Package 'MatchGATE'

April 8, 2024
Title Estimate Group Average Treatment Effects with Matching
Version 0.0.10
Description Two novel matching-based methods for estimating group average treatment effects (GATEs). The match_yly0() and match_yly0_bc() functions are used for imputing the potential outcomes based on matching and bias-corrected matching techniques, respectively. The EstGATE() function is employed to estimate the GATE after imputing the potential outcomes.

License GPL-3
Encoding UTF-8
RoxygenNote 7.3.1
Imports locpol, stats
NeedsCompilation no
Author Zhaoqing Tian [aut, cre, com] (https://orcid.org/0009-0001-6786-0924),
Peng Wu [aut, ths] (https://orcid.org/0000-0001-7154-8880),
Yilin Chen [dtc] (https://orcid.org/0009-0009-2418-1348)
Maintainer Zhaoqing Tian tzqluck@163.com
Repository CRAN
Date/Publication 2024-04-08 15:10:05 UTC

R topics documented:

EstGATE . 2
match_y1y0 . 3
match_yly0_bc . 4

Index
6

Description

When imputed values for Y^{1} and Y^{0} are available for each individual, we can use EstGATE to estimate the group average treatment effects (GATE) defined by

$$
G A T E(z)=E\left[Y^{1}-Y^{0} \mid Z=z\right]
$$

for some for possible values z of Z.

Usage

EstGATE(Y1_Y0, Z, Zeval, h)

Arguments

Y1_Y0	A vector in which each element is a treatment effect for each individual.
Z	A subvector of the covariates X, which is used to define the subgroup of interest.
Zeval	Vector of evaluation points of Z.
h	A smoothing parameter, bandwidth.

Value

The value of the corresponding GATE at different evaluation points.

Examples

```
set.seed(691)
n <- 2000
X1 <- runif(n, -0.5,0.5)
X2 <- rnorm(n, sd = 0.5)
X = cbind(X1, X2)
A = sample(c(0,1), n, TRUE)
Y0 <- X2 + X1*X2/2 + rnorm(n, sd = 0.25)
Y1 <- A * (2*X1^2) + X2 + X1*X2/2 + rnorm(n, sd = 0.25)
Y <- A * Y1 + (1-A)*Y0
res.match <- match_y1y0(X, A, Y, K = 5)
y1_y0 <- res.match$Y1 - res.match$Y0
Z <- X1
Zeval = seq(min(Z), max(Z), len = 101)
h <- 0.5 * n^(-1/5)
res <- EstGATE(Y1_Y0 = y1_y0, Z, Zeval, h = h)
plot(x = Zeval, y = 2*Zeval^2,
    type = "l", xlim = c(-0.6, 0.5),
    main = "Estimated value vs. true value",
```

```
    xlab = "Zeval", ylab = "GATE",
    col = "DeepPink", lwd = "2")
lines(x = res$Zeval, y = res$GATE,
    col="DarkTurquoise", lwd = "2")
legend('bottomleft', c("Estimated GATE","True GATE"),
        col=c("DarkTurquoise","DeepPink"),
        text.col=c("DarkTurquoise","DeepPink"), cex = 0.8)
```

match_y1y0 Imputing Missing Potential Outcomes with Matching

Description

Impute missing potential outcomes for each individual with matching.

Usage

match_y1y0(X, A, Y, K = 5, method = "euclidean")

Arguments

$X \quad$ A matrix representing covariates, where each row represents the value of a different covariates for an individual.
A A vector representing the treatment received by each individual.
Y A vector representing the observed outcome for each individual.
K When imputing missing potential outcomes, the average number of similar individuals are taken based on covariates similarity.
method The distance measure to be used. It is a argument embed in dist function.

Details

Here are the implementation details for the imputation processes. Denote \hat{Y}_{i}^{0} and \hat{Y}_{i}^{1} as the imputed potential outcomes for individual i. Without loss of generality, if $A_{i}=0$, then $\hat{Y}_{i}^{0}=Y_{i}$, and \hat{Y}_{i}^{1} is the average of outcomes for the K units that are the most similar to the individual i, i.e.,

$$
\hat{Y}_{i}^{0}=\frac{1}{K} \sum_{j \in \mathcal{J}_{K}(i)} Y_{j},
$$

where $\mathcal{J}_{K}(i)$ represents the set of K matched individuals with $A_{i}=1$, that are the closest to the individual i in terms of covariates similarity, and vice versa.

Value

Returns a matrix of completed matches, where each row is the imputed $\left(Y^{1}, Y^{0}\right)$ for each individual.

Examples

```
    n <- 100
    p <- 2
    X <- matrix(rnorm(n*p), ncol = p)
    A <- sample(c(0,1), n, TRUE)
    Y <- A * (2*X[,1]) + X[,2]^2 + rnorm(n)
    match_y1y0(X = X, A = A, Y = Y, K =5)
```

match_y1y0_bc Imputing Missing Potential Outcomes with Bias-Corrected Matching

Description

Impute missing potential outcomes for each individual with bias-corrected matching.

Usage

match_y1y0_bc(X, A, Y, miu1.hat, miu0.hat, K = 5, method = "euclidean")

Arguments

$X \quad$ A matrix representing covariates, where each row represents the value of a different covariates for an individual.

A A vector representing the treatment received by each individual.
Y A vector representing the observed outcome for each individual.
miu1.hat \quad The estimated outcome regression function for Y^{1}.
miu0.hat The estimated outcome regression function for Y^{0}.
K When imputing missing potential outcomes, the average number of similar individuals are taken based on covariates similarity.
method The distance measure to be used. It is a argument embed in dist function.

Details

Here are the implementation details for the imputation processes. Denote \hat{Y}_{i}^{0} and \hat{Y}_{i}^{1} as the imputed potential outcomes for individual i. For example, if $A_{i}=0$, then $\hat{Y}_{i}^{0}=Y_{i}^{0}$. However, for obtaining \hat{Y}_{i}^{1}, we require to introduce an outcome regression function $\mu_{1}(X)$ for Y^{1}. Let $\hat{\mu}_{1}(X)$ be the fitted value of $\mu_{1}(X)$, then \hat{Y}_{i}^{1} is defined as follows,

$$
\hat{Y}_{i}^{1}=\frac{1}{K} \sum_{j \in \mathcal{J}_{K}(i)}\left\{Y_{j}+\hat{\mu}_{1}\left(X_{i}\right)-\hat{\mu}_{1}\left(X_{j}\right)\right\}
$$

where $\mathcal{J}_{K}(i)$ represents the set of K matched individuals with $A_{i}=1$, that are the closest to the individual i in terms of covariates similarity, and vice versa.
match_y1y0_bc

Value

Returns a matrix of completed matches, where each row is the imputed $\left(Y^{1}, Y^{0}\right)$ for each individual.

Examples

```
n = 100
X1 <- runif(n, -0.5,0.5)
X2 <- sample(c(0,1,2), n, TRUE)
X = cbind(X1, X2)
A = sample(c(0,1), n, TRUE)
Y = A * (2*X1) + X1 + X2^2 + rnorm(n)
miu1_hat <- cbind(1,X) %*% as.matrix(lm(Y ~ X, subset = A==1)$coef)
miu0_hat <- cbind(1,X) %*% as.matrix(lm(Y ~ X, subset = A==0)$coef)
match_y1y0_bc(X = X, A = A, Y = Y, miu1.hat = miu1_hat,
miu0.hat = miu0_hat, K = 5)
```


Index

dist, 3, 4

EstGATE, 2
match_y1y0, 3
match_y1y0_bc, 4

