Package 'MultiGroupSequential'

August 9, 2023

Type Package

Version 1.1.0

Title Group-Sequential Procedures with Multiple Hypotheses

Description It is often challenging to strongly control the family-wise type-1 error rate in the group-sequential trials with multiple endpoints (hypotheses). The inflation of type-1 error rate comes from two sources (S1) repeated testing individual hypothesis and (S2) simultaneous testing multiple hypotheses. The 'MultiGroupSequential' package is intended to help researchers to tackle this challenge. The procedures provided include the sequential procedures described in Luo and Quan (2023) <doi:10.1080/19466315.2023.2191989> and the graphical procedure proposed by Maurer and Bretz (2013) <doi:10.1080/19466315.2013.807748>. Luo and Quan (2013) describes three procedures, and the functions to implement these procedures are (1) seqgspgx() implements a sequential graphical procedure based on the group-sequential p-values; (2) seqgsphh() implements a sequential Hochberg/Hommel procedure based on the group-sequential p-values; and (3) seqqvalhh() implements a sequential Hochberg/Hommel procedure based on the q-values. In addition, seqmbgx() implements the sequential graphical procedure described in Maurer and Bretz (2013).

Depends R (>= 4.0.0)

Encoding UTF-8

Imports stats, OpenMx, hommel

License GPL (>= 2)

RoxygenNote 7.2.3

NeedsCompilation no

Author Xiaodong Luo [aut, cre], Hui Quan [ctb], Sanofi [cph]

Maintainer Xiaodong Luo < Xiaodong Luo @sanofi.com >

Repository CRAN

Date/Publication 2023-08-09 14:50:02 UTC

2 calgsp1

R topics documented:

calgsp1 .																						
calgspn .											 											3
checkcrit.											 											4
findcrit											 											5
graphical											 											6
hochbergd											 											7
hommeld											 											8
inftocor .		•									 											9
seqgspgx											 											9
seqgsphh																						
seqmbgx .																						
seqqvalhh																						
spendingfun	ı										 											14
updategraph	ı										 											15

calgsp1

Index

Calculate group-sequential p-values for one hypothesis

17

Description

calgsp1() calculates the group-sequential p-values for one hypothesis.

Usage

```
calgsp1(
   sx = qnorm(1 - c(0.03, 0.04, 0.01)),
   scrit = qnorm(1 - c(0.01, 0.02, 0.025)),
   salpha = c(0.01, 0.02, 0.025),
   smatrix = diag(3),
   sided = 1
)
```

Arguments

SX	Numeric vector of test statistics, assumed to be multivariate normal with variance 1 and correlation matrix given by smatrix.
scrit	Numeric vector of sequece of critical values for the test statistics in sx. It should be computed beforehand. Must have the same length as sx.
salpha	Numeric vector of cumulative alpha levels for the test statistics in sx. Must have the same length as sx.
smatrix	Matrix with the correlation matrix of the test statistics sx.
sided	Integer scalar indicating the side of the test:

calgspn 3

- -1: Reject if test statistic is smaller than or equal to the critical value (one-sided)
- 1: Reject if test statistic is greater or equal to the critical value (one-sided)
- 0: Reject if the absolute value of the test statistic is greater than the critical value (two-sided)

Value

List containing the group-sequential p-values.

Author(s)

Xiaodong Luo

Examples

```
calgsp1(
    sx = qnorm(1 - c(0.03, 0.04, 0.01)),
    scrit = qnorm(1 - c(0.01, 0.02, 0.025)),
    salpha = c(0.01, 0.02, 0.025),
    smatrix = diag(3),
    sided = 1
)
```

calgspn

Calculate group-sequential p-values for multiple hypotheses

Description

calgspn() calculates the group-sequential p-values for multiple hypotheses.

Usage

```
calgspn(
    xm = qnorm(matrix(rep(c(0.03, 0.04, 0.01), times = 2), ncol = 3, nrow = 2)),
    alpham = matrix(rep(c(0.02, 0.03, 0.05), each = 2), ncol = 3, nrow = 2),
    critm = matrix(rep(qnorm(c(0.02, 0.03, 0.05)), each = 2), ncol = 3, nrow = 2),
    matrix.list = list(diag(3), diag(3)),
    sided = rep(-1, 2)
)
```

Arguments

xm	Matrix of test statistics for hypotheses (in row) and each interim (in column).
alpham	Matrix of cumulative alpha levels for the test statistics xm. Must have the same dimensions as xm. For each row, alpha levels must be
critm	Matrix of critical values for the test statistics in xm. It should be computed beforehand. Must have the same dimensions as xm.

4 checkcrit

matrix.list List of correlation matrices corresponding to each hypothesis.

sided

Integer vector indicating the side of the test:

- -1: Reject if test statistic is smaller than or equal to the critical value (one-sided)
- 1: Reject if test statistic is greater or equal to the critical value (one-sided)
- 0: Reject if the absolute value of the test statistic is greater than the critical value (two-sided)

Value

List with element pm containing the group-sequential p-values.

Author(s)

Xiaodong Luo

Examples

```
calgspn(
    xm = qnorm(matrix(rep(c(0.03,0.04,0.01),times=2),ncol=3,nrow=2)),
    alpham = matrix(rep(c(0.02,0.03,0.05),each=2),ncol=3,nrow=2),
    critm = matrix(rep(qnorm(c(0.02,0.03,0.05)),each=2),ncol=3,nrow=2),
    matrix.list = list(diag(3),diag(3)),
    sided = rep(-1,2)
)
```

checkcrit

Check critical values

Description

checkcrit() is a helper function that checks if the critical values are valid.

```
checkcrit(
  scrit = qnorm(c(0.01, 0.02, 0.025)),
  salpha = c(0.01, 0.02, 0.025),
  smatrix = diag(3),
  sided = 1
)
```

findcrit 5

Arguments

scrit Numeric vector of critical values.
salpha Numeric vector of cumulative alpha levels.
smatrix General correlation matrix.
sided Integer vector indicating the side of the test:

- -1: Reject if test statistic is smaller than or equal to the critical value (one-sided)
- 1: Reject if test statistic is greater or equal to the critical value (one-sided)
- 0: Reject if the absolute value of the test statistic is greater than the critical value (two-sided)

Value

List with:

- crit.value: Critical values
- salpha: Cumulative alpha levels passed to salpha argument

Author(s)

Xiaodong Luo

Examples

```
checkcrit(
  scrit = qnorm(c(0.01, 0.02, 0.025)),
  salpha = c(0.01, 0.02, 0.025),
  smatrix = diag(3),
  sided = 1
)
```

findcrit

Calculate critical values

Description

findcirt() calculates the critical values in the general correlation matrix

```
findcrit(
  salpha = c(0.01, 0.02, 0.025),
  smatrix = diag(3),
  sided = 1,
  tol = 1e-10,
  alpha.tol = 1e-11
)
```

6 graphical

Arguments

Numeric vector of cumulative alpha levels. salpha smatrix General correlation matrix. sided Integer vector indicating the side of the test: • -1: Reject if test statistic is smaller than or equal to the critical value (onesided) • 1: Reject if test statistic is greater or equal to the critical value (one-sided) • 0: Reject if the absolute value of the test statistic is greater than the critical value (two-sided) tol Numeric scalar with the tolerance level for computing critical values. alpha.tol Numeric scalar. If the alpha increment is less than this, the critical value is set to a large number determined by alpha. tol.

Value

List with element crit.value containing the obtained critical values.

Author(s)

Xiaodong Luo

Examples

```
findcrit(
  salpha = c(0.01, 0.02, 0.025),
  smatrix = diag(3),
  sided = 1,
  tol = 1e-10,
  alpha.tol = 1e-11
)
```

graphical

Graphical procedure

Description

graphical() performs graphical procedure to test multiple hypotheses

```
graphical(
p = c(0.01, 0.04, 0.03),
W = c(0.5, 0.25, 0.25),
G = rbind(c(0, 1, 0), c(0, 0, 1), c(1, 0, 0)),
alpha = 0.05
```

hochbergd 7

Arguments

р	Numeric vector of p-values for the hypotheses.
---	--

W Numeric vector of weigths of the graph. Must have the same length as p.

G Matrix of the transition matrix of the graph.

alpha Numeric scalar with the overall type-1 error rate.

Value

A list with a single element containing a vector indicating whether hypotheses are rejected (1) or not (0).

Author(s)

Kaiyuan Hua, Xiaodong Luo

Examples

```
graphical(p = c(0.02, 0.03, 0.01))
```

hochbergd Hochberg procedure

Description

hochbergd() computes the Hochberg procedure with different alphas for different endpoints.

Usage

```
hochbergd(pvalues, alpha, epsilon = 1e-10, precision = 10)
```

Arguments

pvalues Numeric vector of p-values from different endpoints.
--

alpha Numeric vector of alpha values for the different endpoints. Vector must be same

length as pvalues.

epsilon Numeric scalar indicating the lower bound for alpha.

precision Integer scalar of the desired number of digits to be used.

Value

List with element named decisions containing an index of rejected hypotheses.

Author(s)

Xiaodong Luo

8 hommeld

Examples

```
hochbergd(
  pvalues = runif(5),
  alpha = seq(0.01, 0.025, len = 5),
  epsilon = 1.0e-10,
  precision = 10
)
```

hommeld

Hommel procedure

Description

hommeld() implement the Hommel procedure with different alphas for different endpoints.

Usage

```
hommeld(pvalues, alpha, epsilon = 1e-10, precision = 10)
```

Arguments

pvalues Numeric vector of p-values from different endpoints.

alpha Numeric vector of alpha values for the different endpoints. Vector must be same

length as pvalues.

epsilon Numeric scalar indicating the lower bound for alpha.

precision Integer scalar of the desired number of digits to be used.

Details

The package hommel can handle Hommel procedure with different alpha's for different endpoints, the function hommeld() is just a wrapper of hommel::hommel().

Value

List with element named decisions containing an index of rejected hypotheses.

Author(s)

Xiaodong Luo

Examples

```
hommeld(
  pvalues = runif(5),
  alpha = seq(0.01, 0.025, len = 5),
  epsilon = 1.0e-10,
  precision = 10
)
```

inftocor 9

inftocor

Transform information fractions into correlation matrix

Description

inftocor() transforms information (fractions) into correlation matrix.

Usage

```
inftocor(ir = c(0.2, 0.5, 1))
```

Arguments

ir

Numeric vector of the sequence of information fractions. All elements should be between 0 and 1 with the last one being exactly 1.

Value

List with an element named cor for the correlation matrix.

Author(s)

Xiaodong Luo

Examples

```
inftocor(ir = c(0.2, 0.5, 1.0))
```

seqgspgx

Sequential graphical procedure based on group-sequential p-values

Description

 ${\tt seqgspgx()}\ implements\ the\ sequential\ graphical\ procedure\ for\ multiple\ hypotheses\ based\ on\ group-sequential\ p-values.$

```
seqgspgx(
  pm = matrix(rep(c(0.03, 0.04, 0.01), times = 2), ncol = 3, nrow = 2),
  alpha = 0.025,
  W = c(0.6, 0.4),
  G = rbind(c(0, 1), c(1, 0))
)
```

10 seqgsphh

Arguments

pm	Numeric matrix of group-sequential p-values for different hypotheses (in row) at different times (in column).
alpha	Numeric scalar of the overall family-wise error rate.
W	Numeric vector of the weights of the graph.
G	Numeric transition matrix of the graph.

Value

List with elements

- rejected: the index set of rejected hypotheses
- decisionsm: rejection decision for each endpoint (row) at each timepoint (column)
- cumdecisionsm: cumulative rejection decision for each endpoint (row) at each timepoint (column)

Author(s)

Xiaodong Luo

Examples

```
seqgspgx(
  pm = matrix(rep(c(0.03, 0.04, 0.01), times = 2), ncol = 3, nrow = 2),
  alpha = 0.025,
  W = c(0.6, 0.4),
  G = rbind(c(0, 1), c(1, 0))
)
```

seqgsphh

Sequential generalized Hochberg and Hommel procedures based on group-sequential p-values

Description

seqgsphh() implements the sequential Generalized Hochberg and Hommel procedures based on group-sequential p-values.

```
seqgsphh(
  pm = matrix(rep(c(0.03, 0.04, 0.01), times = 2), ncol = 3, nrow = 2),
  alpha = 0.025,
  epsilon = 1e-10,
  precision = 10,
  method = "Hochberg"
)
```

seqmbgx 11

Arguments

pm	Numeric matrix of group-sequential p-values for different hypotheses (in row) at different times (in column).
alpha	Numeric scalar of the overall family-wise error rate.
epsilon	Numeric scalar indicating the lower bound for alpha.
precision	Integer scalar for precision of the values, obsolete for backward compatibility.
method	"Hochberg" or "Hommel"

Value

List with elements

- rejected: the index set of rejected hypotheses
- decisionsm: rejection decision for each endpoint (row) at each timepoint (column)
- cumdecisionsm: cumulative rejection decision for each endpoint (row) at each timepoint (column)

Author(s)

Xiaodong Luo

Examples

```
pm <- matrix(rep(c(0.03, 0.04, 0.01), times = 2), ncol = 3, nrow = 2) seqgsphh(pm = pm, alpha = 0.025, method = "Hochberg") seqgsphh(pm = pm, alpha = 0.025, method = "Hommel")
```

seqmbgx

Maurer-Bretz sequential graphical approach

Description

seqmbgx() conducts group-sequential testing for multiple hypotheses based on Maurer-Bretz approach.

```
 \begin{split} & \text{seqmbgx}(\\ & \text{xm} = \text{qnorm}(\text{matrix}(\text{rep}(\text{c}(0.03,\ 0.04,\ 0.01),\ \text{times} = 4),\ \text{ncol} = 3,\ \text{nrow} = 4)),\\ & \text{informationm} = \text{matrix}(\text{rep}(\text{c}(0.4,\ 0.8,\ 1),\ \text{each} = 4),\ \text{ncol} = 3,\ \text{nrow} = 4),\\ & \text{spending} = \text{rep}("\text{OBF}",\ 4),\\ & \text{param.spending} = \text{rep}(1,\ 4),\\ & \text{alpha} = 0.025,\\ & \text{sided} = -1,\\ & \text{W} = \text{c}(0.5,\ 0.5,\ 0,\ 0),\\ & \text{G} = \text{rbind}(\text{c}(0,\ 0,\ 1,\ 0),\ \text{c}(0,\ 0,\ 0,\ 1),\ \text{c}(0,\ 1,\ 0,\ 0),\ \text{c}(1,\ 0,\ 0,\ 0)), \end{aligned}
```

12 seqmbgx

```
tol = 1e-10,
  retrospective = 0
)
```

Arguments

xm Numeric matrix of test statistics for each endpoint (in row) and each time point

(in column).

informationm Numeric matrix of information fractions for the statistics xm.

spending Character vector for the type(s) of the spending function for each endpoint.

param. spending parameter in the spending function

alpha overall family-wise error rate

sided Integer scalar indicating the side of the test:

-1: Reject if test statistic is smaller than or equal to the critical value (one-sided)

• 1: Reject if test statistic is greater or equal to the critical value (one-sided)

• 0: Reject if the absolute value of the test statistic is greater than the critical value (two-sided)

W Numeric vector of the weights of the graph.

G Numeric transition matrix of the graph.

tol Numeric scalar of tolerance level for computing the critical values.

retrospective Integer scalar with the following potential values

 0: (default) only compares the current test statistic with the updated critical value;

• 1: compares all the test statistics up to the current one with the updated critical values.

Even though retrospectively looking at the values is statistically valid in terms of control the type-1 error, not retrospectively looking at the past comparisons avoids the dilemma of retrospectively increasing the alpha level for the unrejected hypothesis in the past.

Value

List with elements

- Hrej: rejected hypotheses
- rejected: the index set of rejected hypotheses
- decisionsm: rejection decision for each endpoint (row) at each timepoint (column)
- cumdecisionsm: cumulative rejection decision for each endpoint (row) at each timepoint (column)

Author(s)

Xiaodong Luo

seqqvalhh 13

Examples

```
seqmbgx(
    xm = qnorm(matrix(rep(c(0.03, 0.04, 0.01), times = 4), ncol = 3, nrow = 4)),
    informationm = matrix(rep(c(0.4, 0.8, 1), each = 4), ncol = 3, nrow = 4),
    spending = rep("0BF", 4),
    param.spending = rep(1, 4),
    alpha = 0.025,
    W = c(0.5, 0.5, 0, 0),
    G = rbind(c(0, 0, 1, 0), c(0, 0, 0, 1), c(0, 1, 0, 0), c(1, 0, 0, 0)),
    retrospective = 0
)
```

seqqvalhh

Sequential generalized Hochberg and Hommel procedures based on q-values

Description

Sequential generalized Hochberg and Hommel procedures based on q-values

Usage

```
seqqvalhh(
   pm = matrix(rep(c(0.03, 0.04, 0.01), times = 2), ncol = 3, nrow = 2),
   alpham = matrix(rep(c(0.02, 0.03, 0.05), each = 2), ncol = 3, nrow = 2),
   epsilon = 1e-10,
   precision = 10,
   method = "Hochberg"
)
```

Arguments

pm	Matrix of group-sequential p-values for different hypotheses (in row) at different times (in column).
alpham	Matrix of alpha spending corresponding to the p-values pm. For each row, alpha levels must be non-decreasing.
epsilon	Numeric scalar indicating the lower bound for alpha.
precision	Integer scalar for precision of the values, obsolete for backward compatibility.
method	Character scalar "Hochberg" or "Hommel".

Value

List with elements

- rejected: the index set of rejected hypotheses
- decisionsm: rejection decision for each endpoint (row) at each timepoint (column)

14 spendingfun

- cumdecisionsm: cumulative rejection decision for each endpoint (row) at each timepoint (column);
- alphaused: alpha levels actually used for each endpoint (row) at each timepoint (column).

Author(s)

Xiaodong Luo

Examples

```
pm <- matrix(rep(c(0.03, 0.04, 0.01), times = 2), ncol = 3, nrow = 2) alpham <- matrix(rep(c(0.02, 0.03, 0.05), each = 2), ncol = 3, nrow = 2) seqqvalhh(pm = pm, alpham = alpham, method = "Hochberg") seqqvalhh(pm = pm, alpham = alpham, method = "Hommel")
```

spendingfun

Calculate alpha spending function

Description

spendingfun() calculates the alpha spending function.

Usage

```
spendingfun(alpha, fractions = seq(0.2, 1, by = 0.2), family = "OBF", rho = 1)
```

Arguments

alpha	Numeric scalar of the overall alpha to be spent.
fractions	Numeric vector of the sequence of information fractions. All elements should be between 0 and 1 with the last one being exactly 1.
family	Character scalar for the family of spending functions, one of "OBF", "pocock", "power".
rho	Numeric scalar of auxiliary parameter for O'Brien-Fleming and power family.

Details

- "OBF": O'Brien-Fleming family; $2\{1-\Phi(\Phi^{-1}(1-\alpha/2)/t^{\rho/2})\};$
- "pocock": Pocock family; $\alpha \log\{1 + (e-1) * t\}$;
- "power": Power family; $\alpha * t^{\rho}$

Note that the OBF and Pocock spending functions are not the originally proposed ones, they are the modified ones that closely resemble the original versions. That being said, you might still see some differences.

Value

List with an element named aseq for the alpha spending sequence.

updategraph 15

Author(s)

Xiaodong Luo

Examples

```
spendingfun(
  alpha = 0.025,
  fractions = seq(0.2, 1, by = 0.2),
  family = "OBF",
  rho = 1
)
```

 ${\tt updategraph}$

Update graph

Description

updategraph() updates the graph when only a subset of original hypotheses is concerned.

Usage

```
updategraph( S1 = c(2, 3), \\ W0 = c(0.5, 0.5, 0, 0), \\ G0 = rbind(c(0, 0, 1, 0), c(0, 0, 0, 1), c(0, 1, 0, 0), c(1, 0, 0, 0)), \\ S0 = seq(1, length(W0), by = 1) )
```

Arguments

\$1	Integer indices of the subset of hypotheses, S1 must be a non-empty subset of S0 and must be sorted increasingly.
WØ	Numeric vector for the initial weights of the graph.
G0	Numeric matrix of dimesion length(W0) by length(W0) for the initial transition matrix of the graph.
SØ	Integer indices for the set of hypotheses from 1 to length of W0.

Value

List with the following elements

- S1: Integer indices the same as the input S1.
- W1: Numeric vector for weights of the updated graph.
- G1: Numeric transition of the updated graph.

16 updategraph

Author(s)

Xiaodong Luo

Examples

```
## We can use the function to produce a closed testing tree
## A function to create power set
powerset <- function(x) {</pre>
  sets <- lapply(1:(length(x)), function(i) combn(x, i, simplify = FALSE))
 unlist(sets, recursive = FALSE)
}
n <- 3
          # number of hypotheses
pn < - 2^n-1
pset \leftarrow powerset(seq(1, n, by = 1)) # create the power set
df <- data.frame(matrix(ncol = 1+n, nrow = 0))  # create the dataset</pre>
colnames(df) \leftarrow c("Test", paste0("H", seq(1, n, by = 1), sep = ""))
W0 <- c(1/3, 1/3, 1/3) # the weights of the graph
m \leftarrow rbind(H1 = c(0, 1/2, 1/2),
           H2 = c(1/2, 0, 1/2),
           H3 = c(1/2, 1/2, 0))
G0 <- matrix(m, nrow = 3, ncol = 3) # the transition matrix of the graph
for (j in 1:pn){
    abc <- updategraph(S1 = pset[[j]], W0 = W0, G0 = G0)
    temp <- rep("-", n)
    temp[pset[[j]]] <- abc$W1</pre>
    temp <- c(paste(pset[[j]], collapse = ""), temp)</pre>
    df[j, ] <- temp</pre>
}
df
      # the dataframe lists the closed testing tree
```

Index

* Hochberg procedure	inftocor, 9
hochbergd, 7	* multiple compariso
seqgsphh, 10	graphical, 6
seqqvalhh, 13	updategraph, 15
* Hommel procedure	* q-values
hommeld, 8	seqqvalhh, 13
seqgsphh, 10	1 4 0
seqqvalhh, 13	calgsp1, 2
* Maurer-Bretz	calgspn, 3
seqmbgx, 11	checkcrit,4
* alpha-spending	findcrit, 5
spendingfun, 14	rinder re, 3
* closed testing	graphical, 6
updategraph, 15	5 1
* correlation matrix	hochbergd, 7
inftocor, 9	hommel::hommel(), 8
* critical values	hommeld, 8
checkcrit,4	
findcrit,5	inftocor, 9
* efficacy boundary	ooggongy 0
checkcrit,4	seqgspgx, 9 seqgsphh, 10
findcrit, 5	seqmsprin, 10
* graphical procedure	seqqvalhh, 13
graphical, 6	spendingfun, 14
seqmbgx, 11	Spendingrun, 14
updategraph, 15	updategraph, 15
* group-sequential p-values	
calgsp1,2	
calgspn, 3	
seqgspgx, 9	
seqgsphh, 10	
* group-sequential	
checkcrit, 4	
findcrit, 5	
seqgsphh, 10	
seqmbgx, 11	
seqqvalhh, 13	
spendingfun, 14	
* information fraction	