Package 'SBN'

October 12, 2022

Title Generate Stochastic Branching Networks

Version 1.0.0
Description Generate Stochastic Branching Networks ('SBNs'). Used to model the branching structure of rivers.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.2
Imports igraph, stats
<pre>URL https://flee598.github.io/SBN/</pre>
NeedsCompilation no
Author Finnbar Lee [aut, cre]
Maintainer Finnbar Lee <lee.finnbar@gmail.com></lee.finnbar@gmail.com>
Repository CRAN
Date/Publication 2022-01-17 19:42:42 UTC
R topics documented:
sbn_change_dir
sbn_create
sbn_down_dir
sbn_get_downstream
sbn_get_hw
sbn_get_outlet
sbn_get_upstream
sbn_strahler
sbn_to_mtx
Index

2 sbn_create

sbn_change_dir

Change the upstream/downstream direction of an SBN

Description

Change the upstream/downstream direction of an SBN to either, reversed or undirected.

Usage

```
sbn_change_dir(g, method = c("rev", "undir"))
```

Arguments

g a river network as an igraph object. Must be a downstream directed graph.

method one of "rev" or "undir", determining what to convert the network to.

Value

A river network as an igraph object.

Examples

```
g <- sbn_create(10, 0.7)
sbn_change_dir(g, method = "rev")</pre>
```

sbn_create

Create SBNs

Description

An SBN river network as a downstream directed igraph object.

Usage

```
sbn_create(n, p)
```

Arguments

n desired number of nodes.

p branching probability, from 0 - 1. Passed to stats::rbinom(), the probability of success in two attempts at adding upstream branches.

sbn_down_dir 3

Details

SBNs are generated using a stochastic branching process. The network generation process starts from an initial downstream node (the river mouth). At each iteration a random node in the network, with no upstream connections is selected, and zero, one or two nodes are added upstream of it, depending on a branching probability (p). This process is repeated until a pre-determined number of nodes across the entire network is attained (n).

Value

A river network as an igraph object.

Examples

```
sbn_create(10, 0.7)
```

sbn_down_dir

Convert to a downstream directed network

Description

Convert an upstream directed or non-directed network to a downstream directed network.

Usage

```
sbn_down_dir(g, mouth)
```

Arguments

g a river network as an igraph object.

mouth river mouth vertex id.

Value

A downstream directed network.

Examples

```
g <- sbn_create(10, 0.7)
# to undirected
g <- sbn_change_dir(g, method = "undir")
# undirected to downstream directed
sbn_down_dir(g, mouth = 1)</pre>
```

sbn_get_hw

sbn_get_downstream

Find all downstream nodes

Description

Find all nodes downstream of a given node.

Usage

```
sbn_get_downstream(g, node)
```

Arguments

g

a river network as an igraph object. Must be a downstream directed graph.

node

target node to get all downstream nodes of.

Value

a vector of downstream node id's.

Examples

```
g <- sbn_create(10, 0.7)
sbn_get_downstream(g, 10)</pre>
```

sbn_get_hw

Find all headwater nodes

Description

Find all headwater nodes in a network.

Usage

```
sbn_get_hw(g)
```

Arguments

g a river network as an igraph object. Must be a downstream directed graph.

Value

A vector of headwater node id's.

sbn_get_outlet 5

Examples

```
g <- sbn_create(10, 0.7)
sbn_get_hw(g)</pre>
```

sbn_get_outlet

Find river mouth node

Description

Find river mouth node from a directed graph.

Usage

```
sbn_get_outlet(g)
```

Arguments

g

a river network as an igraph object. Must be a downstream directed graph.

Value

An integer identifying the id of river mouth node.

Examples

```
g <- sbn_create(10, 0.7)
sbn_get_outlet(g)</pre>
```

sbn_get_upstream

Find all nodes upstream of a given node

Description

Find all nodes upstream of a given node.

Usage

```
sbn_get_upstream(g, node)
```

Arguments

g a river network as an igraph object. Must be a downstream directed graph.

node target node to get all upstream nodes of.

sbn_strahler

Value

A vector of upstream node id's.

Examples

```
g <- sbn_create(10, 0.7)
sbn_get_upstream(g, 2)</pre>
```

sbn_strahler

Get node strahler order

Description

Calculate the reach (node) Strahler for all nodes in a river network. The function will not work if any of the nodes in the network have more than two adjacent upstream reaches (e.g. some networks generated by the OCNet package).

Usage

```
sbn_strahler(g)
```

Arguments

g

a river network as an igraph object. Must be a downstream directed graph.

Value

a vector of stream Strahler orders.

Examples

```
g <- sbn_create(10, 0.7)
sbn_strahler(g)</pre>
```

sbn_to_mtx 7

sbn_to_mtx

Convert network to various adjacency/distance matrix formats

Description

Convert a downstream directed SBN to various adjacency or distance matrix formats.

Usage

```
sbn_to_mtx(
   g,
   method = c("dwn_mtx", "undir_mtx", "up_mtx", "n2n_dist_up", "n2n_dist_dwn",
        "n2n_dist_undir"),
   unconnected = Inf,
   weights = NULL
)
```

Arguments

g a river network as an igraph object. Must be a downstream directed graph.

method one of "dwn_mtx", an adjacency matrix for a downstream directed SBN, "up_mtx",

an adjacency matrix for a upstream directed SBN, "undir_mtx", an adjacency matrix for a undirected SBN, "n2n_dist_up", "n2n_dist_dwn" or "n2n_dist_undir", an adjacency matrix of upstream, downstream or undirected node to node dis-

tances.

unconnected when generating node-to-node distance matrices, what value should be used

for unconnected elements. For example, in a downstream directed network, all upstream links are considered unconnected. Default value is Inf but other

options are possible, such as NA or 0.

weights passed to igraph::shortest.paths(). Possibly a numeric vector giving edge

weights. If this is NULL and the graph has a weight edge attribute, then the attribute is used. If this is NA then no weights are used (even if the graph has a

weight attribute).

Value

An adjacency or distance matrix.

Examples

```
g <- sbn_create(10, 0.7)
sbn_to_mtx(g, method = "dwn_mtx")</pre>
```

Index

```
igraph::shortest.paths(), 7
sbn_change_dir, 2
sbn_create, 2
sbn_down_dir, 3
sbn_get_downstream, 4
sbn_get_hw, 4
sbn_get_outlet, 5
sbn_get_upstream, 5
sbn_strahler, 6
sbn_to_mtx, 7
stats::rbinom(), 2
```