Package 'DetLifeInsurance'

October 12, 2022
Type Package
Title Life Insurance Premium and Reserves Valuation
Version 0.1.3
Maintainer Joaquin Auza auzajoaquin@gmail.com
Description Methods for valuation of life insurance premiums and reserves (including variablebenefit and fractional coverage) based on "Actuarial Mathematics" by Bowers, H.U. Gerber, J.C. Hickman, D.A. Jones and C.J. Nesbitt (1997, ISBN: 978-0938959465), `'Actuarial Mathematics for Life Contingent Risks" by Dickson, David C. M., Hardy, Mary R. and Waters, Howard R (2009) doi:10.1017/CBO9780511800146 and "Life Contingencies" by Jordan, C. W (1952) doi:10.1017/S002026810005410X. It also contains functions for equivalent interest and discount rate calculation, present and future values of annuities, and loan amortization schedule.

License GPL-3
Depends R (>= 3.5.0)
Imports utils
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
URL https://github.com/JoaquinAuza/DetLifeInsurance

BugReports https://github.com/JoaquinAuza/DetLifeInsurance/issues
VignetteBuilder knitr
Suggests knitr, rmarkdown
NeedsCompilation no
Author Joaquin Auza [aut, cre], Maria Sol Alvarez [aut]

Repository CRAN
Date/Publication 2020-09-12 09:20:07 UTC

R topics documented:

a 4
A. 5
aCont 6
ACont. 7
aD 8
AD. 9
af 10
am 11
Am. 12
ArgentinaINDEC9092comb 13
ArgentinaINDEC9092F 14
ArgentinaINDEC9092M 14
av 15
Av. 16
avg 17
Avg. 19
CSO2001FALBnonsmoker 20
CSO2001FALBsmoker 21
CSO2001FANBnonsmoker 21
CSO2001FANBsmoker 22
CSO2001MALBnonsmoker 22
CSO2001MALBsmoker 23
CSO2001MANBnonsmoker 23
CSO2001MANBsmoker 24
CSO58FALB 24
CSO58FANB 25
CSO58MALB 25
CSO58MANB 26
CSO80FALB 26
CSO80FALBnonsmoker 27
CSO80FALBsmoker 27
CSO80FANB 28
CSO80FANBnonsmoker 28
CSO80FANBsmoker 29
CSO80MALB 29
CSO80MALBnonsmoker 30
CSO80MALBsmoker 30
CSO80MANB 31
CSO80MANBnonsmoker 31
CSO80MANBsmoker 32
E. 32
Em 33
Fractional_table 34
GAM71F 35
GAM71M 35
GAM83F 36
GAM83M 36
GAM94F 37
GAM94FANB 37
GAM94M 38
GAM94MANB 38
JointSurvival 39
Loan_amortization 39
MAyP0206activeF 40
MAyP0206activeM 40
MAyP0206CAF 41
MAyP0206CAM 41
MAyP0206retiredF 42
MAyP0206retiredM 42
Mi06F 43
Mi06M 43
Mi85F 44
Mi85M 44
Payment_Protection 45
PremiumFrac 46
qfrac 47
Rate_converter 48
RV04F 48
RV04M 49
sf 49
Survival 50
Table_Dormoy 50
Table_Gompertz 51
Table_Makeham 52
Table_Moivre 53
V_a 53
V_A. 55
V_aD 56
V_AD. 57
V_av 59
V_Av. 60
V_avg 62
V_Avg. 64
V_E 65
V_Payment_Protection 66
Index 69

Description

Calculates the present value of a life annuity.

Usage

$a(x, h, n, k=1, i=0.04$, data, prop $=1$, assumption = "none", cap = 1)

Arguments

$x \quad$ An integer. The age of the insuree.
$\mathrm{h} \quad$ An integer. The deferral period.
$\mathrm{n} \quad$ An integer. Number of years of coverage.
$k \quad$ An integer. Number of payments per year.
i The interest rate. A numeric type value.
data A data.frame of the mortality table, with the first column being the age, and the second one the probability of death.
prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
cap A numeric type value. The annualized value of the payment.

Value

Returns a numeric value (actuarial present value).

References

Chapter 2 of Life Contingencies (1952) by Jordan, chapter 5 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt.

Examples

a(20,0,15,1, 0.04, CS058FALB, 1, "none", 1200)
a($23,7,9,1,0.04$, GAM71F , 1 , "none", 5000)
a(33, 3, 10, 4, 0.04, CS080MANB , 1, "constant", 3000)
a($20,5,10,4,0.04$, CS058MANB , 1 , "UDD" , 5000)
A.

Life Insurance

Description

Calculates the present value of the life insurance.

Usage

A. (x, h, n, k = 1, i = 0.04, data, prop = 1, assumption = "none", cap = 1)

Arguments

$x \quad$ An integer. The age of the insuree.
$\mathrm{h} \quad$ An integer. The deferral period.
$\mathrm{n} \quad$ An integer. Number of years of coverage.
$k \quad$ An integer. Number of fractions per year.
i The interest rate. A numeric type value.
data A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
cap A numeric type value. The value of the payment.

Value

Returns a numeric value (actuarial present value).

References

Chapter 3 of Life Contingencies (1952) by Jordan, chapter 4 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt.

Examples

A. (50, 0, 8, 1, 0.04, CSO80MANB , 1 , "none" , 1)
A. $(60,3,10,1,0.04$, CS080MANB , 1, "none", 1$)$
A. $(21,4,7,3,0.04$, CSO80MANB , 1 , "constant", 1)
A. $(23,4,6,12,0.04$, CSO80MANB , 1 , "UDD", 1$)$

```
aCont Continuous Life Annuities
```


Description

Calculates the present value of a continuous life annuity.

Usage

aCont(x, h, n, i = 0.04, data, prop = 1, assumption = "constant", cap = 1)

Arguments

$x \quad$ An integer. The age of the insuree.
h An integer. The deferral period.
$n \quad$ An integer. Number of years of coverage.
i The interest rate. A numeric type value.
data A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).
cap A numeric type value. The value of the payment.

Value

Returns a numeric value (the actuarial present value).

References

Chapter 2 of Life Contingencies (1952) by Jordan, chapter 5 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt.

Examples

```
aCont(35,7,10,0.04,CS080MANB,1,"constant",1)
aCont(23,5,12,0.04,CS080MANB,1,"UDD",1)
```


Description

Calculates the present value of a continuous life insurance.

Usage

ACont. (x, h, n, i = 0.04, data, prop = 1, assumption = "UDD", cap = 1)

Arguments

$x \quad$ An integer. The age of the insuree.
h An integer. The deferral period.
$n \quad$ An integer. Number of years of coverage.
i The interest rate. A numeric type value.
data A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).
cap A numeric type value. The value of the payment.

Value

Returns a numeric (actuarial present value).

References

Chapter 3 of Life Contingencies (1952) by Jordan, chapter 4 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt.

Examples

```
ACont.(24, 2, 10,0.04,CS080MANB, 1, "UDD", 1)
ACont.(24, 2, 10,0.04,CS080MANB,1,"constant",1)
```


Description

Calculates the present value of a decreasing life annuity.

Usage

aD (
x ,
h,
n,
$\mathrm{k}=1$,
$i=0.04$,
data,
prop $=1$,
assumption = "none",
variation = "none",
cap $=1$
)

Arguments

x	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
cap	A numeric type value. The annualized value of the first payment.

Value

Returns a numeric value (actuarial present value).

References

Chapter 2 of Life Contingencies (1952) by Jordan, chapter 5 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt.

Examples

```
aD(27, 0, 3, 1, 0.04, CS080MANB, 1 , "none", "none", 1)
aD (32, 2, 8, 1, 0.04, CSO80MANB , 1 , "none","none", 1)
aD (35, 8, 15, 4, 0.04, CSO80MANB, 1, "constant","inter", 1)
aD(21, 2, 5, 4, 0.04, CSO80MANB , 1, "UDD", "inter", 1)
aD ( \(54,4,16,2,0.04\), CS080MANB , 1 , "constant", "intra", 1)
aD (20, 10, 15, 3, 0.04, CS080MANB , 1,"UDD", "intra",1)
```

$A D$.
Decreasing Life Insurance

Description

Calculates the present value of a decreasing life insurance.

Usage

AD. (
x ,
h,
n,
k = 1,
$i=0.04$,
data,
prop $=1$,
assumption = "none",
variation = "none",
cap $=1$
)

Arguments

X
h
n
k
i
data

An integer. The age of the insuree.
An integer. The deferral period.
An integer. Number of years of coverage.
An integer. Fractions per year.
The interest rate. A numeric type value.
A data.frame of the mortality table, with the first column being the age and the second one the probability of death.

prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
cap	A numeric type value. Amount insured for the first year/period.

Value

Returns a numeric value (actuarial present value).

References

Chapter 3 of Life Contingencies (1952) by Jordan, chapter 4 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt.

Examples

```
AD. (56,0, 8, 1, 0.04, CS080MANB, 1, "none", "none", 1)
AD. (39,1,10,1,0.04, CS080MANB, 1, "none", "none", 1)
AD. (37, 6, 11, 4,0.04, CS080MANB , 1, "constant", "inter", 1)
AD. (21, 2, 5, 4, 0.04, CS080MANB , 1, "UDD", "inter", 1)
AD. (54, 4, 16, 2, 0.04, CS080MANB , 1, "constant", "intra", 1)
AD. (20,10, 15, 3,0.04, CS080MANB , 1, "UDD" , "intra", 1)
```

af Present Value of An Annuity

Description

Calculates the present value of an annuity.

Usage

$a f(1=0, n, i)$

Arguments

1
n
i

0 for annuity due or 1 for annuity immediate.
A numeric value. The number of payments.
A numeric value. The interest rate.

Examples

af $(0,10,0.03)$
af $(1,15,0.05)$
am
Life Annuities for a group

Description

Calculates the present value of a life annuity for a group.

Usage

am(
x ,
h,
n ,
k = 1,
$i=0.04$,
data,
prop $=1$,
type = "joint",
quant = 1,
assumption = "none",
cap $=1$
)

Arguments

x
$h \quad$ An integer. The deferral period.
n
$k \quad$ An integer. Number of payments per year.
i
data A data.frame of the mortality table, with the first column being the age, and the second one the probability of death.
prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
type A character string. Conditions to be met in order to access the benefit of the annuity ("joint", "exactly" or "atleast").
quant An integer. Required only if type is not "joint". If type is "exactly" it represents the exact amount of survivors required for the endowment to be payed. If type is "atleast", it represents the minimum number of survivors required.

assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
cap	A numeric type value. The annualized value of the payment.

Value

Returns a numeric value (actuarial present value).

Examples

```
ages<-c(23, 34, 21)
ages<-c(23,34,21)
am(ages, 5,10, 2, 0.05, CS080MALB,1, "joint", assumption="UDD")
am(ages,0,20,1,0.06,CS080FALBsmoker,1,"atleast",1)
am(ages,2,15,2,0.07,CS080FANBsmoker,0.8,"exactly", 2, "constant")
```

Am .
Life Insurance of a group

Description

Calculates the present value of a life insurance coverage for a group.

Usage

```
    Am.(
    x,
    h,
    n,
    k = 1,
    i = 0.04,
    data,
    prop = 1,
    ndeath = 1,
    assumption = "none",
    cap = 1
)
```


Arguments

X
h
n
k
i

A vector of intergers representing the age of each individual of the group.
An integer. The deferral period.
An integer. Number of years of coverage.
An integer. Number of fractions per year.
The interest rate. A numeric type value.

data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
ndeath	An integer. Number of deaths necessary for payment to occur.
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
cap	A numeric type value. The value of the payment.

Value

Returns a numeric value (actuarial present value).

Examples

```
ages<-c(22,33,44,55,66)
```

Am. (ages , 5, 15, 1, 0.04, CSO80MANB , 1, 2, "none", 1)
Am. (ages, $0,20,4,0.04$, CS080MANB , 1, 2, "UDD" , 1)
Am. (ages, $10,25,2,0.04$, CSO80MANB , 1,2, "constant", 1)
ArgentinaINDEC9092comb

ArgentinaINDEC9092 Males and Females Combined

Description

Mortality table (ultimate): Argentina Instituto Nacional de Estadistica y Censos (INDEC). Nation: Argentina. Year: 1990-1992. Sex: Males and Females Combined.

Usage
 data(ArgentinaINDEC9092comb)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=20003

Description

Mortality table (ultimate): Argentina Instituto Nacional de Estadistica y Censos (INDEC). Nation: Argentina. Year: 1990-1992. Sex: Female.

Usage

data(ArgentinaINDEC9092F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=20002

Description

Mortality table (ultimate): Argentina Instituto Nacional de Estadistica y Censos (INDEC). Nation: Argentina. Year: 1990-1992. Sex: Male.

Usage

data(ArgentinaINDEC9092M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=20001

Description

Calculates the present value of a varying life annuity according to a arithmetic progression.

```
Usage
    av(
        x,
        h,
        n,
        k = 1,
    r = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    variation = "none",
    cap = 1
)
```


Arguments

x	An integer. The age on the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
r	The variation rate. A numeric type value.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
cap	A numeric type value. The annualized value of the first payment.

Value

Returns a numeric value (actuarial present value).

Note

For an increasing life annuity coverage, 'r' must be 1.

References

Chapter 5 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
av(33,0,5,1,0.8,0.04,CS080MANB,1,"none","none",1)
av(26, 2, 4, 1, 0.4,0.04, CS080MANB,1,"none","none",1)
av(26,1,5,4,0.5,0.04,CSO80MANB,1,"constant","inter",1)
av(24,1,3,3,0.7,0.04,CSO80MANB,1,"constant","intra",1)
av(35,4,6,6,0.4,0.04,CS080MANB,1,"UDD","inter",1)
av(40,3,7,2,0.7,0.04,CSO80MANB,1,"UDD","intra",1)
```

Av.
Varying Life Insurance: Arithmetic Progression

Description

Calculates the present value of a varying life insurance according to a arithmetic progression.

Usage

```
Av.(
    x,
    h,
    n,
    k = 1,
    r=1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    variation = "none",
    cap = 1
)
```


Arguments

x
h
n
k

An integer. The age of the insuree.
An integer. The deferral period.
An integer. Number of years of coverage.
An integer. Fractions per year.

r	The variation rate. A numeric type value.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
cap	A numeric type value. Amount insured for the first year/period.

Value

Returns a numeric value (actuarial present value).

Note

For an increasing life insurance coverage, ' r ' must be 1 .

References

Chapter 4 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
Av.(43,0,4,1,0.7,0.04,CS080MANB,1,"none", "none",1)
Av.(37,1,6,1,0.3,0.04,CS080MANB,1,"none", "none",1)
Av.(25, 2, 3, 2,0.6,0.04,CSO80MANB,1,"constant","inter",1)
Av.(37,3,6,4,0.5,0.04,CSO80MANB,1,"constant","intra",1)
Av. (40,3,5, 2, 0.4,0.04,CS080MANB,1,"UDD", "inter",1)
Av.(50, 2, 4,4,0.6,0.04,CS080MANB,1,"UDD","intra",1)
```


Description

Calculates the present value of a varying life annuity according to a geometric progression.

Usage

```
    \(\operatorname{avg}(\)
        x ,
        h,
        n,
        \(\mathrm{k}=1\),
        \(r\),
        i = 0.04,
        data,
        prop \(=1\),
        assumption = "none",
        variation = "none",
        cap \(=1\)
    )
```


Arguments

x
h
$n \quad$ An integer. Number of years of coverage.
$k \quad$ An integer. Number of payments per year.
$r \quad$ The variation rate. A numeric type value.
i The interest rate. A numeric type value.
data
prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation A character string. "inter" if the variation it's interannual or "intra" if it's intraannual.
cap A numeric type value. The annualized value of the first payment.

Value

Returns a numeric value (actuarial present value).

References

Chapter 5 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
avg(33,0,5,1,0.8,0.04,CS080MANB, 1, "none", "none",1)
avg(26, 2, 4, 1, 0.4,0.04,CS080MANB, 1, "none", "none", 1)
avg(20,2, 2, 2,0.15,0.04,CS080MANB,1, "constant", "inter",1)
avg(40,5,5,3,0.07,0.04,CS080MANB,1, "constant", "intra", 1)
avg(27,0,15,4,0.06,0.04,CS080MANB,1, "UDD", "inter",1)
avg(34,7,12,6,0.03,0.04,CS080MANB,1,"UDD", "intra", 1)
```

Avg.
Varying Life Insurance: Geometric Progression

Description

Calculates the present value of a varying life insurance according to a geometric progression.

Usage

Avg. (
x ,
h,
n,
$\mathrm{k}=1$,
r,
$i=0.04$,
data,
prop $=1$,
assumption = "none",
variation = "none",
cap $=1$
)

Arguments

x
h
n
k
r
i
data
prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).

assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
cap	A numeric type value. Amount insured for the first year/period.

Value

Returns a numeric value (actuarial present value).

References

Chapter 4 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
Avg.(33,0,5,1,0.8,0.04,CS080MANB,1,"none","none",1)
Avg. (26, 2, 4, 1, 0.4,0.04,CS080MANB, 1, "none","none",1)
Avg.(25,0,15,2,0.25,0.04,CSO80MANB,1,"constant","inter",1)
Avg.(37,10,10,4,0.05,0.04,CSO80MANB,1,"constant","intra",1)
Avg. (40,5,20,6,0.04,0.04,CS080MANB, 1, "UDD", "inter", 1)
Avg.(20,0,80,12,0.01,0.04,CSO80MANB,1,"UDD", "intra",1)
```

CS02001FALBnonsmoker CSO2001 Female Age Last Birthday Non-smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Female. Basis: Age Last Birthday. Smoker: No.

Usage

data(CS02001FALBnonsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

```
    https://mort.soa.org/ViewTable.aspx?&TableIdentity=1517
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Female. Basis: Age Last Birthday. Smoker: yes.

Usage

data(CS02001FALBsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=1519

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Female. Basis: Age Nearest Birthday. Smoker: No.

Usage
 data(CSO2001FANBnonsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=1140

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Female. Basis: Age Nearest Birthday. Smoker: Yes.

Usage

data(CS02001FANBsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=1141

CS02001MALBnonsmoker CSO2001 Male Age Last Birthday Non-smoker

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Male. Basis: Age Last Birthday. Smoker: No.

Usage
 data(CSO2001MALBnonsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=1516

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Male. Basis: Age Last Birthday. Smoker: yes.

Usage

data(CS02001MALBsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=1518

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Male. Basis: Age Nearest Birthday. Smoker: No.

Usage
 data(CSO2001MANBnonsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

```
    https://mort.soa.org/ViewTable.aspx?&TableIdentity=1137
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 2001. Sex: Male. Basis: Age Nearest Birthday. Smoker: Yes.

Usage

data(CS02001MANBsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=1138

```
CS058FALB CSO58 Female Age Last Birthday
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Year: 1958. Nation: United States of America. Sex: Female. Basis: Age Last Birthday.

Usage
 data(CS058FALB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=8

```
CS058FANB CSO58 Female Age Nearest Birthday
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1958. Sex: Female. Basis: Age Nearest Birthday.

Usage

data(CS058FANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=6

```
CS058MALB CSO58 Male Age Last Birthday
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1958. Sex: Male. Basis: Age Last Birthday.

Usage

data(CS058MALB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

```
    https://mort.soa.org/ViewTable.aspx?&TableIdentity=7
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1958. Sex: Male. Basis: Age Nearest Birthday.

Usage

data(CS058MANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=5

```
CS080FALB CSO80 Female Age Last Birthday
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female Age method: Age Last Birthday.

Usage
 data(CS080FALB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=35

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female. Basis: Age Last Birthday. Smoker: No.

Usage

data(CS080FALBnonsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=37

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female. Basis: Age Last Birthday. Smoker: Yes.

Usage
 data(CS080FALBsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=39

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female. Basis: Age Nearest Birthday.

Usage

data(CS080FANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=36

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female. Basis: Age Nearest Birthday. Smoker: No.

Usage
 data(CS080FANBnonsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=38

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Female. Basis: Age Nearest Birthday. Smoker: Yes.

Usage

data(CS080FANBsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=40

```
CS080MALB CSO80 Male Age Last Birthday
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Basis: Age Last Birthday.

Usage
 data(CS080MALB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

```
    https://mort.soa.org/ViewTable.aspx?&TableIdentity=41
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Basis: Age Last Birthday. Smoker: No.

Usage

data(CS080MALBnonsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=43

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Basis: Age Last Birthday. Smoker: Yes.

Usage
 data(CS080MALBsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

```
    https://mort.soa.org/ViewTable.aspx?&TableIdentity=45
```

```
CS080MANB CSO80 Male Age Nearest Birthday
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Age method: Age Nearest Birthday.

Usage

data(CS080MANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=42

Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Basis: Age Nearest Birthday. Smoker: No.

Usage
 data(CS080MANBnonsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

```
    https://mort.soa.org/ViewTable.aspx?&TableIdentity=44
```


Description

Mortality table (ultimate): Commissioner's Standard Ordinary. Nation: United States of America. Year: 1980. Sex: Male. Basis: Age Nearest Birthday. Smoker: Yes.

Usage

data(CS080MANBsmoker)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=46

E Pure Endowment

Description

Calculates the Pure endowments.

Usage

$\mathrm{E}(\mathrm{x}, \mathrm{n}, \mathrm{i}=0.04$, data, prop $=1$, assumption = "none", cap = 1)

Arguments

x
$\mathrm{n} \quad$ The term of the endowment. An integer, for annual coverage, or a numeric for fractional coverage.
i
data
prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
cap A numeric type value. The payment.

References

Chapter 2 of Life Contingencies (1952) by Jordan.

Examples

```
E(45, 10, 0.04, CS080MANB , 1 , "none", 1000)
E ( \(24,1.6,0.04\), CS080MANB , 1 , "constant", 17000)
E(26, 2.4, 0.04, CS058FALB, 1, "UDD", 3500)
```

Em Group Pure Endowment

Description

Calculates the Pure endowments for a group of insurees.

Usage

```
    Em(
        x ,
        n,
        i \(=0.04\),
        data,
        prop \(=1\),
        type = "joint",
        quant = 1,
        assumption = "none",
        cap \(=1\)
    )
```


Arguments

$x \quad$ A vector of integers. The age of the insurees.
$\mathrm{n} \quad$ The term of the endowment. An integer, for annual coverage, or a numeric for fractional coverage.
i
data A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
type A character string. Conditions to be met in order to access the benefit of the endowment ("joint", "exactly" or "atleast").
quant An integer. Required only if type is not "joint". If type is "exactly" it represents the exact amount of survivors required for the endowment to be payed. If type is "atleast", it represents the minimum number of survivors required.
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
cap A numeric type value. The payment.

Examples

```
ages<-c(23,33,33)
Em(ages,15,0.04,CS080MANB,1,"joint")
Em(ages,20.5,0.04,CS080MANB,1,"joint",assumption = "constant",cap= 1)
Em(ages,10.5,0.04,CS080MANB,1,"joint",assumption = "UDD", cap=1)
ages<-c(20,23,24,25)
Em(ages,15,0.04,CS080MANB,1, "exactly",1,"none",1)
Em(ages,24.2,0.04,CS080MANB,1, "exactly", 2,"constant",1)
Em(ages, 8.2,0.04,CS080MANB,1,"exactly", 3,"UDD",1)
ages<-c(40,42,56,57,58,59)
Em(ages,15,0.04,CS080MANB,1,"atleast",1,"none",1)
Em(ages, 25.5,0.04,CS080MANB,1, "atleast",4,"constant",1)
Em(ages,15.3,0.04,CS080MANB,1,"atleast", 3, "UDD",1)
```

Fractional_table Fractional table of mortality

Description

Creates a fractional mortality table for a given mortality table.

Usage

Fractional_table(data, frac, $\mathrm{i}=0.04$, assumption = "UDD")

Arguments

data	A data.frame of the annual mortality table, with the first column being the age			
and the second one the probability of death.		frac	An integer. The number of fractions per year.	
:---	:---			
i	A numeric type value. The interest rate.			
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).			

Value

Returns a data.frame object containing fractional age and death probability vectors.

References

Chapter 3 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt

Examples

Fractional_table(CS080MANB, 2,0.04,"constant")
Fractional_table(CS080MANB, 2,0.04, "UDD")
GAM71F GAM71 Female

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1971. Sex: Female.

Usage

data(GAM71F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=817, http://servicios.infoleg. gob.ar/infolegInternet/anexos/80000-84999/81029/norma.htm
GAM71M GAM71 Male

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1971. Sex: Male.

Usage

data(GAM71M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=818, http://servicios.infoleg. gob.ar/infolegInternet/anexos/80000-84999/81029/norma.htm
GAM83F GAM83 Female

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1983. Sex: Female.

Usage

data(GAM83F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=825

GAM83M GAM83 Male

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1983. Sex: Male.

Usage

data(GAM83M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=826

```
GAM94F GAM94 Female
```


Description

Mortality table (ultimate): Group Annuity Mortality. Year: 1994. Sex: Female.

Usage
 data(GAM94F)

Format

a dataframe containing a column for age (x) and a column for death probability (q)

References

https://mort.soa.org/

```
GAM94FANB GAM94 Female Age Nearest Birthday
```


Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1994. Sex: Female. Basis: Age Nearest Birthday.

Usage

data(GAM94FANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=834

```
GAM94M GAM94 Male
```


Description

Mortality table (ultimate): Group Annuity Mortality. Year: 1994. Sex: Male.

Usage
 data(GAM94M)

Format

a dataframe containing a column for age (x) and a column for death probability (q)

References

https://mort.soa.org/

GAM94MANB GAM94 Male Age Nearest Birthday

Description

Mortality table (ultimate): Group Annuity Mortality. Nation: United States of America. Year: 1994. Sex: Male. Basis: Age Nearest Birthday.

Usage

data(GAM94MANB)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=835

```
JointSurvival Joint Survival Probability
```


Description

Calculates the probability of survival given a mortality table for a group.

Usage

```
JointSurvival(x, n, data, prop = 1)
```


Arguments

x	A vector representing the age of each individual.
n	An integer. The term.
data	A data.frame of the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. The proportion of the mortality table used, between 0 and 1.

Examples

ages<-c $(34,45,52,65)$
JointSurvival(ages, 10, CS080FALB)

Loan_amortization Loan Amortization

Description

Calculates the amortization schedule.

Usage

Loan_amortization(V0, n, i, i2 = 0, alic = 0, ins $=0$, method)

Arguments

v0	A numeric type value. Loan value.
n	A numeric type value. The number of payments.
i	A numeric type value or a vector of them. The interest rate of the loan.
i2	A numeric type value. The interest rate of the saving account.
alic	A numeric type value. Interest tax rate.
ins	A numeric type value. The rate of V0 to be paid in each period.
method	A string. Amortization method used ("constant_installment","interest_only",
	"constant_principal", "interest_only_wsavings_account" or "constant_installment_varintrate"
).

Value

Returns a data.frame object containing Period, Payment, Pure Payment, Intrest, Amortization, Insurance, TAX and Outstanding debt.

Examples

```
Loan_amortization(1000,12,0.04,0,0.21,0.01,"constant_installment")
Loan_amortization(12000,15,0.04,0,0.21,0.01,"interest_only")
Loan_amortization(13000,10,0.04,0,0.21,0.01,"constant_principal")
Loan_amortization(15000, 20,0.04,0.05,0.21,0.01,"interest_only_wsavings_account")
Loan_amortization(5000, 5, 0.04,0,0.21,0.01,"constant_installment_varintrate")
```

MAyP0206activeF MAyP0206 Active Female

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Female. Status: Active.

Usage

data(MAyP0206activeF)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=20005

```
MAyP0206activeM MAyP0206 Active Male
```


Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Male. Status: Active.

Usage

data(MAyP0206activeM)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=20004
MAyP0206CAF MAyP0206 Combined Active and Retired Female

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Female. Status: Combined Active and Retired.

Usage

data(MAyP0206CAF)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=20009
MAyP0206CAM MAyP0206 Combined Active and Retired Male

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Male. Status: Combined Active and Retired.

Usage

data(MAyP0206CAM)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=20008

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Female. Status: Retired.

Usage

data(MAyP0206retiredF)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=20007

Description

Mortality table (ultimate): Mortalidad Activos y Pasivos. Nation: Argentina. Year: 2002-2006. Sex: Male. Status: Retired.

Usage
 data(MAyP0206retiredM)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=20006
Mi06F Mi06 Female

Description

Mortality table (ultimate): Mortalidad Invalidez. Nation: Chile. Year: 2006. Sex: Female.

Usage

data(Mi06F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

Note

for more information on how to adjust the values of the table using an 'improvement rate' visit: https://www.spensiones.cl/portal/compendio/596/w3-propertyvalue-3537.html

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=2713,https://www.spensiones.cl/ portal/compendio/596/w3-propertyvalue-3542.html
Mi06M Mi06 Male

Description

Mortality table (ultimate): Mortalidad Invalidez. Nation: Chile. Year: 2006. Sex: Male.

Usage

data(Mi06M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

Note

For more information on how to adjust the values of the table using an 'improvement rate' visit: https://www.spensiones.cl/portal/compendio/596/w3-propertyvalue-3537.html

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=2712,https://www.spensiones.cl/ portal/compendio/596/w3-propertyvalue-3542.html
Mi85F Mi85 Female

Description

Mortality table (ultimate): Mortalidad Invalidez. Nation: Chile. Year: 1985. Sex: Female.

Usage

data(Mi85F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

http://servicios.infoleg.gob.ar/infolegInternet/anexos/80000-84999/81029/norma. htm
Mi85M Mi85 Male

Description

Mortality table (ultimate): Mortalidad Invalidez. Nation: Chile. Year: 1985. Sex: Male.

Usage

data(Mi85M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

[^0]
Description

Calculates the present value of the loan insurance.

Usage

```
Payment_Protection(
        x,
        n,
        k = 1,
        v0,
        i = 0.04,
        ip = 0.04,
        data,
        prop = 1,
        type = "outstanding_debt",
        method = "interest_only"
)
```


Arguments

x	An integer. The age of the insuree.
n	An integer. Loan term (in years).
k	An integer. Number of payments per year.
ve	A numeric type value. Loan value.
i	The interest rate. A numeric type value.
ip	The interest rate of the loan. A numeric type value. data
A data.frame of the mortality table, with the first column being the age and the	
second one the probability of death.	

Value

Returns a numeric value (actuarial present value).

Examples

```
Payment_Protection(35,2,1,1000000,0.04,0.06,CS080MANB, 1, "payments", "constant_instalment")
Payment_Protection(43,2,1,1000000,0.04,0.07,CS080MANB, 1, "outstanding_debt", "constant_instalment")
Payment_Protection(30,2,2,1000000,0.04,0.06,CS080MANB,1,"payments","constant_instalment")
Payment_Protection(20, 2, 2,1000000,0.04,0.07,CS080MANB,1, "outstanding_debt","constant_instalment")
Payment_Protection(33,2,1,1000000,0.04,0.05,CS080MANB, 1, "payments", "interest_only")
Payment_Protection(56,2,1,1000000,0.04,0.06,CS080MANB,1, "outstanding_debt", "interest_only")
Payment_Protection(40,2,2,1000000,0.04,0.06,CS080MANB,1,"payments","interest_only")
Payment_Protection(25,2,2,1000000,0.04,0.05,CS080MANB,1, "outstanding_debt", "interest_only")
Payment_Protection(23,2,1,1000000,0.04,0.07,CS080MANB, 1, "payments", "constant_principal")
Payment_Protection(35, 2,1,1000000,0.04,0.06,CS080MANB,1, "outstanding_debt", "constant_principal")
Payment_Protection(45, 2, 2,1000000,0.04,0.05,CS080MANB, 1, "payments","constant_principal")
Payment_Protection(35, 2, 2,1000000,0.04,0.07,CS080MANB, 1, "outstanding_debt", "constant_principal")
```


PremiumFrac Fractional Premium

Description

Calculates the annualized value of the fractional premiums.

Usage

PremiumFrac (px1, x, m, k, i = 0.04, data, prop = 1, effect = "yes", assumption)

Arguments

$\mathrm{px1}$	A numeric type value. The value of the single net premium.
x	An integer. The age of the insuree.
m	An integer. Years of premium payment.
k	An integer. Number of premiums per year.
i	The interest rate. A numeric type value.
data	A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
effect	A character string. This parameter indicates if, in the event of death, the insuree is released from paying the remaining fractional premiums of that year ("yes" or
"no")	
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).

Value

Returns the annualized value of the fractional premium.

Note

If $\mathrm{k}=1$, regardless of the "effect", the returned value is the annual premium.

References

Chapter 4 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters

Examples

PremiumFrac (1000, 20, 10, 2, 0.04, CS080MANB, 1 , "yes", "constant")
PremiumFrac (1000, 20, 10, 2, 0.04, CS080MANB, 1, "no", "UDD")
qfac Fractional Probability of Death

Description

Calculates the fractional probability for a person of $\mathrm{x}+\mathrm{s} / \mathrm{k}$ dies before age $\mathrm{x}+(\mathrm{s}+1) / \mathrm{k}$.

Usage

qfrac(x, s, k, i, data, assumption, prop)

Arguments

x
$\mathrm{s} \quad$ An integer. Fraction of the year.
$k \quad$ An integer. Number of fractions per year.
i The interest rate. A numeric type value.
data A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).
prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).

Value

The fractional probability of death.

Examples

qfrac(27, 1, 4, 0.04, CsO80MANB, "constant", 1)
qfrac (20, 0, 12, 0.04, CSO80MANB, "UDD", 0.8)

Rate_converter Interest \& Discount Rate Converter

Description

Converts nominal and effective interest and discount rates.

Usage

Rate_converter(num, rate1, m, rate2, k, type = "days")

Arguments

num	A numeric type value. It is the interest/discount rate to be converted.
rate1	A string ("i", "d","f" or "j"). Type of interest/discount rate to be converted.
m	number of capitalizations.
rate2	A string ("i" for effective interest rate, "d" for effective discount rate," $\mathrm{f} "$ for nominal discount rate, " j " for nominal interest rate).Type of interest/discount rate to obtain.
k	An integer. Number of capitalizations per year.
type	A string. Reference for " $\mathrm{k} "$, indicating whether it is expressed as a fraction or as days ("frac" or "days").

Examples

```
Rate_converter(0.04,"i",1,"i",6,"frac")
Rate_converter(0.04,"f",1,"j",6,"frac")
Rate_converter(0.04,"f",365,"d",60,"days")
Rate_converter(0.04,"f",365,"f",60,"days")
```

RV04F
RV04 Female

Description

Mortality table (ultimate): Renta Vitalicia. Nation: Chile. Year: 2004. Sex: Female.

Usage

data(RV04F)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

https://mort.soa.org/ViewTable.aspx?\&TableIdentity=1500

```
RV04M RV04 Male
```


Description

Mortality table (ultimate): Renta Vitalicia. Nation: Chile. Year: 2004. Sex: Male.

Usage

data(RV04M)

Format

A data frame containing a column for age (x) and a column for death probability (q).

References

```
    https://mort.soa.org/ViewTable.aspx?\&TableIdentity=1499
```

 sf Future Value of an Annuity

Description

Calculates the future value of an annuity.

Usage

$\mathrm{sf}(\mathrm{l}=0, \mathrm{n}, \mathrm{i})$

Arguments

$1 \quad 0$ for annuity due or 1 for annuity immediate.
$\mathrm{n} \quad$ A numeric value. The number of payments.
i
A numeric value. The interest rate.

Examples

sf(0,12,0.05)
sf(1, 23,0.04)
Survival Survival Probability

Description

Calculates the probability of survival given a mortality table for an individual or a group.

Usage

Survival(x, n, data, prop = 1)

Arguments

$x \quad$ An integer or a vector including only integers representing the age of each individual.
$\mathrm{n} \quad$ An integer. The term.
data A data.frame of the mortality table, with the first column being the age and the second one, the probability of death.
prop A numeric value. The proportion of the mortality table used, between 0 and 1.

Examples

Survival(20, 2, CS058MANB, 1)
Survival(31, 33, CS080MANB, 0.8)

Table_Dormoy Dormoy's Law of Mortality Table Creator

Description

Creates a mortality table under Dormoy's law.

Usage

Table_Dormoy(x0, omega, a)

Arguments

$x 0 \quad$ A numeric type value. The initial age of the table.
omega A numeric type value. The final age of the table.
a
A numeric type value. A parameter of the law.

Value

Returns a data.frame object containing age and death probabilities.

References

Chapter 3 (p 77-78) of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt.

Examples

Table_Dormoy (0,100, 0.98)

Table_Gompertz Gompertz's Law of Mortality Table Creator

Description

Creates a mortality table under Gompertz's law.

Usage

Table_Gompertz(x0, omega, B, C)

Arguments

$x 0 \quad$ A numeric type value. The initial age of the table.
omega A numeric type value. The final age of the table.
B A numeric type value. A parameter of the law.
C A numeric type value. A parameter of the law.

Value

Returns a data.frame object containing age and death probabilities.

References

Chapter 3 (p 77-78) of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt.

Examples

```
Table_Gompertz(0,100,0.00008,1.07)
```

Table_Makeham Makeham's Law of Mortality Table Creator

Description

Creates a mortality table under Makeham's law.

Usage

Table_Makeham(x0, omega, A, B, C)

Arguments

$x 0 \quad$ A numeric type value. The initial age of the table.
omega A numeric type value. The final age of the table.
A A numeric type value. A parameter of the law.
B A numeric type value. A parameter of the law.
C A numeric type value. A parameter of the law.

Value

Returns a data.frame object containing age and death probabilities.

Note

The parameters are usually confined to the ranges shown below: $0.001<\mathrm{A}<0.003,10^{\wedge}(-6)<\mathrm{B}<$ $10(-3), 1.08<\mathrm{C}<1.12$.

References

Chapter 3 (p 77-78) of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt.

Examples

Table_Makeham $\left(0,100,0.002,3 * 10^{\wedge}(-4), 1.124\right)$

Table_Moivre de Moivre's Law of Mortality Table Creator

Description

Creates a mortality table under de Moivre's law.

Usage

Table_Moivre(x0, omega)

Arguments

$x 0$	A numeric type value. The initial age of the table.
omega	A numeric type value. The final age of the table.

Value

Returns a data.frame object containing age and death probabilities.

References

Chapter 3 (p 77-78) of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones \& Nesbitt.

Examples

Table_Moivre $(0,100)$

```
    V_a Reserve Valuation for Life Annuities
```


Description

Calculates the reserve for the life Annuity up to the moment 't'.

Usage

V_a(
px ,
x ,
h,
n,
k = 1,
cantprem $=1$,

```
    premperyear = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    cap,
    t
)
```


Arguments

px	A numeric value. The value of the premium paid in each period.
x	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of payments per year.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
cap	A numeric type value. The annualized value of the payment.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t .

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

> V_a(147.814202915034, 20, 5, 10, 1, 5, 1, 0.04, CS080MANB, 1, "none", 100, 15)
> V_a(148.324902023591/12, $20,5,10,4,60,12,0.04, C S 080 M A N B, 1$, "constant" $\left.^{2}, 100,178\right)$
> V_a(223633. $861110949,25,0,25,12,10,1,0.04$, CSO80MANB , 1 , "UDD" , 120000, 300)

V_A. Reserve for Life Insurance

Description

Calculates the reserve for the life insurance up to the moment ' t '.

```
Usage
    V_A.(
        px,
        x,
        h,
        n,
        k = 1,
        cantprem = 1,
        premperyear = 1,
        i = 0.04,
        data,
        prop = 1,
        assumption = "none",
        cap,
        t
    )
```


Arguments

px
x
h
n
k An integer. Number of fractions per year.
cantprem
premperyear
i
data A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop A numeric value. It represents the proportion of the mortality table used (between 0 and 1).
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage)
cap A numeric type value. The value of the payment.
t
A numeric value. The value of the premium paid in each period.
An integer. The age of the insuree.
An integer. The deferral period.
An integer. Number of years of coverage.

An integer. The total number of premiums.
An integer. The number of premiums to be paid per year.
The interest rate. A numeric type value.

An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, $1 / \mathrm{E}$ and reserve values up to the moment t .

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

V_A. (26673. $3602688847,25,2,3,1,2,1,0.04$, CSO80MANB , 1 , "none", 12000000, 5)
V_A. (27446. $2077993839 / 12,25,2,3,2,24,12,0.04$, CSO80MANB , 1, "UDD" , 12000000, 60)
V_A. ($27376.5521158244 / 12,25,2,3,2,24,12,0.04$, CS080MANB , 1 , "constant" $, 12000000,60$)
V_aD Reserve Valuation for Decreasing life annuities

Description

Calculates the reserve for the decreasing life annuity up to the moment ' t '.

Usage

V_aD (
px ,
x ,
h,
n ,
k = 1,
cantprem $=1$,
premperyear $=1$,
i = 0.04,
data,
prop = 1,
assumption = "none",
variation = "none",
cap,
t
)

Arguments

$\mathrm{px} \quad$ A numeric value. The value of the premium paid in each period.
$x \quad$ An integer. The age of the insuree.
h An integer. The deferral period.
\(\left.$$
\begin{array}{ll}\mathrm{n} & \text { An integer. Number of years of coverage. } \\
\mathrm{k} & \text { An integer. Number of payments per year. } \\
\text { cantprem } & \text { An integer. The total number of premiums. } \\
\text { premperyear } & \text { An integer. The number of premiums to be paid per year. } \\
\mathrm{i} \\
\text { data } & \begin{array}{l}\text { The interest rate. A numeric type value. }\end{array}
$$

A data.frame containing the mortality table, with the first column being the age

and the second one, the probability of death.\end{array}\right]\)| A numeric value. It represents the proportion of the mortality table used (be- |
| :--- |
| tween 0 and 1). |\quad| A character string. The assumption used for fractional ages ("UDD" for uniform |
| :--- |
| distribution of deaths, "constant" for constant force of mortality and "none" if |
| there is no fractional coverage). |

Value

A data frame with Premium, Risk, $1 / E$ and reserve values up to the moment t .

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_aD(139102.759700887,20, 2, 2, 1, 2, 1, 0.04,CS080MANB, 1, "none","none", 100000,4)
V_aD(140293.253997879/12,20,2,2,2,24,12,0.04,CS080MANB,1,"constant","inter",100000,48)
V_aD(23461.2532906378/12,20, 2, 2, 2, 24,12,0.04,CSO80MANB, 1,"constant","intra",10000,48)
V_aD(23462.5668144001/12,20, 2, 2, 2, 24,12,0.04,CS080MANB,1,"UDD", "intra",10000, 48)
V_aD(14029.8183844808/12,20, 2, 2, 2, 24,12,0.04,CS080MANB,1,"UDD", "inter",10000,48)
```

V_AD. Reserve Valuation for Decreasing Life Insurance

Description

Calculates the reserve for the decreasing life insurance up to the moment t.

Usage

```
V_AD.(
    px,
    x,
    h,
    n,
    k = 1,
    cantprem = 1,
    premperyear = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    variation = "none",
    cap,
    t
)
```


Arguments

px	A numeric value. The value of the premium paid in each period.
x	An integer. The age of the insuree.
h	An integer. The deferral period.
n	An integer. Number of years of coverage.
k	An integer. Number of fractions per year.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (between 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's inter-annual or "intra" if it's intraannual.
cap	A numeric type value. Amount insured for the first year/period.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, $1 / E$ and reserve values up to the moment t.

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

V_AD. (251.489227521537, 20, 2, 2, 1, 2, 1, 0.04, CSO80MANB, 1, "none", "none", 100000, 4)
V_AD. (432.974179723949/12, 20, 2, 2, 2, 24, 12, 0.04, CS080MANB, 1, "UDD", "intra", 100000, 48)
V_AD. (258.794207318685/12, 20, 2, 2, 2, 24, 12, 0.04, CS080MANB, 1, "UDD", "inter", 100000, 48)
V_AD. (412.784641829906/12, 20, 2, 2, 2, 24, 12, 0.04, CS080MANB, 1, "constant", "intra", 100000,48)
V_AD. (258.189935788232/12, 20, 2, 2, 2, 24, 12, 0.04, CS080MANB , 1, "constant", "inter", 100000, 48)

V_av
Reserve Valuation for Varying Life Annuities: Arithmetic Progression

Description

Calculates the reserve for the Varying Life Annuity up to the moment t .

Usage

```
V_av(
    px,
    x,
    h,
    n,
    k = 1,
    r,
    cantprem = 1,
    premperyear = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    variation = "none",
    cap,
    t
)
```


Arguments

$\mathrm{px} \quad$ A numeric value. The value of the premium paid in each period.
$x \quad$ An integer. The age of the insuree.
h
n
k
An integer. The deferral period.

An integer. Number of years of coverage.
An integer. Number of payments per year.

r	The variation rate. A numeric type value.
cantprem	An integer. The total number of premiums.
premperyear	An integer. The number of premiums to be paid per year.
i	The interest rate. A numeric type value.
data	A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop	A numeric value. It represents the proportion of the mortality table used (be- tween 0 and 1).
assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
A character string. "inter" if the variation it's interannual or "intra" if it's intra-	
annual.	
t	A numeric type value. The annualized value of the first payment.
	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, $1 / E$ and reserve values up to the moment t.

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_av(9435943.49607651, 20, 2, 2, 1,0.05, 2,1,0.04,CS080MANB, 1, "none", "none", 10000000,4)
V_av(9516712.17583443/12,20, 2, 2, 2,0.05, 24,12,0.04,CS080MANB,1, "constant", "inter",10000000,48)
V_av(9517.04683383614/12, 20, 2, 2, 2,0.05, 24,12,0.04,CS080MANB, 1, "UDD" , "inter", 10000,48)
V_av(997.404109454868/12, 20, 2, 2, 2,0.05,24,12,0.04,CS080MANB,1, "constant","intra",1000,48)
V_av(997436.738989113/12, 20, 2, 2, 2,0.05, 24,12,0.04, CS080MANB, 1, "UDD", "intra", 1000000, 48)
V_av(28.4421691213902,40,3,7,2,0.7,1,1,0.04,CS080MANB, 1, "UDD", "intra", 1, 120)
```


Description

Calculates the reserve for the varying life insurance up to the moment t .

```
Usage
    V_Av.(
        px,
    x,
    h,
    n,
    k = 1,
    r,
    cantprem = 1,
    premperyear = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    variation = "none",
    cap,
    t
)
```


Arguments

px

x
h
n
k
r
cantprem An integer. The total number of premiums.

premperyear

i
data A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop A numeric value. It represents the proportion of the mortality table used (between 0 and 1).
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation A character string. "inter" if the variation it's interannual or "intra" if it's intraannual.
cap A numeric type value. Amount insured for the first year/period.
t
A numeric value. The value of the premium paid in each period.
An integer. The age of the insuree.
An integer. The deferral period.
An integer. Number of years of coverage.
An integer. Number of fractions per year.
The variation rate. A numeric type value.

An integer. The number of premiums to be paid per year.
The interest rate. A numeric type value.

	distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
cap	A numeric type value. Amount insured for the first year/period.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, $1 / E$ and reserve values up to the moment t .

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_Av.(333.373580168544, 20, 2, 2, 1,0.05,1,1,0.04,CS080MANB, 1, "none", "none",100000,4)
V_Av.(175.054867728107/12,20,2,2,2,0.05,24,12,0.04,CS080MANB, 1, "UDD", "inter", 100000,48)
V_Av.(183.436285298212/12, 20, 2, 2, 2,0.05, 24,12,0.04, CS080MANB, 1, "UDD", "intra", 100000, 48)
V_Av.(183.965812992762/12,20, 2, 2, 2,0.05,24,12,0.04,CS080MANB, 1, "constant", "intra", 100000,48)
V_Av.(174.645127871177/12,20,2,2,2,0.05,24,12,0.04,CS080MANB,1,"constant","inter",100000,48)
```


Description

Calculates the reserve for the Varying Life Annuity up to the moment t .

Usage

```
V_avg(
        px ,
        x ,
        h,
        n,
        k = 1,
        \(r\),
    cantprem = 1,
    premperyear = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    variation = "none",
    cap,
    t
)
```


Arguments

$\mathrm{px} \quad$ A numeric value. The value of the premium paid in each period.
$x \quad$ An integer. The age of the insuree.
$h \quad$ An integer. The deferral period.
$n \quad$ An integer. Number of years of coverage.
$k \quad$ An integer. Number of payments per year.
$r \quad$ The variation rate. A numeric type value.
cantprem An integer. The total number of premiums.
premperyear An integer. The number of premiums to be paid per year.
i
data A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop A numeric value. It represents the proportion of the mortality table used (between 0 and 1).
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation A character string. "inter" if the variation it's interannual or "intra" if it's intraannual.
cap A numeric type value. The annualized value of the first payment.
$t \quad$ An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t .

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

```
V_avg(94359.4349607651,20, 2, 2,1,0.05, 2, 1,0.04,CS080MANB, 1, "none", "none", 100000,4)
V_avg(95167.1217583443/12,20, 2, 2, 2,0.05,24,12,0.04,CS080MANB, 1, "constant", "inter", 100000,48)
V_avg(99969.5282890978/12, 20, 2, 2, 2,0.05, 24,12,0.04,CS080MANB, 1, "constant", "intra", 100000,48)
V_avg(95170.4683383614/12, 20, 2, 2, 2,0.05, 24,12,0.04, CS080MANB, 1, "UDD", "inter", 100000, 48)
V_avg(99972.7870462341/12, 20, 2, 2, 2,0.05, 24,12,0.04, CS080MANB, 1, "UDD", "intra", 100000, 48)
```


Description

Calculates the reserve for the varying life insurance up to the moment t.

```
Usage
    V_Avg.(
        px,
        x,
        h,
        n,
        k = 1,
        r,
        cantprem = 1,
        premperyear = 1,
        i = 0.04,
        data,
        prop = 1,
        assumption = "none",
        variation = "none",
        cap,
        t
    )
```


Arguments

$\mathrm{px} \quad$ A numeric value. The value of the premium paid in each period.
x
h
$n \quad$ An integer. Number of years of coverage.
k
r
cantprem
premperyear
i
data
prop
An integer. The age of the insuree.
An integer. The deferral period.

An integer. Number of fractions per year.
The variation rate. A numeric type value.
An integer. The total number of premiums.
An integer. The number of premiums to be paid per year.
The interest rate. A numeric type value.
A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.

A numeric value. It represents the proportion of the mortality table used (between 0 and 1).

assumption	A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
variation	A character string. "inter" if the variation it's interannual or "intra" if it's intra- annual.
cap	A numeric type value. Amount insured for the first year/period.
t	An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, $1 / \mathrm{E}$ and reserve values up to the moment t .

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

V_Avg. (170.113596880528, 20, 2, 2, 1, 0.05, 2, 1, 0.04, CS080MANB, 1, "none", "none", 100000, 4)
V_Avg. (183. $854458536232 / 12,20,2,2,2,0.05,24,12,0.04, C S 080 M A N B, 1, " U D D ", ~ " i n t r a ", 100000,48)$
V_Avg. ($175.054867728107 / 12,20,2,2,2,0.05,24,12,0.04, C S 080 M A N B, 1$, "UDD", "inter", 100000,48)
V_Avg. (184.431102889578/12, 20, 2, 2, 2, 0.05, 24, 12, 0.04, CSO80MANB, 1, "constant", "intra", 100000, 48)
V_Avg. (174.645127871158/12, 20, 2, 2, 2, 0.05, 24, 12, 0.04, CS080MANB, 1, "constant", "inter", 100000, 48)

```
V_E Reserve Valuation for Pure Endowments
```


Description

Calculates the reserve for the Pure endowments up to the moment t .

```
Usage
    V_E(
        px,
    x,
    n,
    cantprem = 1,
    premperyear = 1,
    i = 0.04,
    data,
    prop = 1,
    assumption = "none",
    cap,
    t
)
```


Arguments

$\mathrm{px} \quad$ A numeric value. The value of the premium paid in each period.
$x \quad$ An integer. The age of the insuree.
n
The term of the endowment. An integer, for annual coverage, or a numeric for fractional coverage.
cantprem An integer. The total number of premiums.
premperyear An integer. The number of premiums to be paid per year.
i
data A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
prop A numeric value. It represents the proportion of the mortality table used (between 0 and 1).
assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
cap A numeric type value. The payment.
t
An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

A data frame with Premium, Risk, 1/E and reserve values up to the moment t .

References

Chapter 5 of Life Contingencies (1952) by Jordan, Chapter 11 of Actuarial Mathematics for Life Contingent Risks (2009) by Dickson, Hardy and Waters.

Examples

V_E(663.501989747591, 20, 10, 1, 1, 0.04, CSO80MANB , 1 , "none", 1000, 10)
V_E(9383.64446819386/12, 20, 2, 12, 12, 0.04, CSO80MANB , 1, "constant", 10000, 24)
V_E(9383.64446819386/12, 20, 2, 12, 12, 0.04, CSO80MANB, 1, "constant", 10000, 24)

V_Payment_Protection Reserve valuation for Payment Protection

Description

Calculates the reserve for the loan insurance up to the moment t.

Usage

```
V_Payment_Protection(
    px,
    x,
    n,
    k = 1,
    cantprem = 1,
    premperyear = 1,
    i = 0.04,
    ip = 0.04,
    data,
    prop = 1,
    type = "outstanding_debt",
    method = "interest_only",
    v0,
    t
)
```


Arguments

$\mathrm{px} \quad$ A numeric value. The value of the premium paid in each period.
x
An integer. The age of the insuree.
$\mathrm{n} \quad$ An integer. Loan term (in years).
$k \quad$ An integer. Number of payments per year.
cantprem An integer. The total number of premiums.
premperyear An integer. The number of premiums to be paid per year.
i
ip
data A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
prop A numeric value. It represents the proportion of the mortality table used (between 0 and 1).
type A character string. The type of loan protection/reimburstment ("outstanding_debt" or "payments").
method A character string. Amortization scheme ("constant_instalment", "interest_only" or "constant_principal").
V0 A numeric type value. Loan value.
$t \quad$ An integer. The moment of valuation (in months if it is a fractional coverage or in years if it is not).

Value

Returns the actuarial present value of the loan protection.

Examples

$\mathrm{px} 1<-31.6216618772779$
c1<-10500
V_Payment_Protection(px1, 30, 25, 1, 10, 1, 0.06, 0.07,CS080FANB, 1, "payments", "constant_instalment", c1, 25)

Index

```
* Amortization
    Loan_amortization, 39
* Annuities
    a,4
    aCont,6
    aD, }
    am, 11
    av, 15
    avg, 17
    V_a,53
    V_aD,56
    V_AD., 57
    V_av,59
    V_avg, }6
* Annuity
    af, 10
    sf,49
* Arithmetic
    av, }1
    Av., 16
    V_av, 59
    V_Av., 60
* Continuous
        aCont, }
        ACont., 7
* Decreasing
        aD,8
        AD., }
        V_aD,56
        V_AD., 57
* Discount
    Rate_converter,48
* Dormoy's
        Table_Dormoy, 50
* Endowments
        V_E,65
* Endowment
    E, }3
    Em,33
* Amortization
Loan_amortization, 39
* Annuities
a, 4
aCont, 6
aD, 8
am, 11
av, 15
avg, 17
V_a, 53
V_aD, 56
V_AD., 57
V_av, 59
V_avg, 62
* Annuity
af, 10
Arithmetic
av, 15
Av., 16
V_av, 59
V_Av., 60
* Continuous
aCont, 6
ACont., 7
* Decreasing
aD, 8
AD., 9
V_aD, 56
V_AD., 57
* Discount
Rate_converter, 48
* Dormoy's
Table_Dormoy, 50
* Endowments
V_E, 65
* Endowment
E, 32
Em, 33
```

* Fractional

Fractional_table, 34
PremiumFrac, 46
qfrac, 47

* Future
sf, 49
* Geometric
avg, 17
Avg., 19
V_avg, 62
V_Avg., 64
* Gompertz's

Table_Gompertz, 51

* Group
am, 11
Am., 12
* Insurance
A., 5

ACont., 7
AD., 9
Am., 12
Av., 16
Avg., 19
V_A., 55
V_Av., 60
V_Avg., 64

* Interest

Rate_converter, 48

* Joint

JointSurvival, 39
$*$ Life
a, 4
A., 5
aCont, 6
ACont., 7
aD, 8
AD., 9
am, 11
Am., 12

```
    av, 15
    Av., 16
    avg,17
    Avg., 19
    V_a,53
    V_A., 55
    V_aD,56
    V_AD., 57
    V_av,}5
    V_Av., 60
    V_avg, }6
    V_Avg., 64
* Loan
    Loan_amortization, 39
* Makeham's
    Table_Makeham, 52
* Moivre's
    Table_Moivre,53
* Mortality.
    Fractional_table, 34
* Payment
    Payment_Protection,45
    V_Payment_Protection,66
* Premium
    PremiumFrac,46
* Present
        af, 10
* Probability
    JointSurvival, 39
    Survival,50
* Progression
    av, }1
    Av., 16
    avg,17
    Avg., 19
    V_av,}5
    V_Av., }6
    V_avg,62
    V_Avg.,64
* Protection
    Payment_Protection,45
    V_Payment_Protection,66
* Pure
    E, 32
    Em,33
    V_E,65
* Rate
    Rate_converter,48
```

* Reserve

V_a, 53
V_A., 55
V_aD, 56
V_AD., 57
V_av, 59
V_Av., 60
V_avg, 62
V_Avg., 64
V_E, 65

* Survival

JointSurvival, 39
Survival, 50

* Table Fractional_table, 34
* Value
af, 10
sf, 49
* Varying

V_aD, 56
V_AD., 57
V_av, 59
V_Av., 60
V_avg, 62
V_Avg., 64

* datasets

ArgentinaINDEC9092comb, 13
ArgentinaINDEC9092F, 14
ArgentinaINDEC9092M, 14
CS02001FALBnonsmoker, 20
CS02001FALBsmoker, 21
CS02001FANBnonsmoker, 21
CS02001FANBsmoker, 22
CS02001MALBnonsmoker, 22
CS02001MALBsmoker, 23
CSO2001MANBnonsmoker, 23
CS02001MANBsmoker, 24
CS058FALB, 24
CS058FANB, 25
CS058MALB, 25
CS058MANB, 26
CS080FALB, 26
CS080FALBnonsmoker, 27
CS080FALBsmoker, 27
CS080FANB, 28
CS080FANBnonsmoker, 28
CS080FANBsmoker, 29
CS080MALB, 29

```
    CS080MALBnonsmoker, 30
    CS080MALBsmoker, 30
    CS080MANB, 31
    CS080MANBnonsmoker, 31
    CS080MANBsmoker, 32
    GAM71F, 35
    GAM71M, 35
    GAM83F, 36
    GAM83M, 36
    GAM94F, 37
    GAM94FANB, 37
    GAM94M, 38
    GAM94MANB, 38
    MAyP0206activeF,40
    MAyP0206activeM, 40
    MAyP0206CAF,41
    MAyP0206CAM, 41
    MAyP0206retiredF,42
    MAyP0206retiredM, 42
    Mi06F,43
    Mi06M,43
    Mi85F,44
    Mi85M,44
    RV04F,48
    RV04M,49
* death
    qfrac, 47
* de
    Table_Moivre, 53
* law
    Table_Dormoy, 50
    Table_Gompertz,51
    Table_Makeham, 52
    Table_Moivre, 53
* mortality
    Table_Dormoy, 50
* of
    Fractional_table, 34
    qfrac,47
* probability
    qfrac, 47
* table.
    Table_Dormoy, 50
    Table_Gompertz, 51
    Table_Makeham, 52
    Table_Moivre,53
* table
    ArgentinaINDEC9092comb, 13
a, 4
A., 5
```

aCont, 6
ACont., 7
aD, 8
AD., 9
af, 10
am, 11
Am., 12
ArgentinaINDEC9092comb, 13
ArgentinaINDEC9092F, 14
ArgentinaINDEC9092M, 14
av, 15
Av., 16
avg, 17
Avg., 19
CS02001FALBnonsmoker, 20
CS02001FALBsmoker, 21
CS02001FANBnonsmoker, 21
CS02001FANBsmoker, 22
CS02001MALBnonsmoker, 22
CS02001MALBsmoker, 23
CS02001MANBnonsmoker, 23
CSO2001MANBsmoker, 24
CS058FALB, 24
CS058FANB, 25
CS058MALB, 25
CS058MANB, 26
CS080FALB, 26
CS080FALBnonsmoker, 27
CS080FALBsmoker, 27
CS080FANB, 28
CS080FANBnonsmoker, 28
CS080FANBsmoker, 29
CS080MALB, 29
CS080MALBnonsmoker, 30
CS080MALBsmoker, 30
CS080MANB, 31
CS080MANBnonsmoker, 31
CS080MANBsmoker, 32
E, 32
Em, 33
Fractional_table, 34

GAM71F, 35
GAM71M, 35
GAM83F, 36
GAM83M, 36

GAM94F, 37
GAM94FANB, 37
GAM94M, 38
GAM94MANB, 38
JointSurvival, 39
Loan_amortization, 39
MAyP0206activeF, 40
MAyP0206activeM, 40
MAyP0206CAF, 41
MAyP0206CAM, 41
MAyP0206retiredF, 42
MAyP0206retiredM, 42
Mi06F, 43
Mi06M, 43
Mi85F, 44
Mi85M, 44
Payment_Protection, 45
PremiumFrac, 46
qfac, 47
Rate_converter, 48
RV04F, 48
RV04M, 49
sf, 49
Survival, 50
Table_Dormoy, 50
Table_Gompertz, 51
Table_Makeham, 52
Table_Moivre, 53
V_a, 53
V_A., 55
V_aD, 56
V_AD., 57
V_av, 59
V_Av., 60
V_avg, 62
V_Avg., 64
V_E, 65
V_Payment_Protection, 66

[^0]: http://servicios.infoleg.gob.ar/infolegInternet/anexos/80000-84999/81029/norma.
 htm

