umf)

Data frame representation of unmarkedFrame object.

y.1 y.2 y.3 y.4 y.5 y.6 y.7 y.8 elev

1 0 0 0 0 0 0 0 0 0.4154205

2 0 0 1 1 0 1 1 0 0.1033568

3 1 1 1 0 0 0 1 1 0.8845174

4 1 0 0 1 0 0 1 0 0.9871606

5 0 0 0 1 0 0 1 1 0.5916545

6 0 1 0 0 1 1 1 1 0.9046272

7 0 0 0 0 0 0 0 0 0.3075379

8 0 0 0 0 0 0 0 0 0.6759720

9 0 0 0 0 0 0 0 0 0.7358022

10 0 0 0 0 0 0 0 0 0.4075122

It is also possible to define a categorical (factor) covariate. We specify an entry in the guide list, but
instead of a list, we supply a call to factor which defines the desired factor levels. For example, suppose
we want to add a new landcover covariate to our simulated model. First, define the new formulas:

> forms2 <- list(state=~elev+landcover, det=~1)

And then the new guide, including the information about factor levels:

> guide <- list(landcover=factor(levels=c("forest","grass","urban")))

We’d also need an updated coefs since we have a new covariate. Defining the coefs when you have
factors in your model is a little trickier, since R names the effects as a combination of the factor name
and the level name. There is no coefficient for the reference level ("forest" in our example), but we need
to provide coefficients for both "grass" and "urban". When combined with the factor name the complete
coefficient names for these two will be landcovergrass and landcoverurban. The easiest way to make sure
we get these names right is to let unmarked generate a template coefs for you as shown above, and then
fill it in.

4

> # forest is the reference level for landcover since it was listed first

> coefs2 <- list(state=c(intercept=0, elev=-0.4, landcovergrass=0.2,

landcoverurban=-0.7), det=c(intercept=0))

> head(simulate("occu", formulas=forms2, coefs=coefs2, design=design, guide=guide))

Data frame representation of unmarkedFrame object.

y.1 y.2 y.3 y.4 y.5 y.6 y.7 y.8 elev landcover

1 0 1 1 1 0 1 0 1 0.253522341 grass

2 1 1 0 0 0 0 1 0 0.243522140 forest

3 0 1 0 0 1 0 1 0 0.719590250 grass

4 0 1 1 1 1 0 0 1 0.772732980 grass

5 0 0 0 0 0 0 0 0 -0.008522864 forest

6 1 1 0 1 1 1 1 0 -0.389069155 urban

7 0 0 0 0 0 0 0 0 1.328233354 urban

8 0 0 1 1 1 1 0 1 0.053012552 forest

9 1 0 0 1 0 1 1 1 -0.376265158 grass

10 1 1 1 0 1 0 0 1 -0.946238347 grass

Our output dataset now includes a new categorical covariate.

4.6 Models that require more information

More complex models might require more information for simulation. Nearly any argument provided
to either the fitting function for the model, or the corresponding unmarkedFrame constructor, can be
provided as an optional argument to simulate to customize the simulation. For example, we may want
to specify that abundance should be simulated as a negative binomial, instead of a Poisson, for pcount.
This information is simply added as additional arguments to simulate. For example, we can simulate a
pcount dataset using the negative binomial ("NB") distribution. The negative binomial has an additional
parameter to estimate (alpha) so we must also add an element to coefs.

> coefs$alpha <- c(alpha=0.5)

> head(simulate("pcount", formulas=forms, coefs=coefs, design=design, mixture="NB"))

Data frame representation of unmarkedFrame object.

y.1 y.2 y.3 y.4 y.5 y.6 y.7 y.8 elev

1 0 0 0 0 0 0 0 0 -0.37071853

2 1 2 2 2 0 0 2 1 0.15751357

3 0 0 0 0 0 0 0 0 -0.98832179

4 1 0 1 0 0 1 0 0 0.30113025

5 0 0 0 0 0 0 0 0 -1.47189644

6 0 0 0 0 0 0 0 0 0.02303002

7 2 3 1 2 3 3 3 2 1.30191316

8 0 0 0 0 0 0 0 0 -0.91494417

9 0 0 0 0 0 0 0 0 0.21043315

10 1 1 1 1 2 1 0 1 -2.00025076

In the next section we will show a more detailed example involving these additional arguments.

5 Simulating a more complex dataset: gdistremoval

The gdistremoval function fits the model of Amundson et al. (2014), which estimates abundance using
a combination of distance sampling and removal sampling data. When simulating a dataset based on
this model, we have to provide several additional pieces of information related to the structure of the
distance and removal sampling analyses.

To begin, we will define the list of formulas. A gdistremoval model, when there is only one primary
period, has three submodels: abundance ("lambda"), distance sampling ("dist"), and removal sampling
("rem"). We will fit a model with an effect of elevation elev on abundance and an effect of wind wind on
removal probability.

5

> forms <- list(lambda=~elev, dist=~1, rem=~wind)

Next we will define the corresponding coefficients. We will set mean abundance at 5. The intercept
is on the log scale, thus the intercept for lambda will be log(5). The scale parameter for the detection
function will be 50, and again it is on the log scale. The intercept for the removal probability is on the
logit scale, so we will set the intercept at -1 (equivalent to a mean removal probability of about 0.27).
Don’t forget the covariate effects on lambda and removal.

> coefs <- list(lambda=c(intercept=log(5), elev=0.7),

dist=c(intercept=log(50)), rem=c(intercept=-1, wind=-0.3))

Our study will have 300 sites. This model is unique in that we have to specify the number of two
different types of observations: (1) the number of distance sampling bins (Jdist), and the number of
removal intervals (Jrem).

> design <- list(M = 300, Jdist=4, Jrem=5)

Finally we are ready to simulate the dataset. In addition to the name of the model, forms, coefs and
design, we also need to provide some additional information. We need to define the distance breaks for
the distance sampling part of the model (there should be Jdist+1 of these), and also the key function to
use when simulating the detection process.

> umf <- simulate("gdistremoval", formulas=forms, coefs=coefs, design=design,

dist.breaks=c(0,25,50,75,100), keyfun="halfnorm", unitsIn="m")

> head(umf)

Data frame representation of unmarkedFrame object.

yDist.1 yDist.2 yDist.3 yDist.4 yRem.1 yRem.2 yRem.3 yRem.4 yRem.5

1 4 2 10 2 4 7 6 1 0

2 0 0 0 0 0 0 0 0 0

3 0 1 2 0 0 1 1 0 1

4 4 1 8 1 4 1 4 3 2

5 0 1 5 2 3 3 0 2 0

6 0 1 2 4 3 1 1 2 0

7 2 3 3 2 2 3 2 3 0

8 1 1 0 0 1 0 1 0 0

9 0 0 1 2 2 1 0 0 0

10 0 2 2 1 2 0 2 1 0

elev wind.1 wind.2 wind.3 wind.4

1 1.61334622 1.3649476 -1.127500269 -0.1558707 -2.1302728

2 -0.80567600 0.3281250 0.598608134 0.7481760 -0.4382321

3 -1.14049439 1.5145357 0.310432089 -0.3901116 -0.7034511

4 1.46155447 -0.1052677 0.855721989 -0.8086349 -0.8053908

5 0.72496346 0.8454980 -1.340275756 -0.3633820 0.2957100

6 0.78390528 -0.1319023 -0.007654917 -0.7639284 0.2234584

7 1.08265721 0.9492643 0.980460084 -0.9523599 -1.2450675

8 -0.41839316 1.1423154 0.961612070 0.4852678 1.2666489

9 -1.02443597 -1.7832070 -1.339807559 0.6682450 -0.3279624

10 0.01774842 0.8019722 1.877960654 0.5301769 -1.7808959

wind.5

1 0.04600723

2 -1.43481532

3 0.68665606

4 0.02402033

5 -0.55941853

6 1.29132573

7 0.41913508

8 0.57672752

9 -1.31624876

10 0.36150801

6

The result is a dataset containing a combination of distance, removal, and covariate data. We can
check to see if fitting a model to this dataset recovers our specified coefficient values:

> (fit <- gdistremoval(lambdaformula=~elev, removalformula=~wind,

distanceformula=~1, data=umf))

Call:

gdistremoval(lambdaformula = ~elev, removalformula = ~wind, distanceformula = ~1,

data = umf)

Abundance:

Estimate SE z P(>|z|)

(Intercept) 2.67 0.0410 65.2 0.00e+00

elev 0.67 0.0203 33.0 1.21e-238

Distance:

Estimate SE z P(>|z|)

4 0.0223 179 0

Removal:

Estimate SE z P(>|z|)

(Intercept) -0.962 0.0520 -18.50 1.90e-76

wind -0.262 0.0272 -9.63 5.86e-22

AIC: 6209.99

Looks good.

6 Conclusion

The simulate function provides a flexible tool for simulating data from any model in unmarked. These
datasets can be used for a variety of purposes, such as for teaching examples, testing models, or developing
new tools that work with unmarked. Additionally, simulating datasets is a key component of the power
analysis workflow in unmarked - see the power analysis vignette for more examples.

References

Amundson, C. L., J. A. Royle, and C. M. Handel, 2014. A hierarchical model combining distance sampling
and time removal to estimate detection probability during avian point counts. The Auk 131:476–494.

7

	Outline
	Introduction
	Components of a call to simulate
	Simulating an occupancy dataset
	Formulas
	Regression coefficients
	Study design information
	Put it all together
	Customizing the covariates
	Models that require more information

	Simulating a more complex dataset: gdistremoval
	Conclusion

